Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Figure S1. Normalized absorption (continuous line) and excitation spectra (λ_{em} =655 nm, dashed red line) of a (PDDA/PSS/PDDA/TPPS) ESAM.

Figure S2. Absorption spectra of (PDDA/TPPS/PDDA/PSS)n (a) and (PDDA/TPPS-PSS 1:100)n films (b) after the deposition of a TPPS layer.

Figure S3. Absorption spectra of TPPS in aqueous solution ($c = 1.9 \times 10^{-6} \text{ M}$) at pH=8.0 (continuous line) and upon interaction with mercury(II) ions (dashed line). Mercury(II) ion concentration was 6.6 x 10^{-6} M .

Figure S4. Fluorescence emission spectra of TPPS (c = 1.3×10^{-7} M) in aqueous solution at pH=8.0 (continuous line) and after addition of mercury(II) ions (dashed line). Mercury(II) ion concentration was 4.3 x 10^{-6} M. λ ex=416 nm.

Figure S5. AFM image (5x5 μ m) of a PDDA/TPPS film (on the left) and the corresponding three-dimensional representation (on the right).

Figure S6. Fluorescence microscopy image (125x125 µm) of a ((PDDA/PSS)_{x2}/PDDA/TPPS).

Figure S7. Adsorption kinetics of mercury(II) ions, at four different initial concentrations, on (PDDA/PSS/PDDA/TPPS) ESAM at 25°C in borate buffer at pH=8.0: linear fit to the pseudo-second-order equation is reported. The initial mercury(II) ion concentrations were: $3.3 \cdot 10^{-5}$ M (\blacksquare), $3.3 \cdot 10^{-6}$ M (\bullet), $6.7 \cdot 10^{-7}$ M (\blacktriangle), $3.3 \cdot 10^{-7}$ M (\bullet).

Table S1. Slope and intercept values obtained from the linear fit of experimental data of adsorption to the
kinetic pseudo-second-order equation (eq. 2b) as a function of [Hg ²⁺] ₀ ; the values of the fractional surface
coverage at equilibrium $\theta_{(eq)}$ are reported.

$[Hg^{2+}]_0 (mol/L)$	1	1 (min)	θ _(eq)	R^2
	$\overline{\theta_{(eq)}}$	$\frac{1}{\mathbf{k}_{2} \cdot \mathbf{N}_{(eq)} \cdot \mathbf{\theta}_{(eq)}}$ (mm)		
3.3×10^{-5}	0.97	6.47	1.03	0.999
3.3 x 10 ⁻⁶	1.33	20.92	0.75	0.995
6.7 x 10 ⁻⁷	1.63	30.20	0.61	0.996
3.3 x 10 ⁻⁷	2.43	31.17	0.41	0.998