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Abstract 
 

The present work is concerned with the analysis of low-frequency linear vibrations 

of SWNTs: two approaches are presented: a fully analytical method based on a 

simplified theory and a semi-analytical method based on the theory of thin shells.  

The semi-analytical approach (shortly called ñnumerical approachò) is based on the 

Sanders-Koiter shell theory and the Rayleigh-Ritz numerical procedure. The 

nanotube deformation is described in terms of longitudinal, circumferential and 

radial displacement fields, which are expanded by means of a double mixed series 

based on Chebyshev polynomials. The Rayleigh-Ritz method is then applied to 

obtain numerically approximate natural frequencies and mode shapes. 

The second approach is based on a reduced version of the Sanders-Koiter shell 

theory, obtained by assuming small ring and tangential shear deformations. These 

assumptions allow to condense both the longitudinal and the circumferential 

displacement fields. A fourth-order partial differential equation for the radial 

displacement field is derived. Eigenfunctions are formally obtained analytically, 

then the numerical solution of the dispersion equation gives the natural frequencies 

and the corresponding normal modes.  

The methods are fully validated by comparing the natural frequencies of the SWNTs 

with data available in literature, namely: experiments, molecular dynamics 

simulations and finite element analyses. A comparison between the results of the 

numerical and analytical approach is carried out in order to check the accuracy of 

the last one.  

It is worthwhile to stress that the analytical model allows to obtain results with very 

low computational effort. On the other hand the numerical approach is able to 

handle the most realistic boundary conditions of SWNTs (free-free, clamped-free) 

with extreme accuracy. Both methods are suitable for a forthcoming extension to 

multi-walled nanotubes and nonlinear vibrations. 
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1  Introduction  
 

Carbon Nanotubes were discovered in 1991 by Iijima [1], who first analysed the 

synthesis of molecular carbon structures in the form of fullerenes and then reported 

the preparation of a new type of finite carbon structure consisting of needle-like 

tubes, the carbon nanotubes, described as helical microtubules of graphitic carbon. 

Carbon Nanotubes (CNTs) are used as ultrahigh frequency nanomechanical 

resonators in a large number of nanoelectromechanical devices such as sensors, 

oscillators, charge detectors and field emission devices. The reduction of the size 

and the increment of the stiffness of a resonator magnify its resonant frequencies and 

reduce its energy consumption, improving its sensitivity.  

The modal analysis of carbon nanotubes is important because it allows to obtain the 

resonant frequencies and mode shapes, which influence the mechanical and 

electronic properties of the nanotube resonators. 

A large number of experiments and atomistic simulations were conducted both on 

single-walled (SWNTs) and multi-walled carbon nanotubes (MWNTs). 

Rao et al. [2] studied the vibrations of SWNTs by using Raman scattering 

experimental techniques with laser excitation wavelengths in the range of the 

nanometers. They observed numerous Raman peaks, which correspond to 

vibrational modes of the nanotubes. 

Bandow et al. [3] analysed the effect of the temperature growth on the diameter 

distribution and chirality of SWNTs by comparing different experimental 

techniques, such as electron microscopy, X-ray diffraction and Raman spectroscopy. 

They studied the effect of the catalysts on the tube yield and the evolution of the 

tube distribution vs. the environmental temperature. 

Jorio et al. [4] studied the vibrations of SWNTs by resonant confocal micro-Raman 

spectroscopy. They developed a method to assign univocally the carbon nanotube 

chirality by measuring one radial breathing mode frequency and applying the theory 

of resonant transitions. 

Because of their nanoscale size, it is very difficult to investigate the mechanical 

properties of the nanotubes using experimental techniques, which require the use of 

high resolution transmission electron microscopes and do not allow to separate 

easily the natural frequencies of the different vibration modes within the frequency 

spectrum. On the other hand, it was found that molecular dynamics simulations 

(MD) and finite element analyses (FE) provide good predictions of the mechanical 

behaviour of CNTs under external forces, with results close to the experiments [5-

10]. 

Analytical and numerical methods have been recently developed in order to analyse 

classes of CNTs in a more general and efficient way; such methods are generally 

based on continuous models for the nanotube and allow a strong reduction of the 

number of degrees of freedom [11-14]. 

