
01/02/2025 06:23

Multi-orbital cluster perturbation theory for transition metal oxides / Manghi, Franca. - In: JOURNAL OF
PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - STAMPA. - 26:1(2014), pp. 015602-015608.
[10.1088/0953-8984/26/1/015602]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



Multi-orbital Cluster Perturbation Theory for transition metal oxides

F. Manghi1

1Dipartimento di Fisica, Università di Modena e Reggio Emilia and CNR -
Institute of NanoSciences - S3, Via Campi 213/A, I-41125 Modena, Italy

We present an extension of Cluster Perturbation Theory to include many body correlations asso-
ciated to local e-e repulsion in real materials. We show that this approach can describe the physics
of complex correlated materials where different atomic species and different orbitals coexist. The
prototypical case of MnO is considered.

PACS numbers: 71.30.+h, 71.27.+a, 71.20.Be

The competition between inter-site hopping and on-
site electron-electron repulsion dominates the physics of
transition metal oxides1. Standard band theory based
on the independent particle approach predicts these large
gap insulators to be metallic in the paramagnetic phase
and fails in reproducing the band width and satellite
structures observed in the experiments. Only approaches
that augment band theory with true many body effects
such as 3-Body Scattering theory (3BS)2–4 and Dynam-
ical Mean Field Theory (DMFT)5,6 have been able to
reproduce the band gap in the paramagnetic state and
to describe photoemission data. However the agreement
between experiments and many-body calculations is still
far from being fully quantitative7–9 and different theoret-
ical methods are constantly explored.

In this paper we show that a multi-orbital extension
of Cluster Perturbation Theory (CPT)10,11 can be ap-
plied to the study of quasi-particle excitations in transi-
tion metal monoxides. CPT solves the problem of many
interacting electrons in an extended lattice by approach-
ing first the many body problem in a subsystem of finite
size - a cluster - and then embedding it within the infinite
medium. CPT shares this strategy with other approaches
such as Variational Cluster Approach (VCA)12,13 and
Cellular Dynamical Mean Field Theory14 where the em-
bedding procedure is variationally optimized.

Up to now CPT has been mainly applied to simpli-
fied models with one orbital per site and the goal of this
paper is to present a general scheme to extend it to multi-
orbital systems in order to study the effect of e-e corre-
lation in real complex materials where different atomic
species and different orbitals coexist. We use here MnO
as a test case. We restrict to the paramagnetic phase
at zero pressure where, according to single particle band
structure, MnO is metallic with half occupied d-orbitals
- a paradigmatic case to study Mott-Hubbard metal-to-
insulator transition.27

The paper is organized as follows: in section I we recall
the CPT theory and outline its extension to the many-
orbital case; in section II we describe how the cluster
Green function is calculated in a complex lattice with
more than one atomic species and many orbital per site;
section III is for the discussion of the results obtained for
MnO.

I. MULTI-ORBITAL CPT

In CPT the lattice is seen as the periodic repetition of
identical clusters (Fig. 1 ) and the Hubbard Hamiltonian

can be partitioned in two terms, an intra-cluster (Ĥc) and

an inter-cluster one (V̂ )

Ĥ = Ĥc + V̂ (1)

where

Ĥc =
∑
ilα

ϵilαn̂ilα +
∑
αβ

∑
ijl

tilα,jlβ ĉ
†
ilαĉjlβ

+
∑
ilαβ

U i
αβn̂ilα↑n̂ilβ↓

V̂ =
∑
αβ

∑
ijl ̸=l′

tilα,jl′β ĉ
†
ilαĉjl′β (2)

Here α, β are orbital indexes, ϵilα are intra-atomic or-
bital parameters and tilα,jl′β hopping terms connecting
orbitals centered on different sites. Each atom is iden-
tified by the cluster it belongs to (index l) and by its
position inside the cluster (index i). The lattice is a col-
lection of L → ∞ clusters each of them containing M
atoms whose position is identified by the vector Rl+ri.
Each atom in the cluster is characterized by a set of or-

bitals norb
i and K =

∑M
i=1 n

orb
i is the total number of

sites/orbitals per cluster.
Since in the Hubbard model the e-e Coulomb interac-

tion is on-site, the inter-cluster hamiltonian V̂ contains
only single particle terms, the many body part being
present in the intra-cluster hamiltonian Ĥc only, a key
feature for the practical implementation of the method.
Having partitioned the Hamiltonian in this way an exact
expression involving the resolvent operator Ĝ is obtained

