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Abstract. In this paper, the effect of the companion mode participation on the nonlinear 

vibrations of functionally graded (FGM) cylindrical shells is analysed. The Sanders-Koiter 

theory is applied to model the nonlinear dynamics of the system in the case of finite 

amplitude of vibration. The shell deformation is described in terms of longitudinal, 

circumferential and radial displacement fields. Simply supported boundary conditions are 

considered. The displacement fields are expanded by means of a double mixed series based 

on Chebyshev polynomials for the longitudinal variable and harmonic functions for the 

circumferential variable. Both driven and companion modes are considered. Numerical 

analyses are carried out in order to characterize the nonlinear response when the shell is 

subjected to a harmonic external load. A convergence analysis is carried out considering a 

different number of axisymmetric and asymmetric modes. The present study is focused on 

modelling the nonlinear travelling-wave response of the FGM shell in the circumferential 

direction with the companion mode participation. 
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1. INTRODUCTION 

Functionally graded materials (FGMs) are composite materials obtained by combining and 

mixing two or more different constituent materials, which are distributed along the 

thickness in accordance with a volume fraction law. Most of the FGMs are employed in the 

high-temperature environments because of their heat shielding capacity. 

       The idea of FGMs was first introduced in 1984/87 by a group of Japanese material 

scientists [1]. They studied many different physical aspects such as temperature and thermal 

stress distributions, static and dynamic responses. 

 



       Loy et al. [2] analysed the vibrations of the circular cylindrical shells made of FGM, 

considering simply supported boundary conditions. They found that the natural frequencies 

are affected by the constituent volume fractions and configurations of the materials. 

       Pradhan et al. [3] studied the vibration characteristics of FGM cylindrical shells made 

of stainless steel and zirconia, under different boundary conditions. They found that the 

natural frequencies depend on the material distributions and boundary conditions. 

       Leissa [4] analysed the linear dynamics of shells having different topologies, materials 

and boundary conditions, considering the most important shell theories, such as Donnell, 

Flugge and Sanders-Koiter. 

       Yamaki [5] studied buckling and post-buckling of the shells in the linear and nonlinear 

field, reporting the solution methods, numerical and experimental results. 

       A modern treatise on the shells dynamics and stability can be found in Ref. [6], where 

also FGMs are considered. 

       Pellicano et al. [7] considered the nonlinear vibrations of homogeneous isotropic shells, 

leading to similar conclusions of the present work.  

       The method of solution used in the present work was presented in Ref. [8]. 

       In the present paper, the effect of the companion mode participation on the nonlinear 

vibrations of FGM circular cylindrical shells is analysed. 

       The Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in 

the case of finite amplitude of vibration.  

       The shell deformation is described in terms of longitudinal, circumferential and radial 

displacement fields. 

       Simply supported boundary conditions are considered. 

       The FGM is made of a uniform distribution of stainless steel and nickel, and the 

material properties are graded in the thickness direction, according to a volume fraction 

power-law distribution. 

       The solution method consists of two steps: 

1) linear analysis and eigenfunctions evaluation; 

2) nonlinear analysis, using an eigenfunction based expansion. 

       In the linear analysis, the displacement fields are expanded by means of a double series 

based on harmonic functions for the circumferential variable and Chebyshev polynomials 

for the longitudinal variable. 

       A Ritz based method allows to obtain the approximate natural frequencies and mode 

shapes (eigenvalues and eigenvectors). 

       In the nonlinear analysis, the three displacement fields are re-expanded by using the 

approximate eigenfunctions. Both driven and companion modes are considered. 

       An energy approach based on the Lagrange equations is then considered, in order to 

reduce the nonlinear partial differential equations to a set of nonlinear ordinary differential 

equations. 

       Numerical analyses are carried out in order to characterize the nonlinear response when 

the shell is subjected to a harmonic external load. 

       A convergence analysis is carried out on a simply supported cylindrical shell to obtain 

the correct number of axisymmetric and asymmetric modes able to describe the actual 

nonlinear behaviour of the shell. Comparisons of nonlinear amplitude-frequency curves of 

the cylindrical shell with different nonlinear expansions are carried out. 

       The influence of the companion mode participation on the nonlinear response of the 

shell is analysed. The nonlinear travelling-wave response of the shell in the circumferential 

direction with the companion mode participation is modelled. 



2. FUNCTIONALLY GRADED MATERIALS 

A generic material property      of an FGM depends on the material properties and the 

volume fractions of the constituent materials, and it is expressed in the form [2] 
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where   ̃ and     are the material property and volume fraction of the constituent material  , 

respectively. 