Eisenberger et al. [16] analysed the effect of the Van der Waals interactions on the 

vibration characteristics of multi-walled carbon nanotubes. An elastic multiple thin 

shell model was used. Based on the simplified Donnell shell equations, the natural 

frequencies and mode shapes of MWNTs with various radii and number of tubes 

were obtained. 
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Wang et al. [15] examined the applicability and limitations of different simplified 

models of elastic cylindrical shells for general cases of static buckling and free 

vibrations of carbon nanotubes. They found that the simplified Flugge model, which 

retains the mathematical simplicity of the Donnell model, is in better agreement with 

the Flugge equations with respect to the Donnell theory. 

In the present paper, we analyse the low-frequency linear vibrations of SWNTs by 

using two shell models. Applicability and limitations of these continuous models are 

investigated in detail. 

The first approach is semi-analytical and it is based on the Rayleigh-Ritz numerical 

procedure, we call it shortly ñnumerical approachò; the Sanders-Koiter shell theory 

is considered in order to obtain the expressions of the elastic strain and kinetic 

energy. The nanotube deformation is described in terms of longitudinal, 

circumferential and radial displacement fields, which are expanded by means of a 

double mixed series based on Chebyshev polynomials for the longitudinal variable 

and harmonic functions for the circumferential variable. The Rayleigh-Ritz method 

is then applied to obtain numerically approximate natural frequencies and mode 

shapes. 

The second approach consists of an analytical model based on a reduced version of 

the Sanders-Koiter shell theory, obtained by assuming small ring and tangential 

shear deformations. These assumptions allow to condense both the longitudinal and 

the circumferential displacement fields. A fourth-order partial differential equation 

for the radial displacement field is derived. Eigenfunctions are formally obtained 

analytically, then the numerical solution of the dispersion equation gives the natural 

frequencies and the corresponding normal modes.  

In order to validate the present study, the natural frequencies of the carbon nanotube 

predicted by the present numerical model are compared with data available in 

literature: experiments, molecular dynamics simulations and finite element analyses. 

A comparison between the results of the numerical and analytical approach is 

carried out in order to check the accuracy of the last one. It is worthwhile to stress 

that the analytical model allows to obtain results with very low computational effort. 

 

2. Sanders-Koiter shell theory (numerical solution) 
First of all, it must be pointed out that in the present theory the size-effects are not 

considered; this simplification gives some limitations to the present model in terms 

of type of nanotube and dynamic conditions. The small scale effect has a significant 

influence on the dispersion of the flexural waves of SWNTs only for high 

frequencies [12]. Therefore, in order to make valid the assumptions of the present 

theory, the following two limitations have to be considered: the low part of the 

frequency spectrum can be analysed [15], carbon nanotubes with high aspect ratio 

and large diameter can be studied [17]. 

In Figure 1, a circular cylindrical shell having radius R, length L and thickness h is 

represented; a cylindrical coordinate system (O; x, ɗ, z) is considered in order to take 

advantage from the axial symmetry of the structure, the origin O of the reference 

system is located at the centre of one end of the cylindrical shell. In Figure 1, three 

displacement fields are represented: longitudinal u (x, ɗ, t), circumferential v (x, ɗ, t) 

and radial w (x, ɗ, t); the radial displacement field w is considered positive outward 
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and (x, ɗ) are the longitudinal and angular coordinates of an arbitrary point on the 

middle surface of the shell; z is the radial coordinate along the thickness h; t is the 

time. 

 
Figure 1. Geometry of the circular cylindrical shell. (a) Complete shell; (b) cross-section of the shell 

surface. 

 

3.1. Strain-displacement relationships 
It should be pointed out that, due to the nanoscale, CNTs present huge natural 

frequencies (THz) and infinitesimal dimensions; this can induce numerical troubles 

to numerical algorithms if the governing equations are not transformed into a 

nondimensional form. 

Here, the three displacement fields (u, v, w) are nondimensionalized by means of the 

radius R of the carbon nanotube 

   (1)
 

where ( ) are the nondimensional displacement fields. 

In the Sanders-Koiter elastic thin shell theory, the transverse shear strains (ɔxz, ɔɗz) 

are neglected (Kirchhoff-Loveôs kinematic hypothesis). The tangential normal 

strains (Ůx, Ůɗ) and the tangential shear strain ɔxɗ at an arbitrary radius on the shell 

thickness are related to the middle surface strains (Ůx,0, Ůɗ,0, ɔxɗ,0) and to the changes 

in curvature and torsion of the middle surface of the shell (kx, kɗ, kxɗ) by the 

relationships [19] 

,0x x xzke e= +  
,0 zkq q qe e= +  

,0x x xzkq q qg g= +  (2)
 

where z is the distance of the arbitrary point on the thickness from the middle 

surface of the shell, according to the condition (īh / 2 Ò z Ò h / 2), as shown in 

Figure 1. 