Ĝ−1 = z − Ĥc − V̂ = Ĝc
−1

− V̂

and from this

Ĝ = Ĝc + ĜcV̂ Ĝ (3)

The one-particle propagator

G(knω) = < Ψ0|ĉ†knĜĉkn|Ψ0 > (4)

+ < Ψ0|ĉknĜĉ†kn|Ψ0 >
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is obtained exploiting the transformation from Bloch to
localized basis

ĉ†kn =
1√
M

∑
ilα

Cn
iα(k)

∗e−ik·(Rl+ri)ĉ†ilα

and similarly for ĉkn. Here n is a band index and Cn
iα(k)

are the eigenstate coefficients obtained by a band calcu-
lation for a superlattice of L identical clusters and the
summation is over M = L×K. We get

G(knω) = 1

K

∑
ii′αβ

e−ik·(ri−ri′ )Cn
iα(k)

∗Cn
iβ(k)Giαi′β(kω)

(5)
where Giαi′β(kω) is the superlattice Green function,
namely the Fourier transform of the Green function in
the local basis

Giαi′β(kω) =
1

L

∑
ll′

e−ik·(Rl−Rl′ )Gll′

iαi′β(ω) (6)

This is the quantity that can be calculated by eq.3 that
explicitely becomes:

Giαi′β(kω) = Gc
iαi′β(ω) +

∑
jγ

Biαjγ(kω)Gjγi′β(kω) (7)

where the K ×K matrix Biαjγ(kω) is the Fourier trans-

form of ĜcV̂ involving neighboring sites that belong to
different clusters. Its calculation is the key point in the
”periodization” process that allows to go from the clus-
ter Green function to the lattice one. This periodization
is conceptually the same that has been described in the
original papers where CPT is applied to model systems
with one orbital per site10; in chapter II we will describe
in detail how it is actually calculated in the many-orbital
case.
Once the cluster Green function in the local basis

Gc
iαi′β(ω) has been obtained by exact diagonalization,

eq. 7 is solved by a K × K matrix inversion at each k
and ω. The quasi particle spectrum is then obtained in
terms of spectral function A(kω)

A(kω) =
1

π

∑
n

ImG(knω). (8)

II. CLUSTER CALCULATION FOR TM OXIDES

The valence and first conduction states of TM oxides
are described by TM spd and oxygen sp orbitals. The
dimer with M = 2 TM atoms and K = 10 d orbitals
(Fig. 1 a) is the basic unit where we will perform the
exact diagonalization.
We recall that the exact diagonalization corresponds

to write the manybody wavefunction as a superposition
of Slater determinants that can be built by putting N

FIG. 1: (Color on-line) Building blocks of the 3D Rocksalt
structure for a transition metal mono-oxide: (a) a dimer of
2 TM atoms (filled black circles); (b) a 2 × 2 plaquette con-
taining the two atomic species (Oxygens as open circles); (c)
stacking of plaquette layers reproducing the 3D lattice. Dot-
ted lines indicate the inter-cluster hopping.

electrons of spin up and N electrons of spin down on K
boxes:

|ΦN
n >=

nconf∑
l

Cn
l |Sl > (9)

with

|Sl >= ĉ†l1↑ĉ
†
l2↑...ĉ

†
lN↑ĉ

†
lN+1↓ĉ

†
lN+2↓...ĉ

†
lN+N↓|0 > (10)

Each Mn atom brings to the dimer 5 d electrons (half oc-
cupation) and the dimension of the Hilbert space spanned
by the Slater determinants is nconf = ( K!