       The material property   ̃ of a constituent material can be described as a function of the 

environmental temperature  ( ) by Touloukian’s relation [2] (the index   is dropped for 

the sake of simplicity) 
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where   ,    ,   ,    and    are the coefficients of temperature of the constituent material. 

       In the case of an FGM thin cylindrical shell with a uniform thickness   and a reference 

surface at its middle surface, the volume fraction    of a constituent material can be written 

as [2] 
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where the power-law exponent   is a positive real number, (     ), and   describes 

the radial distance measured from the middle surface of the shell, (          ), as 

shown in Fig. 1. 

       For an FGM thin cylindrical shell made of two different constituent materials   and  , 

the volume fractions     and     can be written in the following form [3] 

   ( )    (
     

 
)
 

            ( )  (
     

 
)
 

            ( )     ( )            ( ) 

where the sum of the volume fractions of the constituent materials is equal to unity. 

       Young’s modulus  , Poisson’s ratio   and mass density   are expressed as [3] 
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3. SANDERS-KOITER THEORY 

In Figure 1, an FGM circular cylindrical shell having radius  , length   and thickness   is 

represented; a cylindrical coordinate system (       ) is considered in order to take 

advantage from the axial symmetry of the structure, the origin   of the reference system is 

located at the centre of one end of the shell. Three displacement fields are represented in 

Fig. 1: longitudinal  (     ), circumferential  (     ) and radial  (     ). 

Elastic Strain Energy, Kinetic Energy, Virtual Work, Damping Forces 

The Sanders-Koiter nonlinear theory of circular cylindrical shells, which is an eight-order 

shell theory, is based on the Love’s “first approximation” [4]. The strain components 

(         ) at an arbitrary point of the shell are related to the middle surface strains 

(               ) and to the changes in the curvature and torsion (         ) of the middle 

surface of the shell by the following relationships [5] 

                                                                               ( ) 

where   is the distance of the arbitrary point of the cylindrical shell from the middle surface 

and (   ) are the longitudinal and angular coordinates of the shell, see Fig. 1. 

 

 

Figure 1. Geometry of the functionally graded cylindrical shell.  

(a) Complete shell; (b) cross-section of the shell surface. 
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       The middle surface strains and changes in curvature and torsion are given by [5] 
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where (     ) is the nondimensional longitudinal coordinate. 

       In the case of FGMs, the stresses are related to the strains as follows [6] 
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where  ( ) is the Young’s modulus and  ( ) is the Poisson’s ratio (    , plane stress). 

       The elastic strain energy    of a cylindrical shell is given by [6] 
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       The kinetic energy    of a cylindrical shell (rotary inertia effect is neglected) is given 

by [6] 
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where  ( ) is the mass density of the shell. 

       The virtual work   done by the external forces is written as [6] 

    ∫ ∫ (           )                          
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with (        ) as distributed forces in longitudinal, circumferential and radial direction. 

       The nonconservative damping forces are assumed to be of viscous type and are taken 

into account by using Rayleigh’s dissipation function (viscous damping coefficient  ) [6] 
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4. VIBRATION ANALYSIS 

In order to carry out the dynamic analysis of the shell a two-steps procedure is considered 

[8]: i) the Rayleigh-Ritz method is applied to the linearized formulation of the problem, in 

order to obtain an approximation of the eigenfunctions; ii) the displacement fields are re-

expanded using the approximate eigenfunctions, the Lagrange equations are considered in 

conjunction with the fully nonlinear expression of the potential energy, in order to obtain a 

set of nonlinear ordinary differential equations in modal coordinates. 

Linear Vibration Analysis: Discretization Approach 

In order to carry out a linear vibration analysis only the quadratic terms are retained in Eqn. 

(  ). A modal vibration, i.e. a synchronous motion, is obtained in the form [8] 

 (     )   (   ) ( )       (     )   (   ) ( )       (     )   (   ) ( )     (  ) 

where  (     )  (     )  (     ) are the displacement fields,  (   ),  (   )  (   ) 
represent the modal shape and  ( ) describes the time law, which is supposed to be the 

same for each displacement field (synchronous motion hypothesis). 

The components of the modal shape are expanded by means of a double mixed series: 

the periodicity of deformation in the circumferential direction suggests the use of harmonic 

functions (           ), while Chebyshev orthogonal polynomials are considered in the 

longitudinal direction   
 ( ) [8] 
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where   
 ( )    (    ),   denotes the degree of the Chebyshev polynomials,   is the 

number of nodal diameters and ( ̃     ̃     ̃   ) are the generalized coordinates. 