The middle surface strains (Ůx,0, Ůɗ,0, ɔxɗ,0) are nondimensional parameters. The 

changes in curvature and torsion of the middle surface of the shell (kx, kɗ, kxɗ) are 

dimensional parameters, and they must be written in nondimensional form; this is 

achieved by considering the radius R. The middle surface strains and 

nondimensional changes in curvature and torsion can be written as follows [19] 

   (3)
 

   (4)
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where 
 

are middle surface strains of the shell, 

 are the nondimensional middle surface changes in curvature and torsion, 

ɖ = x / L is the nondimensional longitudinal coordinate of the shell and Ŭ = R / L. 

 

3.2. Force and moment resultants 

The nondimensional force ( ) and moment ( ) 

resultants can be written in the following form 

   (5)
 

  (6)
 

   (7)
 

 

where ( , , , , x x xN N N Q Qq q q
) are the force resultants per unit length of the shell, 

( , , x xM M Mq q
) are the moment resultants per unit length of the shell, 2/ (1 )J Eh n= -  

and 3 2/ (12(1 ))D Eh n= - . 

 

3.3. Elastic strain energy 
 

According to the Sanders-Koiter theory, the elastic strain energy U of a circular 

cylindrical shell is written in the form [21] 
1 2 /2

0 0 /2

1
( ) 

2

h

x x x x

h

U LR d d dz

p

q q q qs e s e t g h q
-

= + +ññ ñ  (8)
 

The elastic strain energy U can be nondimensionalized, let ȇ be the nondimensional 

elastic strain energy, it can be expressed in the form 

 

 
(9)

 

where A = EhLR and ɓ = h / R. 

 

3.4. Kinetic energy 
 

The kinetic energy T of a cylindrical shell (rotary inertia effect being neglected) is 

given by [21] 

 (10)
 

where ɟ is the mass density of the shell and the overdot denotes a time derivative. 

The time variable t can be nondimensionalized by introducing a reference natural 

frequency ɤ0 in the following form [20] 

 

1

0t w t-=                               0 2 2(1 )

E

R
w

n r
=

-
 (11)
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where Ű is the nondimensional time variable. 

The velocity fields ( ) can be nondimensionalized by considering the radius R 

and the reference natural frequency ɤ0 in the following form 

 
 

 
 

 
      (12)

 

where ( ) are the nondimensional velocity fields. 

Let  be the nondimensional kinetic energy, which is expressed in the form 

 (13)
 

where ɔ = ɟR
2
ɤ0

2
 / E. 

 

3.5. Linear vibration analysis (complete Sanders-Koiter shell 

theory) 
In the linear vibration analysis, the three nondimensional displacement fields are 

expanded by using a double mixed series, then the Rayleigh-Ritz method is applied 

to the linearized formulation of the problem, in order to obtain approximated 

eigenfunctions. The linear vibration analysis is carried out considering only the 

quadratic terms in equation (8). 

A modal vibration, i.e., a synchronous motion, can be formally written in the form 

[43] 

   (14)
 

 

where (ɖ, ɗ), (ɖ, ɗ), (ɖ, ɗ) describe the mode shape of the shell and f (Ű) 

represents the common time law, which is supposed to be the same for each 

displacement field in the modal vibration analysis. 

The mode shape ( ) is expanded by means of a double mixed series, in 

terms of m-th order Chebyshev polynomials Tm
*
(ɖ) in the axial direction and 

harmonic functions (cos nɗ, sin nɗ) in the circumferential direction, in the following 

form [23] 

 (15) 

where Tm
*
 = Tm (2ʂ ɀ 1), m is the polynomials degree, n denotes the number of nodal 

diameters and ( , , ) are unknown coefficients. 

 

3.5.1. Boundary conditions 
Clamped and free SWNTs are now analysed; the boundary conditions are imposed 

by applying constraints to the unknown coefficients (, , ) of the 

expansions (15). 

 

3.5.1.1. Clamped-clamped 

Clamped ï clamped boundary conditions are given by [23] 

    0,1h=  (16)
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where (·),ɖ = Ö(Ŀ)/Öɖ. 

