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In this paper, the effect of the companion mode participation on the nonlinear vibrations of 

functionally graded (FGM) cylindrical shells is analyzed. The Sanders-Koiter theory is ap-

plied to model the nonlinear dynamics of the system in the case of finite amplitude of vibra-

tion. The shell deformation is described in terms of longitudinal, circumferential and radial 

displacement fields. Simply supported boundary conditions are considered. The displacement 

fields are expanded by means of a double mixed series based on Chebyshev polynomials for 

the longitudinal variable and harmonic functions for the circumferential variable. Both driven 

and companion modes are considered. Numerical analyses are carried out in order to charac-

terize the nonlinear response when the shell is subjected to an harmonic external load. A con-

vergence analysis is carried out by considering a different number of axisymmetric and 

asymmetric modes. The present study is focused on modelling the nonlinear travelling-wave 

response of the shell in the circumferential direction with the companion mode participation. 

1. Introduction 

Functionally graded materials (FGMs) are composite materials obtained by combining and 

mixing two or more different constituent materials, which are distributed along the thickness in ac-

cordance with a volume fraction law. 

The idea of FGMs was first introduced in 1984/87 by a group of Japanese material scientists 

[1]. They studied many different physical aspects such as temperature and thermal stress distribu-

tions, static and dynamic responses. 

Loy et al. [2] analyzed the vibrations of the circular cylindrical shells made of FGM, consider-

ing simply supported boundary conditions. They found that the natural frequencies are affected by 

the constituent volume fractions and configurations of the materials. 

Leissa [3] analyzed the linear dynamics of shells having different topologies, materials and 

boundary conditions, considering the most important shell theories, such as Donnell, Flugge and 

Sanders-Koiter. 

A modern treatise on the shells dynamics and stability can be found in Ref. [4], where also 

FGMs are considered. 

Pellicano et al. [5] considered the nonlinear vibrations of homogeneous isotropic shells with 

companion mode participation. 

The method of solution used in the present work was presented in Ref. [6]. 
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In this paper, the effect of the companion mode participation on the nonlinear vibrations of 

FGM cylindrical shells is analyzed. The Sanders-Koiter theory is applied to model the nonlinear 

dynamics of the system in the case of finite amplitude of vibration. 

The shell deformation is described in terms of longitudinal, circumferential and radial dis-

placement fields. Simply supported boundary conditions are considered. 

The FGM is made of a uniform distribution of stainless steel and nickel, and the material 

properties are graded in the thickness direction, according to a volume fraction power-law distribu-

tion. 

The solution method consists of two steps: 1) linear analysis and eigenfunctions evaluation; 2) 

nonlinear analysis, using an eigenfunction based expansion. 

In the linear analysis, the displacement fields are expanded by means of a double series based 

on harmonic functions for the circumferential variable and Chebyshev polynomials for the longitu-

dinal variable. A Ritz based method allows to obtain the approximate natural frequencies and mode 

shapes (eigenvalues and eigenvectors). 

In the nonlinear analysis, the three displacement fields are re-expanded by using the approxi-

mate eigenfunctions. An energy approach based on the Lagrange equations is considered in order to 

reduce the nonlinear partial differential equations to a set of nonlinear ordinary differential equa-

tions. 

Numerical analyses are carried out in order to characterize the nonlinear response when the 

shell is subjected to a harmonic external load. 

A convergence analysis is carried out to obtain the correct number of axisymmetric and 

asymmetric modes able to describe the actual nonlinear behaviour of the shell. 

Nonlinear amplitude-frequency curves with the companion mode participation are carried out; 

the time histories of the driven and companion modes are analyzed. 

2. Equations of functionally graded materials 

A generic material property      of an FGM depends on the material properties and the vol-

ume fractions of the constituent materials, and it is expressed in the form [2] 

    (   )  ∑  ̃

 

   

( )   ( )                                                                                         ( ) 

where   ̃ and     are the material property and volume fraction of the constituent material  . 

The material property   ̃ of a constituent material can be described as a function of the tem-

perature  ( ) by Touloukian’s relation (the index   is dropped for the sake of simplicity) [2] 
 ̃( )    (    

            
     

 )                                                                     ( ) 

where   ,    ,   ,    and    are the coefficients of temperature of the constituent material. 

