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In this paper, the effect of the geometry on the nonlinear vibrations of functionally graded cy-

lindrical shells is analyzed. The Sanders-Koiter theory is applied to model nonlinear dynamics of 

the system in the case of finite amplitude of vibration. Shell deformation is described in terms of 

longitudinal, circumferential and radial displacement fields. Simply supported boundary conditions 

are considered. Numerical analyses are carried out in order to characterize the nonlinear response 

when the shell is subjected to an harmonic external load; different geometries and material distribu-

tions are considered. A convergence analysis is carried out in order to determine the correct number 

of the modes to be used; the role of the axisymmetric and asymmetric modes is carefully analyzed. 

The analysis is focused on determining the nonlinear character of the response as the geometry 

(thickness, radius, length) and material properties (power-law exponent N and configurations of the 

constituent materials) vary. The effect of the constituent volume fractions and the configurations of 

the constituent materials on the natural frequencies and nonlinear response are studied. 

 

1. Introduction 

Functionally graded materials (FGMs) are composite materials obtained by combining and 

mixing two or more different constituents, which are distributed in the thickness direction in accor-

dance with a volume fraction law. The idea of FGMs was first introduced in 1984 by a group of 

Japanese material scientists. They studied different physical aspects, such as temperature and ther-

mal stress distributions, static and dynamic responses, in the vibration characteristics of FGM shell. 

Loy et al. [1] analyzed the vibrations of the cylindrical shells made of a functionally graded 

material, considering simply supported boundary conditions. They found that the natural frequen-

cies are affected by the constituent volume fractions and the configurations of constituent materials. 

Touloukian [2] studied the thermo-physical properties of the high temperature solid materials, 

among them FGMs. He developed an equation that allows defining the material property as a func-

tion of the environmental temperature. Pellicano [5] presented a method for analyzing linear and 

nonlinear vibrations of cylindrical shells having different boundary conditions. Sanders-Koiter 

nonlinear theory was applied; the displacement fields were expanded in terms of harmonic func-

tions and Chebyshev polynomials. Pellicano et al. [6] studied the effect of the geometry on the 

nonlinear vibrations of simply supported cylindrical shells. The geometric non-linearities due to 

finite-amplitude shell motion were considered by using Donnell’s non-linear shallow-shell theory. 

In the present paper, the effect of the geometry on the nonlinear vibrations of FGM shells is 

analyzed. The Sanders-Koiter theory [3-4] is applied to model the nonlinear dynamics of the system 

in the case of finite amplitude vibration. The shell deformation is described in terms of longitudinal, 
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circumferential and radial displacement fields. Simply supported boundary conditions are consid-

ered. The solution method follows the approach of Refs. [5,6], it consists of two steps: 1) linear 

analysis and eigenfunction evaluation; 2) nonlinear analysis using an eigenfunction based expan-

sion. Step 1: the displacement fields are expanded by means of a double mixed series based on har-

monic functions for the circumferential variable and Chebyshev polynomials for the longitudinal 

variable; a Ritz based method allows to obtain approximate natural frequencies and mode shapes. 

Step 2: the three displacement fields are re-expanded by using the approximate eigenfunctions ob-

tained at step 1; the nonlinear partial differential equations are reduced to a set of ordinary differen-

tial equations by using the Lagrange equations. Numerical analyses are carried out to characterize 

the nonlinear response when the shell is subjected to an harmonic external load; different geome-

tries and material distributions are considered. 

2. Fundamental equations of functionally graded materials 

The material properties      of FGMs depend on the material properties and the volume frac-

tions of the constituent materials, and they are expressed in the form [1]: 

             

 

   

                                                                                                                                                                                                  

where    and     are the material property and the volume fraction of the constituent material  . 

The material properties   of the constituent materials can be described as a function of the 

environmental temperature      by Touloukian’s cubic curve relation [2]: 
             

            
     

                                                                                                                                                                                                           
where   ,    ,   ,    and    are the coefficients of temperature      of the constituent materials. 