The previous conditions imply the following equations [23] 

 

 [0,2 ]q pÍ  [0, ]n NÍ  (17)
 

 

The linear algebraic system given by the equations (17) can be solved analytically in 

terms of the coefficients ( ), for nÍ[0, N]. 

 

3.5.1.2. Free-free 

Free ï free boundary conditions are given by [23] 

    0,1h=  (18)
 

It can be observed that the boundary conditions (18) applied at the free edges of the 

SWNTs are of natural type; since the Rayleigh-Ritz method is used for finding the 

solution, just the geometric boundary conditions have to be exactly satisfied: it 

means that it is not necessary to satisfy the natural conditions (18) by the expansions 

(15) since they will be satisfied by the minimization of the energy of the system. 

 

3.5.2. Rayleigh-Ritz method 

The maximum number of variables needed for describing a general vibration mode 

with n nodal diameters is obtained by the relation (Np = Mu + Mv + Mw + 3 ï p), 

where (Mu = Mv = Mw) denote the degree of the Chebyshev polynomials and p 

describes the number of equations needed to satisfy the boundary conditions. 

A specific convergence analysis is carried out to select the degree of the Chebyshev 

polynomials: degree 11 is found suitably accurate, (Mu = Mv = Mw = 11), see Refs. 

[21-23] for the details. 

For a multi-mode analysis including different values of nodal diameters n, the 

number of degrees of freedom of the system is computed by the relation (Nmax = Np 

× (N + 1)), where N represents the maximum value of the nodal diameters n 

considered. 

For example, in the case of a SWNT with free edges (p = 0), the number of degrees 

of freedom of the system with (n = 2) nodal diameters is equal to (Nmax = Np × (N + 

1) = 36 × (2 + 1) = 108). 

Equations (14) are inserted into the expressions of the elastic strain energy , eq. 

(9), and kinetic energy , eq. (13), to compute the Rayleigh quotient R ( ) = / 

, where = max ( ) is the maximum of the potential energy during a modal 

vibration, = / ɤ
2
 , = max ( ) is the maximum of the kinetic energy 

during a modal vibration, ɤ represents the circular frequency of the synchronous 

harmonic motion  f (Ű) = cos ɤŰ;  is a vector containing all the unknown variables 

(its structure depends on the boundary conditions) [23] 

 
 

(19) 
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After imposing the stationarity to the Rayleigh quotient, one obtains the eigenvalue 

problem [23] 

 (20)
 

which furnishes approximate natural frequencies (eigenvalues) and mode shapes 

(eigenvectors and eigenfunctions). 

The approximate mode shape of the j-th mode is given by the equations (15), where 

the coefficients ( ) are substituted with ( ), which denote the 

components of the j-th eigenvector  of the equation (20). The vector function [23] 

 (21)
 

 

is the approximation of the j-th eigenfunction vector of the original problem. 

 

4. Reduced Sanders-Koiter shell theory (analytical solution) 
In the present section, a reduced form of the Sanders-Koiter shell theory is 

developed. Also in this model, the transverse shear strains (ɔxz, ɔɗz) are neglected. In 

the present work, we consider small amplitude vibrations of CNTs, and a potential 

energy is predominantly due to bending, torsion and longitudinal tensions. 

Therefore, we can suppose that both in-plane circumferential normal strain and 

tangential shear strain of the middle surface of the shell (Ůɗ,0, ɔxɗ,0) are ñsmall 

differences of relatively large quantitiesò [20], and they can be neglected. Due to this 

assumption, one can reduce the number of dependent variables; both the longitudinal 

and the circumferential displacements can be expressed via the radial one. 

By assuming the linear expansions of the longitudinal , circumferential  and 

radial  displacement fields as 
 (22) 

using the condition of absence of ring (in-plane circumferential) deformation effects 

 (23)
 

and the condition of absence of tangential shear deformation effects 

 (24)
 

we can obtain the following expressions for the nondimensional variables ĔV and 

ĔU as functions of the radial displacement ĔW  
Ĕ( )Ĕ( )

W
V

n

h
h=-

    2

Ĕ( )Ĕ( )
W

U
n

a h
h

h

µ
=-

µ
 (25)

 

4.1. Equations of motion 

In order to get the adequate equation of motion in terms of ĔW one cannot insert these 

relations into equations of motion (1.120) of Ref. [20] because of the ñreactiveò 

nature of the circumferential and tangential shear reduced forces. Therefore, we have 

to start from the following ñforceò form of the equations of motion 

 (26)
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 (27)
 

 (28)
 

where ( ) and ( ) are the reduced force and moment resultants, 

respectively. 