N !(K−N)!) )
2 =

63504. We separately solve the problem with N, N-1 and
N+1 electrons and calculate the dimer Green function
using the Lehmann representation, namely

Gdd
iαi′β ( ω) =

∑
n

< ΦN
0 |ĉ†iα|ΦN−1

n >< ΦN−1
n |ĉi′β |ΦN

0 >

ω − (EN
0 − EN−1

n )

+
∑
n

< ΦN
0 |ĉiα|ΦN+1

n >< ΦN+1
n |ĉ†i′β |ΦN

0 >

ω − (EN+1
n − EN

0 )
(11)

Due to the large dimensions of the matrix to be diag-
onalized the band-Lanczos algorithm15 is used to obtain
∼ 1000 eigenvalues and eigenvectors EN±1

n , ΦN±1
n for the

system with N ± 1 electrons as well as the ground state
EN

n , ΦN
0 for N electron system.

The dimer problem that we have described accounts for
both hopping and e-e repulsion on the d orbitals of TM
atoms and therefore includes a large part of the relevant
physics of the interacting system. In particular, since the
system is half occupied, we expect the ground state EN+1

0

to be larger than EN−1
0 with an energy distance growing

with U . This is promising in view of a gap opening in
the extended system.

Notice however that this dimer does not represent a
partition (in mathematical sense) of the 3D rocksalt lat-
tice and therefore it is not the cluster to be used in the
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CPT procedure described in the previous section. The
smallest unit that has the necessary characteristics to re-
produce without overlaps the 3D rocksalt lattice is the
2X2 plaquette of Fig. (1 b ). It contains both TM atoms

and oxygens and the Hamiltonian Ĥc of equation 1 is a
sum of on-site and inter-site terms connecting TM d or-
bitals (type A) and sp orbitals of both TM and oxygen
atoms (type B):

Ĥc = Ĥdiag
c + V̂ AB

c (12)

with

V̂ AB
c =

∑
αAβB

tilαA,jlβB
ĉ†ilαA

ĉjl′βB
(13)

Ĥdiag
c = ĤAA

c + ĤBB
c

where

ĤAA
c =

∑
ilαA

ϵilαA
n̂ilαA

+
∑
αAβA

∑
ijl

tilαA,jlβA
ĉ†ilαA

ĉjlβA

+
∑

ilαAβA

U i
αAβA

n̂ilαA↑n̂ilβA↓ (14)

and a similar expression for ĤBB
c .

We need therefore to embed the dimer into the plaque-
tte, in other words we need to write the cluster Green
function in terms of the dimer one. This can be done
noticing again that

Ĝc
−1

= z − Ĥc = (Ĝdiag)−1 − V̂ AB
c .

that results as before in a Dyson-like equation

Ĝc = Ĝdiag + ĜdiagV̂ AB
c Ĝc (15)

In the local basis Ĝdiag is block-diagonal and the non-

zero elements Ĝdiag
AA , Ĝdiag

BB are obtained by performing
separate exact diagonalizations that include either A or

B orbitals: Ĝdiag
AA ≡ Ĝdd is the dimer Green function of

eq. 11 while Ĝdiag
BB involves only sp orbitals and in the

present case is non-interacting. In the local basis eq. 15
can be solved by performing a matrix inversion.

Ĝc = Ĝdiag × (ĜdiagV̂ AB
c )−1 (16)

or more explicitely

Gc
iαi′β(ω) =

∑
jγ

Gdiag
iαjγ(ω)× (ĜdiagV̂ AB

c )−1
jγi′β′ (17)

with indices running over K = 26 sites/orbitals of the
plaquette (9 spd orbitals on 2 TM atoms and 4 sp orbitals
on 2 Oxygens).
The knowledge of Gc

iαi′β(ω) for the plaquette is essen-
tial to obtain the full lattice Green function according

to eq. 7. In fact, as already mentioned, the 3D rock-
salt lattice can be obtained by a periodic replication of
2X2 plaquettes connecting them by single-particle hop-
ping terms. In order to implement eq. 7 one needs first
of all to define for each site ri′ in the cluster the position
of nearest neighbors ri′′ and the corresponding lattice
vectors Rl′′ connecting the cluster with the neighboring
ones. Then the matrix Biαjγ(kω) is obtained as follows;

Biαjγ(kω) =
∑
i′i′′l′′

ti′0αi′′l′′γe
−ik·Rl′′Gc

iαi′γ(ω)δi′′j (18)

Here ti′0αi′′l′′γ are the inter-site hopping terms previously
defined (eq. 2) obtained in terms of Koster-Slater param-
eters in the usual way.