In the case of a FGM thin cylindrical shell, the volume fraction    can be written as [1]: 

       
      

 
 
 
                                                                                                                                                                                                                                                                                                                                        

where the power-law exponent   is a positive real number, with        . 
Young’s modulus  , Poisson’s ratio   and mass density   are expressed as [1]: 

                        
       

 
 

 

                                                                
       

 
 

 

                

                        
       

 
 
 
                                                                                                                                                          

3. Equations of motion 

In Figure 1, a FGM circular cylindrical shell having radius  , length   and thickness   is rep-

resented; a cylindrical coordinate system           is considered in order to take advantage from 

the axial symmetry of structure, having the origin   of reference system located at the centre of one 

end of the shell. Three displacement fields are represented: longitudinal         , circumferential 

         and radial         . The variable   is the time. 

                      

Figure 1. Geometry of a functionally graded circular cylindrical shell. 
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3.1 Strain energy 

The Sanders-Koiter theory of circular cylindrical shells, which is an eight-order shell theory, 

is based on the first Love approximation [3]. 

The strain components             at an arbitrary point of the circular cylindrical shell are re-

lated to the middle surface strains                   and to the changes in the curvature and torsion 

            of the middle surface of the shell by the following relationships [4]: 
                                                                                                                                                              

where   is the distance of the arbitrary point of the shell from the middle surface, and       
are the longitudinal and angular coordinates of the shell, see Figure 1. 

According to the Sanders-Koiter nonlinear theory, the middle surface strains and changes in 

curvature and torsion are given by [4]: 

     
  

   
 
 

 
 
  

   
 
 

 
 

 
 
  

   
 

  

   
 
 

 
  

   

   

   
           

  

   
 
 

 
 
 

 
 
  

   
 
 

 
 
 

 
 

 
 
  

   
 

  

   
 
 

           

   

   
 
  

   
 
 

 
             

  

   
 

  

   
 
  

   
 
  

   
 
 

 
  

   

   
 
  

   
 
 

 
  

  

   

   

   
              

   

     
                   

   
  

    
 

   

     
          

   

      
 

 

  
  

  

   
 

  

   
                                                                                                 

where         is the nondimensional longitudinal coordinate. 

In the case of FGMs, the stresses             are related to the strains 
            as follows [4]: 

   
    

       
                    

    

       
                    

    

         
                                                     

where      is the Young’s modulus and      is the Poisson’s ratio of the shell (plane stress,    
 ). 

The elastic strain energy    of a circular cylindrical shell, neglecting the radial stress    (as 

Love’s first approximation), is given by [4]: 

   
 

 
                       

   

    

  

 

 

 

                                                                                                                     

Using equations         and    , the following expression of    can be obtained: 

   
 

 
     

    

       
     

      
                

      

 
     
  

   

    

  

 

                                                       
 

 

 

     
    

       
                                   

 

 
 

   

    

  

 

 

 

           
   

 
                             

 

 
     

    

       

   

    

  

 

 

 

 
 

 
   
    

    
            

      

 
   
                                                  

where       is a higher-order term in   according to the Sanders-Koiter theory. 

The kinetic energy    (rotary inertia effect is neglected) is given by [5]: 

   
 

 
         

   

    

             
  

 

 

 

                                                                                                                          

where      is the mass density of the functionally graded shell, and             . 
The virtual work   done by the external forces is written as [5]: 

                                                                                                                                                               
  

 

 

 

 

where            are distributed forces per unit area acting in longitudinal, circumferential and 

radial direction, respectively. 

4. Linear vibration analysis 

In order to carry out a linear vibration analysis, in the present section, the Sanders-Koiter lin-

ear theory is considered, i.e. in equation     only the quadratic terms are retained. 
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The displacement fields are expanded by means of a double mixed series: axial symmetry of 

geometry and periodicity of deformation in the circumferential direction lead to use harmonic func-

tions, while Chebyshev orthogonal polynomials are considered in the axial direction. 