In the case of an FGM thin cylindrical shell with a uniform thickness   and a reference sur-

face at its middle surface, the volume fraction    of a constituent material can be written as [2] 
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                                                                                                 ( ) 

where the power-law exponent   is a positive real number, (     ), and   describes the radial 

distance measured from the middle surface of the shell, (          ), see Fig. 1. 

Young’s modulus  , Poisson’s ratio   and mass density   are expressed as [2] 
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3. Sanders-Koiter theory of circular cylindrical shells 

In Figure 1, an FGM circular cylindrical shell having radius  , length   and thickness   is 

represented; a cylindrical coordinate system (       ) is considered in order to take advantage 

from the axial symmetry of the structure, the origin   of the reference system is located at the cen-

tre of one end of the shell. Three displacement fields are considered: longitudinal  (     ), circum-

ferential  (     ) and radial  (     ). 

 

Figure 1. Geometry of the cylindrical shell. a) Complete shell; b) cross-section of the shell surface. 

3.1 Elastic strain energy, kinetic energy, virtual work, damping forces 

The Sanders-Koiter nonlinear theory of circular cylindrical shells, which is an eight-order 

shell theory, is based on the Love’s “first approximation” [3]. The strain components (         ) at 

an arbitrary point of the shell are related to the middle surface strains (               ) and to the 

changes in the curvature and torsion (         ) of the middle surface of the shell by the following 

relationships [3] 
                                                                                                             ( ) 

where   is the distance of the arbitrary point of the cylindrical shell from the middle surface and 
(   ) are the longitudinal and angular coordinates of the shell, see Fig. 1. 

The middle surface strains and changes in curvature and torsion are given by [3] 
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where (     ) is the nondimensional longitudinal coordinate. 

In the case of FGMs, the stresses are related to the strains as follows [4] 

   
 ( )

    ( )
(    ( )  )     

 ( )

    ( )
(    ( )  )      

 ( )

 (   ( ))
                               ( ) 

where  ( ) is the Young’s modulus and  ( ) is the Poisson’s ratio (    , plane stress). 

The elastic strain energy    of a cylindrical shell is given by [4] 

   
 

 
  ∫ ∫ ∫ (                )

   

    

  

 

 

 

                                                     (  ) 

 

The kinetic energy    of a cylindrical shell (rotary inertia effect is neglected) is given by [4] 
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where  ( ) is the mass density of the shell. 

The virtual work   done by the external forces is written as [5] 

    ∫ ∫ (           )                            
  

 

 

 

                                            (  ) 

with (        ) as distributed forces in longitudinal, circumferential and radial direction. 

The nonconservative damping forces are expressed by the Rayleigh’s dissipation function [5] 
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4. Vibration analysis 

In the dynamic analysis of the shell, a two-steps procedure is considered [6]: i) the Rayleigh-

Ritz method is applied to the linearized formulation of the problem to obtain an approximation of 

the eigenfunctions; ii) the displacement fields are re-expanded using the approximate eigenfunc-

tions, the Lagrange equations are considered in conjunction with the fully nonlinear expression of 

the strain energy to obtain a set of nonlinear ordinary differential equations in modal coordinates. 

4.1 Linear vibration analysis 

In order to carry out a linear vibration analysis, only the quadratic terms are retained in Eqn. 

(  ). A modal vibration, i.e. a synchronous motion, is obtained in the form [6] 
 (     )   (   ) ( )       (     )   (   ) ( )       (     )   (   ) ( )                         (  ) 

where  (     )  (     )  (     ) are the displacement fields,  (   ),  (   )  (   ) repre-

sent the modal shape,  ( ) describes the time law, which is supposed to be the same for each dis-

placement field (synchronous motion hypothesis). 

The components of the modal shape are expanded by means of a double mixed series: the pe-

riodicity of deformation in the circumferential direction suggests the use of harmonic functions 

(           ), Chebyshev polynomials are considered in the longitudinal direction   
 ( ) [6] 
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where   
 ( )    (    ),   is the number of longitudinal half-waves,   is the number of nodal 

diameters and ( ̃     ̃     ̃   ) are the generalized coordinates. 

4.1.1 Boundary conditions 

Simply supported – simply supported (S – S) boundary conditions are given by [3] 
                                                                                                                      (  ) 

The previous conditions imply the following equations [6] 

∑  ̃   
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 ( )         [    ]     [   ]             (  ) 

       The linear algebraic system given by Eqns. (  ) can be solved analytically in terms of 

the coefficients ( ̃     ̃     ̃     ̃     ̃     ̃     ̃     ̃   ), for   [   ]. 