We want to stress again that the present formulation
is nothing else than the extension of CPT to the case of
more orbitals per site when it is necessary to deal with
exceedingly large dimensions of the configuration space.
The CPT prescriptions in this case may be rephrased as
follows: chose a partition of the lattice Hamiltonian into a
collection of non overlapping clusters connected by inter-
cluster hopping; make a further partition inside each clus-
ter defining a suitable collections of sites/orbitals; per-
form separate exact diagonalizations plus matrix inver-
sion to calculate the cluster Green function in local ba-
sis by eq. 17 and finally obtain the full lattice Green
function in a Bloch basis by adding the cluster-cluster
hopping terms according to eq. 7.

A final comment on the approximations involved: in
the same way as in the standard single-orbital CPT, writ-
ing the lattice Green function in terms of Green functions
of decoupled subunits amounts to identify the many elec-
tron states of the extended lattice as the product of clus-
ter few electron ones. In the present case in particular,
choosing the TM dimer as the basic unit we have ex-
cluded from the few-electron eigenstates obtained by ex-
act diagonalization the contribution of oxygen p orbitals,
treating the O p - TM d hybridization by the embed-
ding procedure (eq. 17) and by the periodization (eq.
7). This approximation can be improved by some kind
of variational procedure16,17 but in any case it interest-
ing to assess its validity per se, for instance by comparing
theory and experiments in specific cases. This is what we
do in the next section.

III. APPLICATION TO MNO

The non-interacting contribution to the Hubbard
Hamiltonian of eq. 1 can be written as a standard Tight-
Binding Hamiltonian in terms of Koster-Slater18 param-
eters obtained by a least squares fitting of an ab-initio
band structure. The parameters obtained by fitting the
band structure of MnO calculated in the DFT-LMTO
scheme19 are reported in Tables I,II and give rise to the
band structure of Fig. 2.

When using TB parameters in the Hubbard Hamil-
tonian we must take care of the double-counting issue:
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TABLE I: On site Koster-Slater parameters (in eV) for MnO.

Es(Mn) Ep(Mn) Et2g(Mn) Eeg(Mn) Es(O) Ep(O)

7.313 11.546 -0.763 -0.010 -18.553 -4.806

TABLE II: Inter-site Koster-Slater parameters (in eV) for MnO .

ssσ ppσ ppπ ddσ ddπ ddδ spσ sdσ pdσ pdπ

Mn Mn -0.514 1.435 -0.137 -0.353 0.028 0.047 0.486 -0.285 -0.081 0.209

O Mn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.074 -1.243 0.632

O O -0.124 0.519 -0.102 0.0 0.0 0.0 -0.016 0.0 0.0 0.0

FIG. 2: (Color on-line) Single particle band structure of MnO
obtained with the Tight-Binding parametrization of Tables I,
II .

ab-initio band structure, and the TB parameters deduced
from it, contain the e-e Coulomb repulsion as a mean-field
that must be removed before including U as a true many
body term. ”Bare” on-site parameters should be calcu-
lated by subtracting the mean filed value of the Hubbard
term, namely

E∗
ασ = Eα −

∑
i

U i
α < niα−σ > (19)

This definition involves the d occupation inside the clus-
ter used in the exact diagonalization and cancels out the
energy shift due to double-counting within each cluster.
Notice that < niασ >=< niα−σ > and E∗

ασ is spin-
independent.
We tested our approach using different U values and

we report the results obtained for U = 9eV . This value
optimizes the agreement between theory and experiments
and is not far from the values reported in the literature
ranging from U=6.0 up to U=8.85,20–22. Since we have
ignored the orbital dependence of U as well as the e-e
repulsion among parallel spins the present value U = 9
should be considered as an effective one.
The quasi-particle band structure of MnO is shown in

Figure 3 where we plot the calculated k-resolved spectral

FIG. 3: k-resolved spectral functions describing the quasi-
particle band structure of MnO for U = 9.

function (eq. 8 ). We notice that the Mn d band that
in the absence of correlation (Fig. 2) crosses the Fermi
level is now split in lower and upper Hubbard bands.