A modal vibration, i.e. a synchronous motion, is obtained in the form [5]: 
                                                                                                                                       
where                   and          are the displacement fields of the system,       ,        
and        represent the modal shape, and      is the time law of the system, which is supposed 

to be the same for each displacement field (according to the synchronous motion hypothesis). 

The modal shape         is then expanded in a double mixed series, in terms of Chebyshev 

polynomials   
     and harmonic functions              , in the following form [5]: 

                
          

 

   

  

   

                                                 
          

 

   

  

   

                                                  

                
         

 

   

  

   

                                                                                                                                                

where   
              and       is the  th-order Chebyshev polynomial;   is the number of 

the longitudinal half-waves,   is the number of nodal diameters and                     are the gen-

eralized coordinates. 

4.1 Boundary conditions 

In the present work, simply supported circular cylindrical shells are considered; the boundary 

conditions are imposed by applying constraints to the free coefficients                     of the 

expansions     . Simply supported boundary conditions are given by [5]: 
                                                                                                                                                                    

The previous conditions imply the following equations [5]: 

              

 

   

  

   

  
                                                         

          

 

   

  

   

                                     

                 

 

   

  

   

     
                                                     

         

 

   

  

   

                         

The linear algebraic system given by equations      can be solved analytically in terms of the 

coefficients                                                  , for        . 

4.2 Lagrange equations 

The equations      and      are inserted in the expressions of the kinetic energy    and the 

linearized potential energy    (equations       ); a set of ordinary differential equations (ODE) 

is then obtained by using Lagrange equations. 

An intermediate step is the reordering of the variables in a vector [5]: 
                                

 
                           

 
                     

 
                                  

         
                      

                      
                                                                                                            

The maximum number of variables needed for describing a generic vibration mode, with   

longitudinal half-waves and   circumferential waves, can be calculated by the following relation 

               , with            as maximum degree of Chebyshev orthogonal 

polynomials, by considering the previous equations      for the boundary conditions of the shell.  

The number of degrees of freedom of the system can be computed by the following relation 

           , where   describes the maximum number of nodal diameters considered. 

The Lagrange equations for free vibrations read [5]: 
 

  
 
  

    
  

  

   
                                                                                                                              

Considering an harmonic motion (         ), we obtain the secular equation [5]: 
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which is the classical nonstandard eigenvalue problem, that furnishes frequencies (eigenvalues) and 

modes of vibration (eigenvectors). 

The modal shape, corresponding to the jth mode, is given by the equations     , where the 

coefficients (                 ) are substituted with (     
   

      
   
      

   
), i.e. the components of the jth 

eigenvector of equation     ; 

                                         
 
                                                                                                                            

represents the jth eigenfunction vector of the original problem. The linear model is validated with 

respect to natural frequencies, details are omitted for the sake of brevity. 

5. Nonlinear vibration analysis 

In the nonlinear vibration analysis, the full expression of the potential energy    , containing 

terms up to the fourth order (cubic nonlinearity), is considered. The displacement fields         , 
         and          are expanded by using the linear mode shapes       ,              
obtained in the previous section [6]: 

                   

    

   

                              

    

   

                              

    

   

                     

These expansions respect the simply supported boundary conditions     ; the mode shapes 

                              are known functions expressed in terms of the polynomials and 

harmonic functions. 

The Lagrange equations for forced vibrations are expressed in the following form [6]: 
 

  
 
  

    
  

  

   
                                                                                                                              

The generalized forces    are then obtained by differentiation of the Rayleigh’s dissipation 
function   and the virtual work done by external forces  , in the form [6]: 

    
  

    
 
  

   
                                                                                                                                                                                     

Expansions      are inserted into strain energy    , kinetic energy      and virtual work of 

external forces     , in the case of external excitation; using Lagrange equations     , a system of 

ordinary differential equations is then obtained. 