The procedure of the equations reduction consists of a consecutive definition of the 

expressions for  and  from the equations (26) and (27), and their substitution 

into the equation (28). 

Let us consider these actions in detail. 

We take into account that the reduced forces and momenta have the following form 

 (29)
 

 (30) 

 (31) 

Substituting these relationships into equations (26-28), we obtain the relations 

2 Ĕ 0
2

U n n
h

hq hq

j b
w a j m

h

µ
- - - + =

µ
 (32)

 

  

- w 2ĔV + nj
q

- a n
¶ j

h q

¶ h
+ b n2 m

q
-

3

2
a b

¶ m
h q

¶ h
= 0 (33)

 

2

2 2 2

2
Ĕ 2 0W n n

h hq

q q

m m
w j a b b m ab

h h

µ µ
- + - + - =

µ µ
 (34)

 

Then, we can obtain jhq  from equation (32) and substitute the result into equation 

(33), the same procedure applies to jq that is substituted into equation (34). 

The last step is to express the remaining reduced forces and momenta via the 

corresponding deformations excluding the variables ĔV  and ĔU  by the relations (25). 

The final equation of motion for the nondimensional radial displacement field ĔW  is 

given by 
2 2 2 2 2 2 2

2 2 2

2 2 2 2

2 4 4 2 4
4

2 2 2 2 2 2 4

Ĕ Ĕ( 1) ( 1)( 1 )Ĕ
1 6( 1)

Ĕ Ĕ12
0

( 1) 12 ( 1)

W n n n n W
W

n n

W n W

n n n n

n
b a b

t h

a b
a

t h h

µ - - - + µ
+ -

µ + + µ

µ + µ
- + =

+ µ µ + µ

 
(35)

 

where the time dependence of the radial displacement is taken into account 

explicitly. 

The same equation can be obtained taking into account only the bending, torsion and 

longitudinal stresses in the expression of the strain energy and expressing the 

longitudinal and circumferential displacements via the radial one before the 

application of the variational procedure. 

 

4.2. Boundary conditions 
In the present section, both periodic and free-free boundary conditions are 

considered. 
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4.2.1. Periodic boundary conditions 

In the case of periodic boundary conditions, equation (35) leads to the dispersion 

equation 
2 4 2 2 2 2 2 2 2 2 2 4 2 4 4 4

2

4 2 2 2 2

( 1) 2 ( 1)( (1 )) (12 )

12( )

n n j n n n n j

n n j

b a b p n a b p
w

a p

- + - - - + +
=

+ +
 (36)

 

where j describes the number of half-waves along the CNT axis. 

 

4.2.2. Free-free boundary conditions 

Using equation (35) and assuming Ĕ iW Wewt= one obtains 
2 2 4

2 2 2 2

2 2 4
0

W W W
W W c A Bw w

h h h

µ µ µ
- +W - + + =

µ µ µ
 

(37)
 

where 
2 2 2

2 2

2

( 1)

12( 1)

n n

n
b

-
W =

+
  

2 2
2 2 2

2

( 1)( 1 )

6( 1)

n n
c

n

n
a b

- - +
=

+
 

2

2 2( 1)
A

n n

a
=

+
 

4 2
4

2 2

12

12 ( 1)

n
B

n n

b
a

+
=

+
 (38)

 

We can factorize equation (37) as follows 
2 2

2 2

2 2
0B Wm g

h h

å õå õµ µ
+ - =æ öæ ö

µ µç ÷ç ÷

 (39)
 

where the parameters ɛ and ɔ are coupled by the relations 
2 2

2 2

B

w
m g

-W
=

                              

2 2
2 2 A c

B

w
m g

-
- =  (40)

 

The general solution of equation (39) contains both a harmonic-type solution and an 

aperiodic exponential-type one in ɖ; the latter one plays the role of the edge layer, 

where the parameter g specifies its magnitude. In such a case the parameter ɛ is an 

effective wave number.

  This equation should be completed with the free-free boundary conditions at (ɖ = 0) 

and (ɖ = 1), in terms of the radial displacement W .