It is interesting to look at the effects that the localized
d-d interaction has on states of different orbital character.
This is shown in figure 4 where the orbital contribution to
the total density of quasi-particle states is compared with
the results obtained in the single particle scheme. It ap-
pears that not only d states are affected by e-e correlation
but sp ones as well. This is particularly evident for Oxy-
gen sp states that in the single particle case contribute to
the metallic character and that after the inclusion of e-
e correlation are removed from the energy region around
the Fermi level and pushed to higher energies. The multi-
orbital character of the present scheme appears then to
be essential to obtain the correct insulating character.

Figure 5 shows a comparison between the quasi-
particle density of states and the experimental results of
ref.20. We observe that the gap value is well reproduced
as well as most of the spectroscopic structures. We do
not find evidence of structures below the valence band
bottom that are observed in photoemission experiments;
this might be due to the reduced number of excited states
that are obtained by the Lanczos procedure. We mention
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FIG. 4: (Color in-line) Comparison between orbital contribu-
tions to the Density of States (TM d, TMsp and Oxygen sp in
panel (a), (b) and (c) respectively) obtained with the inclu-
sion of e-e correlation (black line) and in the single-particle
case (red line).

however that the origin of satellites features in MnO has
been somewhat controversial in the literature attributing
them either to intrinsic20 or extrinsic effects23.
A part from the satellite structure our results are com-

parable with what has been obtained by Variational Clus-
ter Approximation24 in spite of a different choice of the
cluster, and by a recent DMFT calculation5. In both
cases the basic unit contains a single TM atom: either a
cluster containing one TMmetal and two ligands24 or sin-
gle TM atom embedded in a continuum5. Since these two
approaches are either variationally optimized (VCA) or
self-consistent (DMFT), we may identify in our scheme
the advantage of giving comparable results by a single
shot calculation thanks, we believe, to our cluster choice.
In fact we have assumed as the basic unit a dimer of two
TM atoms where both hopping and e-e repulsion coexist
including, already at the level of the cluster calculation,
a large part of the relevant physics of the interacting

system. Still we are convinced of the importance of vari-
ational optimization and our future goal will be to apply
it to our CPT approach.

In conclusion, we have described a method based on
a multi-orbital extension of CPT approach to include
on-site interactions in the description of quasi particle
states of real solid systems. The CPT strategy is ap-
plied twice, first to identify a partition of the lattice into
non overlapping clusters and secondly to calculate the
cluster Green function in terms of two local ones. This
procedure has the advantage to replace an unmanageable
exact diagonalization by two separate ones followed by a
matrix inversion. The non-interacting part of the lattice

-10 -5 0 5
E-Ef(eV)

ar
bi

tr
ar

y 
un

its
FIG. 5: (Color in-line) Orbital resolved density of quasi-
particle states compared with the experimental XPS and BIS
data (circles) of ref.20. Black (red) line is for TM d (Oxygen
sp) orbital contribution.

Hamiltonian is described in terms of Tight-Binding pa-
rameters deduced by a least-square fitting of an ab-initio
single particle band structure, including all the relevant
orbitals (no minimal basis set is introduced). To our
purposes, since we do not need any real-space expression
of the single particle wavefunctions, this Tight-Binding
parametrization is fully equivalent to a representation in
terms of maximally localizedWannier functions. We have
applied this method to MnO as a test case and using a
single value of Hubbard U we have found a reasonable
agreement with experimental data and with theoretical
results obtained by different methods. The approach is
well suited to treat local correlation in complex materials.
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