6. Numerical results 

In this section, the nonlinear vibrations of simply supported functionally graded circular cy-

lindrical shells with different geometries and material distributions are analyzed. 

Chebyshev polynomials used in the approximate method have degree equal to     . The 

functionally graded material is composed by stainless steel and nickel, its properties are graded in 

the thickness direction according to a volume fraction distribution, where   is the power-law expo-

nent. The material properties are reported in Table 1 [1]. 

 
Table 1. Properties of stainless steel and nickel against coefficients of temperature evaluated at         . 
 

                        

                                      
                                                

                
                                           
                                           

               
                                               



18
th

 International Congress on Sound and Vibration, Rio de Janeiro, Brazil, 10-14 July 2011 

 

 

6 

In the nonlinear model (expansions     ), the following modes having   longitudinal half-

waves and   nodal diameters       are selected:                   in the longitudinal displace-

ment field;                     in the circumferential displacement field;                   in the 

radial displacement field. After selecting such modes, each expansion present in equation      is 

reduced to a three-terms modal expansion; the resulting nonlinear system has   degrees of freedom. 

The circular cylindrical shell is excited by means of an external modally distributed radial 

force                      , having amplitude of excitation equal to                   
  

and frequency of excitation   close to the       frequency,       . The driven mode is      , 
and the external forcing      is normalized with respect to mass, acceleration and thickness; the 

damping ratio is            . In Figure 2, the amplitude-frequency response is shown (modal 

coordinate       of  ); a FGM shell having stainless steel on the outer surface and nickel on the 

inner surface is considered (                 and the power-law exponent    ). A hard-

ening nonlinear behaviour is observed. 

 

Figure 2. Nonlinear amplitude-frequency curve of the FGM cylindrical shell                       . 

6.1 Nonlinear response convergence 

The convergence analysis is developed by introducing in longitudinal, circumferential and ra-

dial displacement fields a different number of asymmetric and axisymmetric modes: a 6 dof model 

with modes                   , a 9 dof model with modes                                , a 12 

dof model with modes                                      , a 15 dof model with modes        
                                             and a 18 dof model with modes                    
                                             . 

 

Figure 3. Comparison of nonlinear amplitude-frequency curves of the FGM  shell                       . 
 , 6 dofs model;  , 9 dofs model;  , 12 dofs model;  , 15 dofs model;  , 18 dofs model. 

Stainless steel on the outer surface  

and nickel on the inner surface 

6 dofs 

model 

18 dofs 

model 

   
      

 /     

 /     

   
      

           
max amplitude P 



18
th

 International Congress on Sound and Vibration, Rio de Janeiro, Brazil, 10-14 July 2011 

 

 

7 

In Figure 3, a comparison of nonlinear amplitude-frequency curves of the FGM shell      
0.002, / =20, =1 is shown: the nonlinear 6 dofs model describes a wrong softening nonlinear 

behaviour, the higher-order nonlinear expansions converge to a strongly hardening nonlinear 

behaviour, that is the correct character of the shell response. 

6.2 Effect of the geometry on the nonlinear response 

In Figure 4, the transitions from hardening to softening nonlinear behaviours (ratio     
           ) and from softening to hardening (               ) can be clearly observed. 

Let us define a nonlinearity indicator     
             

    
, where       means a hardening and 

      means a softening nonlinear behaviour. 

 
Figure 4. Nonlinear behaviour     transitions of  the FGM shells for different values of the ratio      . 
 

Very thin or thick shells show a hardening nonlinearity, conversely, a softening nonlinearity 

is found in a wide range of the FGM circular cylindrical shell geometries. Note that beyond 

         the thin walled approx looses accuracy [3]. 