 The first boundary condition corresponds to the absence of bending moment  at 

the free edges of the carbon nanotube, which leads to the following relation 

                    
(0,1)h=  (41)

 

The second boundary condition is related with the transverse force  combined 

with the torsional moment  at the free edges of the carbon nanotube, and it leads 

to the following relation 

                    

(0,1)h=  (42)
 

It should be noted that the two remaining boundary conditions are 

                              
 (43)

 

such conditions are satisfied thanks to the exclusion procedure discussed above. 

 

4.3. General solution 
The general solution of the equation (39) can be written as follows 

1 1 2 2 3 3( ) cos( ) exp( ) exp( )W c c ch mh d gh d gh d= + + - + + + (44)
 

where (c1, c2, c3) and (ŭ1, ŭ2, ŭ3) are nondimensional parameters to be determined. 
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In equation (44), there are both symmetric and asymmetric constituents 

corresponding to an even and odd number of half-waves along the ɖ-axis of the 

CNT. 

The respective values of the nondimensional parameters for the symmetric solution 

(even number of longitudinal half-waves) are 

2 3c c=  1
2

m
d=-  

2 3
2

g
d d= =- (45)

 

and in the asymmetric one (odd number of longitudinal half-waves) we have 

2 3c c=- 1
2 2

m p
d=- - 

2 3
2

g
d d= =- (46)

 

We can rewrite the symmetric and asymmetric solutions as follows 

2cos[ ( 1/ 2)] sinh ( 1/ 2)
2

sW b
g

mh h
è ø

= - + -é ù
ê ú

 (47)
 

[ ]sin[ ( 1/ 2)] sinh ( 1/ 2)aW bmh g h= - + -  (48)
 

where the parameter b plays the role of the edge layer amplitude. 

By substituting these expressions into relations (41) and (42), we finally obtain two 

transcendent equations with respect to parameters ɛ and b, which must be solved 

numerically. 

 

5. Numerical results 
In Table 1, effective and equivalent parameters of Single-Walled Carbon Nanotubes 

are reported [18]. These parameters are used to carry out comparisons with 

experiments and MD simulations, i.e. the model validation. 

The diameter D of a CNT can be directly calculated from its chirality indices (r, s) 

as follows 

2 2( )
a

D r rs s
p
= + +  (49)

 

r and s identify the chiral vector, which gives the rolling direction of a honeycomb 

crystal lattice of graphene; a = 0.246 nm. 

Therefore, a carbon nanotube modelled as a thin circular cylindrical shell is uniquely 

described by the length L and by the indices (r, s), which allow to determine the 

CNT diameter D. L and D are mutually connected by the aspect ratio ɢ = L / D. 

Therefore, (r, s, ʔ) are the independent variables of a SWNT.  

 

 
Effective thickness h0 (nm) 0.10 ÷ 0.15 

Equivalent thickness h (nm) 0.066 

Effective Youngôs modulus E0 (TPa) 1.0 ÷ 2.0 

Equivalent Youngôs modulus E (TPa) 5.5 

Effective Poissonôs ratio ɜ0 0.12 ÷ 0.28 

Equivalent Poissonôs ratio ɜ 0.19 

Surface density of graphite ů (kg/m
2
) 7.718 × 10

-7
 

Equivalent mass density ɟ (kg/m
3
) 11700 

Table 1. Effective and equivalent parameters of the Single-Walled Carbon Nanotubes [18]. 
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5.1. Validation of the numerical approach in linear field 
 

In this section, the numerical model based on the Sanders-Koiter shell theory is 

validated in linear field. The natural frequencies of the carbon nanotubes based on 

this theory are compared with data available in the literature: experiments, 

Molecular Dynamics (MD) simulations. In Tables 2-3 all the comparisons are 

reported. These comparisons show that the Sanders-Koiter theory and the present 

approach of solution give excellent results in terms of natural frequencies. 

Furthermore, this proves that the equivalent parameters are correct. In the following 

subsections, detailed comments regarding this validation are given. 

 

5.1.1. Radial Breathing Mode (RBM) 

 

The RBM is the specific vibrational mode which is often used in order to identify 

experimentally the CNTs by Resonant Raman Spectroscopy. 

This mode corresponds to the ñvibrationalò numbers (j = 0, n = 0), and its natural 

frequency can be easily calculated in the framework of the Sanders-Koiter elastic 

shell theory. The RBM appears only in the case of free-free boundary conditions. 

The existing data for vibrations of CNTs are mainly focused on the radial breathing 

mode of SWNTs and MWNTs because the spectrum of nanotubes is quite complex. 