4.1.2 Rayleigh-Ritz procedure 

The maximum number of variables needed for describing a generic vibration mode can be 

calculated by the relation (               ), with (        ) as maximum 

degree of the Chebyshev polynomials and   as number of equations for the boundary conditions. 

The number of degrees of freedom is computed by the relation (        (   )), where   

describes the maximum number of nodal diameters. 

Equations (  ) are inserted in the expressions of    and    (Eqns. (     )). 
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Consider now the Rayleigh quotient  ( ̃)  
    

  
, where      is the maximum of the poten-

tial energy,    
    

  
,      is the maximum of the kinetic energy,   is the circular frequency of 

the harmonic motion,  ̃  [   ̃     ̃     ̃      ]
 
 is a vector containing all the unknowns. 

After imposing the stationarity to Rayleigh quotient, one obtains the eigenvalue problem [6] 
(      ) ̃                                                                                                      (  ) 

which furnishes natural frequencies and modes of vibration (eigenvalues and eigenvectors). 

The modal shape is given by the Eqns. (  ), where coefficients ( ̃     ̃     ̃   ) are substi-

tuted with ( ̃   
( )
  ̃   
( )
  ̃   

( )
), which are the components of the j-th eigenvector  ̃  of the Eqn. (  ). 

The vector function  ( )(   )  [ ( )(   )  ( )(   )  ( )(   )]
 
represents an approxi-

mation of the j-th mode of the original problem, see Ref. [6] for explanation. 

4.2 Nonlinear vibration analysis 

In order to carry In the nonlinear vibration analysis, the full expression of the elastic strain en-

ergy (  ), containing terms up to the fourth order (cubic nonlinearity), is considered. 

The displacement fields  (     )  (     )  (     ) are then expanded by using the 

linear mode shapes  (   )  (   )  (   ) obtained in the previous section [6] 
 (     )  ∑  ( )(   )    ( )

  
            (     )  ∑  ( )(   )    ( )

  
             (     )  ∑  ( )(   )    ( )

  
          (  )  

These expansions respect exactly the boundary conditions except for the free case; the syn-

chronicity is relaxed as for each mode and component (     ) different time laws are allowed. 

Mode shapes  ( )(   )  ( )(   )  ( )(   ) are known functions expressed in terms of 

polynomials and harmonic functions. 

The Lagrange equations for forced vibrations are expressed in the following form [6] 
 

  
(
  

  ̇ 
)  

  

   
                    [      ]            (       )                                                 (  ) 

where the modal coordinates are now ordered in a vector  ( )  [                 ],      de-

pends on the number of modes considered in the expansions (  ). 
The generalized forces    are obtained by differentiation of the Rayleigh’s dissipation func-

tion   (  ) and the virtual work done by external forces   (  ), in the form [6] 

    
  

  ̇ 
 
  

   
                                                                                                 (  ) 

Expansions (  ) are inserted into strain energy (  ), kinetic energy (  ), virtual work of the 

external forces (  ) and damping forces (  ). Using Lagrange Eqns. (  ), a set of nonlinear ordi-

nary differential equations (ODE) is then obtained. 

5. Numerical results 

In this section, the nonlinear vibrations of functionally graded circular cylindrical shells with 

different modal shape expansions and geometries are analyzed. Analyses are carried out on an FGM 

made of stainless steel and nickel. FGM properties are graded in the thickness direction according 

to a volume fraction distribution, where   is the power-law exponent. The material properties vs. 

coefficients of temperature at        are reported in Tab. 1 [2]. 

Table 1. Properties of stainless steel and nickel vs. coefficients of temperature. 
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5.1 Nonlinear response convergence analysis 

The convergence analysis is carried out on a simply supported cylindrical shell excited with 

an harmonic force; a different number of asymmetric and axisymmetric modes is considered in the 

nonlinear expansions (  ) of the displacement fields      , see Tab. 2. 

Table 2. Asymmetric and axisymmetric modes inserted in the different nonlinear models. 
                                                               

     (   )            (   )            (   )            (   )            (   )       

     (    )        (    )        (   )            (   )            (   )       

     (   )          (    )        (    )        (    )        (    )   
      (   )          (    )        (    )        (    )   

     (   )          (   )          (    )        (    )   
      (   )          (   )          (    )   

      (   )          (   )     

     (   )          (   )     

      (   )     

     (   )     

The FGM cylindrical shell is excited by means of an external modally distributed radial force 

                     ; the amplitude of excitation is             
      

  and the frequen-

cy of excitation   is close to the mode (   ),       . The external forcing      is normalized with 

respect to mass, acceleration and thickness; the damping ratio is equal to            . Nonlinear 

amplitudes                of expansions (  ) refer to the displacement fields       of mode (   ). 