6.3 Effect of the material distribution on the nonlinear response 

The effect of the material distribution on the nonlinear response is analyzed by considering 

two different FGM shells: Type I FGM shell has nickel on its inner surface and stainless steel on its 

outer surface, and Type II FGM shell has stainless steel on its inner surface and nickel on its outer 

surface. In Figure 5(a), the nonlinear behaviour     of Type I FGM shell is shown: as the value of 

the exponent   increases, the value of the natural frequency      decreases and the character of the 

nonlinear behaviour decreases from strongly hardening       to weakly hardening      . In 

Figure 5(b), the nonlinear behaviour     of Type II FGM shell is shown: as the value of the expo-

nent   increases, the value of the natural frequency      increases and the character of the nonlinear 

behaviour increases from weakly hardening       to strongly hardening       behaviour.

 

Figure 5. Nonlinear behaviour NLb of the shell                   . (a) Type I FGM; (b) Type II FGM.
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7. Conclusions 

In this paper, the effect of the geometry on the nonlinear vibrations of FGM cylindrical shells 

is analyzed; different configurations and constituent volume fractions are considered. The Sanders-

Koiter theory is applied to model nonlinear dynamics of the system in the case of finite amplitude 

of vibration. The shell deformation is described in terms of longitudinal, circumferential and radial 

displacement fields. Simply supported boundary conditions are considered. Displacement fields are 

expanded by means of a double mixed series based on harmonic functions for the circumferential 

variable and Chebyshev polynomials for the longitudinal variable. 

Numerical analyses are carried out in order to characterize the nonlinear response of the 

shells; the effect of the geometry on the nonlinear vibrations of the shells is analyzed, and a compar-

ison of nonlinear amplitude-frequency curves of functionally graded cylindrical shells with different 

geometries is carried out. 

Different nonlinear behaviours, depending on the geometric characteristics of the FGM shells, 

are obtained: very thin or thick shells show a hardening nonlinearity, conversely, a softening nonli-

nearity is found in a wide range of the FGM shell geometries. 

A convergence analysis is developed by introducing in longitudinal, circumferential and radi-

al displacement fields a different number of asymmetric and axisymmetric modes; the correct num-

ber of modes to describe the actual nonlinear behaviour of the cylindrical shells is determined. 

The influence of the constituent volume fractions and the effect of the configurations of the 

constituent materials on the natural frequencies and nonlinear responses of the shells are analyzed. 

Natural frequencies computed for the different values of the power-law exponent are observed 

to lie between the natural frequencies of the homogeneous stainless steel and homogeneous nickel 

circular cylindrical shell. 

In Type I FGM shell, as the value of the power-law exponent increases, the value of the cor-

responding natural frequency decreases and the hardening character of the nonlinear behaviour de-

creases from a strongly hardening to a weakly hardening behaviour. 

In Type II FGM shell, as the value of the power-law exponent increases, the value of the cor-

responding natural frequency increases and the hardening character of the nonlinear behaviour in-

creases from a weakly hardening to a strongly hardening behaviour. 

REFERENCES 

1. C.T. Loy, K.Y. Lam, J.N. Reddy, “Vibration of functionally graded cylindrical shells”, International Journal of 

Mechanical Sciences 41, 309-324 (1999). 
2. Y.S. Touloukian, Thermophysical properties of high temperature solid materials, Macmillan, New York (1967). 
3. A.W. Leissa, Vibration of Shells, Government Printing Office, Washington DC (1973). 
4. N. Yamaki, Elastic Stability of Circular Cylindrical Shells, North-Holland, Amsterdam (1984). 
5. F. Pellicano, “Vibrations of circular cylindrical shells: Theory and experiments”, Journal of Sound and Vibra-

tion 303, 154-170 (2007). 
6. F. Pellicano, “Dynamic instability of a circular cylindrical shell carrying a top mass under base excitation: Ex-

periments and theory”, International Journal of Solids and Structures 48, 408-427 (2011). 