Moreover, the natural frequency associated with the radial breathing mode of 

SWNTs is inversely proportional to the tube diameter and independent from the 

length (aspect ratio ɢ) and chirality (symmetry) of the nanotube.  

For the radial breathing mode, the radial displacement field (ɖ, ɗ, Ű) is spatially 

uniform, i.e., it is independent of ɖ and ɗ (  = (Ű)). In this special case, the 

bending stiffness of the SWNTs does not appear because the radial breathing 

vibration does not involve the bending deformation and corresponds to an uniaxial 

stress state of the graphene sheet. 

Resonant Raman Spectroscopy (RRS) provides a powerful technique to study the 

quantum properties of electrons and phonons in carbon nanotubes and to determine 

their atomic structure, i.e., the chirality indices (r, s), of an isolated SWNT. The 

radial breathing mode exhibits strong resonant characteristics in the Raman spectra, 

because it corresponds to the symmetric in-phase motion of all the carbon atoms in 

the radial direction of the tube. In this configuration all the carbon atoms undergo 

the same radial displacement. 

The RRS of a SWNT allows a unique assignment of its chirality to be made by 

measuring the RBM frequency ɤRBM and using the theory of the resonant transitions. 

By considering the frequency and the intensity of the RBM mode in the RRS 

spectra, it is possible to assign the correct chirality (r, s) to the resonant SWNT. 

The natural frequencies of the radial breathing vibration mode based on the present 

numerical model are in good agreement with the experimental RRS results. Table 2 

presents a comparison for different armchair, zigzag and chiral SWNTs under free-

free boundary conditions, relative errors are less than 5%, it appears a satisfactory 

accuracy. 
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Natural frequency (THz) Difference % 

(r, s) CSKT ï Present model RRS ï Ref. [4]  

(8, 7) 6.905 7.165 3.63 

(10, 5) 6.785 7.105 4.50 

(11, 4) 6.669 6.865 2.85 

(14, 1) 6.177 6.295 1.87 

(18, 0) 5.025 5.276 4.76 

(17, 2) 4.964 5.216 4.83 

(16, 4) 4.895 5.066 3.37 

(15, 6) 4.788 4.947 3.21 

(11, 11) 4.711 4.917 4.19 

(19, 1) 4.594 4.797 4.23 

Table 2. Natural frequencies of the radial breathing mode (j = 0, n = 0): comparisons between the 

complete Sanders-Koiter theory (CSKT) and the Resonant Raman Spectroscopy (RRS). 
 

Natural frequency (THz) Difference % 

(r, s) = (5, 5) ɢ = 5.26  

Clamped ï Free CF  

(j, n) CSKT ï Present model MDS ï Ref. [8]  

(0, 1) 0.217 0.212 2.36 

(1, 1) 1.071 1.043 2.68 

(2, 1) 2.411 2.340 3.03 

Clamped ï Clamped CC  

(j, n) CSKT ï Present model MDS ï Ref. [8]  

(1, 1) 1.018 0.975 4.41 

(2, 1) 2.192 2.105 4.13 

(3, 1) 3.529 3.404 3.67 

(r, s) = (5, 5) ɢ = 10.34  

Clamped ï Free CF  

(j, n) CSKT ï Present model MDS ï Ref. [8]  

(0, 1) 0.058 0.060 3.33 

(1, 1) 0.338 0.344 1.74 

(2, 1) 0.856 0.864 0.93 

Clamped ï Clamped CC  

(j, n) CSKT ï Present model MDS ï Ref. [8]  

(1, 1) 0.335 0.336 0.30 

(2, 1) 0.819 0.818 0.12 

(3, 1) 1.428 1.417 0.78 

Table 3. Natural frequencies of the beam-like modes (n = 1): comparisons between the complete 

Sanders-Koiter theory (CSKT) and the Molecular Dynamics Simulations (MDS). 

 

5.1.2. Beam-Like Modes (BLMs) 

The accuracy of the present numerical model is now assessed for beam-like modes 

(n = 1) by means of comparisons with MD simulations and FE analyses. 