 

a) 

 

b) 

 
c)                                                                                                    . 

 
 

Figure 2. Comparison of nonlinear amplitude-frequency curves of the cylindrical shell. 

a) h R        L R     p   ; b) h R        L R     p   ; c) h R        L R     p   . 
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In Figure 2(a), a comparison of nonlinear amplitude-frequency curves of the cylindrical shell 

(                    ) with different nonlinear expansions is shown; the shell is very 

thin and long. The nonlinear 6 dof model describes a wrong softening nonlinear behaviour, while 

the higher-order nonlinear expansions converge to a hardening nonlinear behaviour. 

In Figure 2(b), a comparison of nonlinear amplitude-frequency curves of the cylindrical shell 

(                    ) with different nonlinear expansions is shown; the shell is moder-

ately thick and long. The nonlinear 6 dof model describes a wrong slightly hardening nonlinear be-

haviour, the higher-order nonlinear expansions converge to a softening nonlinear behaviour. 

In Figure 2(c), a comparison of nonlinear amplitude-frequency curves of the cylindrical shell 

(                    ) with different nonlinear expansions is shown; the shell is thick 

and long. The nonlinear 6 dof model describes a wrong slightly softening nonlinear behaviour, the 

higher-order nonlinear expansions converge to a hardening nonlinear behaviour. 

From these convergence analyses, one can say that the 9 dof model gives satisfactory results 

with the minimal computational effort; therefore, in the following, the 9 dof model will be used. 

5.2 Effect of the companion mode participation on the nonlinear response 

In this section, the effect of the companion mode participation on the nonlinear response of 

the FGM shell is analyzed. In Figure 3(a), the amplitude-frequency curve with the companion mode 

participation is presented (                          (   )). The response     ( ) with 

the companion mode participation, solid blue line, is very similar to the response without compan-

ion mode participation, dashed black line. Taking into account the companion mode, Figure 3(b), 

does not produce any variation except for a small region close to the resonance, where the compan-

ion mode is excited by means of a 1:1 internal resonance. The modal excitation does not excite di-

rectly the companion mode, which is excited in the frequency range                     . 

In Figure 4(a), the time histories of the driven mode (   ), blue line, and companion mode, 

red line, for               are presented; the companion mode is initially not active, then an 

energy transfer takes place, the amplitude of the driven mode decreases and eventually the compan-

ion mode is excited. In Figure 4(b), enlarged view of Figure 4(a), a time phase shift between the 

modal coordinates (conjugate modes) close to     is present, and a travelling wave takes place. 

 

 
(a) 

 

(b) 

 

Figure 3. Amplitude-frequency curves of the cylindrical shell (                    ) with the 

companion mode participation. 14 dof model. (a) “  ”, driven mode (   )   without companion mode 

participation; “ ”, driven mode (   )   with companion mode participation. (b) Companion mode (   )  . 
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(a) (b) 

 

Figure 4. Time histories of the FGM shell (                    ). 
“ ”, driven mode (   )   with companion mode participation; “ ”, companion mode (   )  . 

(a) Transient included. (b) Steady state. 

6. Conclusions 

In this paper, the effect of the companion mode participation on the nonlinear vibrations of 

FGM circular cylindrical shells is analyzed. The Sanders-Koiter theory is applied to model the non-

linear dynamics of the system in the case of finite amplitude of vibration. 

The functionally graded material is made of a uniform distribution of stainless steel and nick-

el, and the material properties are graded along the thickness direction, according to a volume frac-

tion power-law distribution. 

A convergence analysis is carried out by introducing in the series expansions of longitudinal, 

circumferential and radial displacement fields a different number of asymmetric and axisymmetric 

modes; the fundamental role of the axisymmetric modes is confirmed, and the role of the higher-

order asymmetric modes is clarified in order to obtain the actual character of the shell nonlinearity. 

The effect of the companion mode participation on the nonlinear response of the shell is ana-

lyzed. Both driven and companion modes are considered allowing for the travelling-wave response 

of the shell; amplitude-frequency curves with companion mode participation are obtained. 
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