Boundary Conditions 

Simply supported – simply supported (S – S) boundary conditions are given by [4] 

                                                                                            (  ) 

       The previous conditions imply the following equations [8] 
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       The linear algebraic system given by Eqns. (  ) can be solved analytically in terms of 

the coefficients ( ̃     ̃     ̃     ̃     ̃     ̃     ̃     ̃   ), for   [   ]. 

Rayleigh-Ritz Procedure 

The maximum number of variables needed for describing a generic vibration mode can be 

calculated by the relation (               ), with (        ) as the 

maximum degree of the Chebyshev polynomials and   as the number of equations for the 

boundary conditions considered. 

       For a multi-mode analysis including different nodal diameters, the number of degrees 

of freedom of the system is computed by the relation (        (   )), where   

describes the maximum number of nodal diameters considered. 

       Equations (  ) are inserted in the expressions of    and    (Eqns. (     )). 
       Consider now the Rayleigh quotient  ( ̃)       

 ⁄ , where      is the maximum of 

the potential energy,         
 ⁄ ,      denotes the maximum of the kinetic energy,   is 

the circular frequency of the harmonic motion and  ̃  [   ̃     ̃     ̃      ]
 
 denotes 

a vector containing all the unknowns. 

       After imposing the stationarity to the Rayleigh quotient, one obtains the eigenvalue 

problem [8] 

(      ) ̃                                                                (  ) 

which furnishes natural frequencies and modes of vibration (eigenvalues and eigenvectors) 

of the system. 

       The modal shape is given by the Eqns. (  ), where coefficients ( ̃     ̃     ̃   ) are 

substituted with ( ̃   
( )
  ̃   

( )
  ̃   

( )
), which are the components of the j-th eigenvector  ̃  of 

the Eqn. (  ). 

       The vector function  ( )(   )  [ ( )(   )  ( )(   )  ( )(   )]
 
represents an 

approximation of the j-th mode of the original problem. 

The eigenfunctions obtained are eventually normalized by imposing the following relation 

[8] 
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Nonlinear Vibration Analysis: Lagrange Equations 

In the nonlinear vibration analysis, the full expression of the elastic strain energy (  ), 
containing terms up to the fourth order (cubic nonlinearity), is considered. 

       The displacement fields  (     )  (     )  (     ) are expanded by using both the 

linear mode shapes  (   )  (   )  (   ), obtained in the previous linear analysis, and 

the conjugate mode shapes   (   )   (   )   (   ), in the following form [8] 
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      These expansions respect exactly the simply supported boundary conditions. 

      The synchronicity is relaxed as for each mode j and each component (     ) different 

time laws are allowed. 

       Mode shapes  ( )(   )  ( )(   )  ( )(   ) are known functions expressed in terms 

of polynomials and harmonic functions, see Eqns. (16); the index n indicates the number of 

nodal diameters, the index j is used for ordering the modes (for each n) with increasing 

associated natural frequency. It is very interesting to note that, in the case of simply-simply 

supports, j is also the number of longitudinal half waves (number of nodal circumferences 

minus one), see Ref. [8]. 

       The Lagrange equations for forced vibrations are expressed in the following form [8] 
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      The modal coordinates are now ordered in a vector  ( )  [                 ],      

depends on the number of modes considered in the expansions (  ). 
       The generalized forces    are obtained by differentiation of the Rayleigh’s dissipation 

function   (  ) and the virtual work done by external forces   (  ), in the form [8] 
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       Expansions (  ) are inserted into strain energy (  ), kinetic energy (  ), virtual work 

of the external forces (  ) and damping forces (  ). 
       Using Lagrange Eqns. (  ), a set of nonlinear ordinary differential equations (ODE) is 

then obtained. 



Table 1. Properties of stainless steel and nickel against coefficients of temperature. 

 
                        

            

                                                                 

                            

                                                              
                                                              
                                       
                                                                

 

5. NUMERICAL RESULTS 

In this section, the nonlinear vibrations of functionally graded circular cylindrical shells 

with different mode shape expansions and geometries are considered. 

       Analyses are carried out on an FGM made of stainless steel and nickel. 

       FGM properties are graded in the thickness direction according to a volume fraction 

distribution, where   is the power-law exponent. 

       The material properties, reported in Table 1, have been extracted from Ref. [2].
 

Convergence Analysis 

The convergence analysis is carried out on a simply supported cylindrical shell excited with 

a harmonic external force; the excitation frequency is close to the mode (j,n), where j is the 

number of longitudinal half waves and n is the number of nodal diameters. 

       The convergence is checked by adding suitable modes to the resonant one: asymmetric 

modes (       )               due to the presence of the quadratic and the cubic 

nonlinearities; axisymmetric modes (   )           due to the quadratic nonlinearities. 

       The analysis is then developed by introducing a different number of asymmetric and 

axisymmetric modes in the expansions (24), see also Tab. 2. 

       The FGM cylindrical shell is excited by means of an external modally distributed radial 

force                      ; the amplitude of excitation is             
      

  and 

the frequency of excitation   is close to the mode (   ),       . 

       The external forcing      is normalized with respect to mass, acceleration and thickness; 

the damping ratio is equal to            . 

Table 2. Asymmetric and axisymmetric modes inserted in the different nonlinear models. 
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Figure 2. Convergence analysis. Nonlinear amplitude-frequency curves. Simply supported 

FGM circular cylindrical shell (h/R = 0.002, L/R = 20, p = 1). “–”, 6 dof model; 

“–”, 9 dof model; “–”, 12 dof model; “–”, 15 dof model; “–”, 18 dof model. 

       In the following, amplitude-frequency curves of the modal coordinates of the shell will 

be presented; the modal amplitudes are normalized with respect to the thickness h of the 

shell and represented vs. the normalized frequency; for example, in representing the radial 

amplitude of mode (1,6), the maximum amplitude of  fw,1,6 (t)/h is represented vs. Ω/ω1,6. 

       In Figure 2, amplitude-frequency curves of a simply supported FGM shell are shown 

(h/R = 0.002, L/R = 20, p = 1, the shell is very thin and long), different expansions are 

compared. The 6 dof model (Table 2) gives a softening nonlinear behaviour, conversely, 

the higher-order expansions converge to a hardening nonlinear behaviour; higher order 

models (dof from 9 to 18) behave quite similarly; this means that the smallest expansion 

able to predict the dynamics with acceptable accuracy is 9 dof model (Table 2). The main 

weakness of the 6 dof expansion is the insufficient number of axisymmetric modes, which 

are very important for properly modelling the circumferential stretching during the 

vibration. It is to note that the shell is very thin, so the hardening behaviour is expected to 

occur (see e.g. Ref. [7]). 

       In Figure 3, a moderately thick and long FGM shell is analysed (h/R = 0.025, L/R = 20, 

p = 1), the amplitude-frequency curves are obtained with the expansions of Table 2. Similar 

to the case of very thin FGM shell of Figure 2, the 6 dof model, with an insufficient number 

of axisymmetric modes, is clearly inaccurate; indeed, for this kind of FGM shell the correct 

behaviour is softening. 

       In Figure 4, a thick FGM shell is studied (h/R = 0.050, L/R = 20, p = 1), the expected 

behaviour is hardening: the 6 dof model (Table 2) is inaccurate, similar to previous cases. 

       From the convergence analysis, one can claim that the 9 dof model gives satisfactory 

results with the minimal computational effort; therefore, in the following the 9 dof model of 

Table 2 will be used. 
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Figure 3. Convergence analysis. Nonlinear amplitude-frequency curves. Simply supported 

FGM circular cylindrical shell (h/R = 0.025, L/R = 20, p = 1). “–”, 6 dof model; 

“–”, 9 dof model; “–”, 12 dof model; “–”, 15 dof model; “–”, 18 dof model. 

 

 

 

 

 

 

Figure 4. Convergence analysis. Nonlinear amplitude-frequency curves. Simply supported 

FGM circular cylindrical shell (h/R = 0.050, L/R = 20, p = 1). “–”, 6 dof model; 

“–”, 9 dof model; “–”, 12 dof model; “–”, 15 dof model; “–”, 18 dof model. 
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       The previous considerations suggest the following 9 dof model be used for studying a 

generic resonant mode (   ): 
 modes (   ) (   ) (   ) for the longitudinal displacement field   

 modes (   ) (    ) (     ) for the circumferential displacement field   

 modes (   ) (   ) (   ) for the radial displacement field  . 

       After selecting such modes, each expansion present in Eqns. (  ) is then reduced to a 

three-terms modal expansion; the resulting nonlinear system has   dof. 

Companion mode participation 

In this section, the effect of the companion mode participation (Eqns. 24) on the nonlinear 

response is analysed. 

       The participation of both driven and companion modes gives a pure travelling wave 

response, moving circumferentially around the shell, when the time phase shift between 

two conjugate modal coordinates (e.g.,  fw,1,6 (t) and  fw,1,6,c (t)) is π/2. 

       In Figure 5(a), the amplitude-frequency curve with the companion mode participation 

is presented (h/R = 0.025, L/R = 20, p = 1, mode (1,6)) using a 14 dof model (this expansion 

corresponds to the 9 dof model without the companion modes, where the same number of 

axisymmetric modes is considered). 

       The response  fw,1,6 (t) with the companion mode participation, solid blue line of Figure 

5(a), is very similar to the response without the companion mode participation, dashed 

black line, see Figure 3. 

       Taking into account the companion mode, Figure 5(b), does not produce any variation 

except for a small region close to the resonance (0.9996 < Ω/ω1,6 < 0.9999), where the 

companion mode is excited by means of a 1:1 internal resonance. 

       It is worthwhile to stress that the modal excitation does not excite directly the 

companion mode; therefore, the internal resonance mechanism induces an energy transfer 

between the two conjugate (and linearly uncoupled) modes. 

       In Figure 6, the time histories of the driven mode (1,6), blue line, and companion 

mode, red line, for Ω/ω1,6 = 0.9998 are presented; the companion mode is initially not 

active, then an energy transfer takes place, the amplitude of the driven mode decreases and 

eventually the companion mode is excited. 

       In Figure 7, enlarged view of Figure 6, a time phase shift between the two modal 

coordinates (conjugate modes) close to π/2 is present; therefore, a travelling wave takes 

place. 

       It is worthwhile to stress that, even though the nonlinearity of the system is not strong, 

the onset of a travelling wave implies that the response of the shell is completely different 

with respect to a linear model. 

       In Figure 8, the spectrum of the time histories of Figure 6 is shown: the last part of the 

time history is considered, i.e., the transient dynamics are cut out. 

       The spectrum presents four spikes, one driven harmonic and three super harmonics of 

order two, three and four, respectively: this confirms the presence and the importance of 

quadratic and cubic nonlinearities. 

6. CONCLUSIONS 

In this paper, the nonlinear vibrations of FGM circular cylindrical shells are analysed; the 

Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in the case 

of finite amplitude of vibration. 
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Figure 5. Amplitude-frequency curves of the FGM shell (h/R = 0.025, L/R = 20, p = 1). 14 

dof model. (a) “– –”, driven mode (1,6) w without companion mode participation; “–”, 

driven mode (1,6) w with companion mode participation. (b) Companion mode (1,6) w. 

 

 

 

 

 

Figure 6. Time histories of the shell (h/R = 0.025, L/R = 20, p = 1), transient included. “–”, 

driven mode (1,6) w with companion mode participation; “–”, companion mode (1,6) w. 
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Figure 7. Time histories of the FGM shell (h/R = 0.025, L/R = 20, p = 1), steady state. “–”, 

driven mode (1,6) w with companion mode participation; “–”, companion mode (1,6) w. 

 

 

 

 

 

Figure 8. Spectrum of the time histories of the FGM shell (h/R = 0.025, L/R = 20, p = 1), 

transient removed. “–”, driven mode (1, 6) w with companion mode participation; “–”, 

companion mode (1, 6) w. 
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       The functionally graded material is made of a uniform distribution of stainless steel and 

nickel, and the material properties are graded in the thickness direction, according to a 

volume fraction power-law distribution. 

       Numerical analyses are carried out in order to characterize the nonlinear response when 

the shell is subjected to a harmonic external load. 

       A convergence analysis is carried out by introducing in longitudinal, circumferential 

and radial displacement fields a different number of asymmetric and axisymmetric modes. 

       The fundamental role of the axisymmetric modes is confirmed, and the role of the 

higher-order asymmetric modes is clarified in order to obtain the actual character of 

nonlinearity. 

       An interesting result of the present study regards the predictions obtained with low-

order expansions. 

       It is well known in literature that small expansions could lead to hardening behaviours 

when the actual shell response is softening. 

       Here we have found that when shells having actual hardening response are simulated 

with an insufficient expansion, their behaviour could appear spuriously softening. 

       The effect of the companion mode participation on the nonlinear response of the shells 

is analysed. 

       Both driven and companion modes are considered allowing for the travelling-wave 

response of the shell; amplitude-frequency curves with companion mode participation are 

obtained. 

       It is worthwhile to stress that, even though the nonlinearity of the system is weak, close 

to the resonance of asymmetric modes the onset of a travelling wave in the circumferential 

direction is possible. 

       This is a macroscopic effect of the weak nonlinearity that cannot be predicted with the 

linear models. 
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