The natural frequencies of the beam-like modes obtained with the present numerical 

model are in good agreement with the MDS results. The comparisons shown in 

Table 3 for an armchair (5, 5) SWNT with different aspect ratios ɢ under clamped-

free and clamped-clamped boundary conditions denote relative errors smaller than 

5%. 
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In particular, in Table 3 it may be seen that the percent difference between the 

present theory and MDS, for the first four flexural modes, decreases as the length of 

the nanotube increases, i.e., when the influence of the boundary conditions on the 

natural frequencies is reduced. Furthermore, the natural frequencies under clamped-

free boundary conditions are greater than those under clamped-clamped boundary 

conditions for the correspondent vibration modes. 

 

5.2. Dispersion curves of the analytical approach 
In this section, the accuracy of the analytical model based on the reduced Sanders-

Koiter theory is studied. The equivalent parameters of Table 1 are used and 

numerical solutions of the transcendent equations for zigzag (10, 0) SWNTs of 

various lengths are obtained. 

 
Figure 2. Eigenfrequencies of the first modes for the zigzag (10, 0) SWNT. Reduced Sanders-Koiter 

theory (Eq. (51)). Periodic boundary conditions. n = 2. ñ-§-ò, L = 3.0 nm; ñ-ƴ-ò, L = 6.0 nm; ñ-ƶ-ò, 

L = 10.0 nm 
 

In Figure 2 the eigenfrequencies, calculated with the dispersion relation (36), are 

shown; different lengths are considered, the boundary conditions are periodic, j is 

the number of half waves along the CNT axis and n = 2 denotes the number of nodal 

diameters. From this figure, it is confirmed that the natural frequency of a 

vibrational mode (j, n) increases with the number of longitudinal half waves and 

decreases with increasing length. 

It is significant to compare the results of the dispersion relation (36), from the 

reduced Sanders-Koiter theory (RSKT), with those corresponding to the exact 

solution (Equation 1.120 of Ref. [20]). This may be seen in Figure 3. From the 

comparisons, it may be observed that the exact solution and the RSKT are in good 

agreement in the case of a small number of half waves along the CNT axis (j Ò 3), 

when the ring and tangential shear deformation effects are small. On the other hand, 

the difference increases with j. 

In Figure 4, the dependence of the eigenfrequencies of the first four modes on the 

ratio (Ŭ = R / L) of a CNT having (r, s) = (10, 0) is shown; the eigenfrequencies 

decrease as the CNT length increases. In the limit Ŭ Ÿ 0, the eigenfrequency is the 

same for any wave number j, because it corresponds to the eigenfrequency of a thin 

circular ring, in the following form [24] 
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Figure 3. Dispersion curves for the zigzag (10, 0) SWNT. L = 6.0 nm. n = 2. ñ-§-ò, exact solution of 

(Eq. (1.120), Ref. [20]); ñ-ƴ-ò, reduced Sanders-Koiter theory (Eq. (51)). 
 

 
Figure 4. Dependence of the eigenfrequencies on the ratio (Ŭ = R / L). Zigzag (10, 0) SWNT. 

Reduced Sanders-Koiter theory (Eq. (51)). Periodic boundary conditions. n = 2. ñ-§-ò,  j = 1; ñ-ƴ-ò,  j 

= 2; ñ-ƶ-ò,  j = 3; ñ-x-ò,  j = 4 
 

5.3. Comparison between the models 
In this section, the analytical and numerical models, based on the reduced Sanders-

Koiter theory (RSKT) and the complete Sanders-Koiter theory (CSKT), are 

compared. 

RSKT can be applied to the calculation of the eigenfrequencies of CNT vibrations 

with ñangular vibration numberò n Ó 2 [24]. The approximations of the RSKT with 

respect to the CSKT take into account the relative smallness of the bending and 

torsion stiffness with respect to those of tension and shear. This involves a correct 

description of long-wave modes: the range of RSKT applicability can be extended 

for an increased length of CNT. 

The results of the RSKT and the CSKT for different lengths and boundary 

conditions of a (10, 0) SWNT are shown in Figures 5-6. From the comparisons, it 

can be firstly noted that the differences between RSKT and CSKT are significant for 

short CNTs in a large range of longitudinal waveform numbers j, as expected. 
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Indeed, in this case the effect of the circumferential and tangential shear 

deformations is not negligible. Furthermore, when the length of the CNT increases, 

differences between RSKT and CSKT decrease, because the influence of the 

boundary conditions on the natural frequencies reduces. 

In Figure 7, the first six mode shapes of a (r = 10, s = 0, ɢ = 12.8) SWNT with free 

edges for the circumferential wavenumber (n = 2) are reported. These mode shapes 

are obtained by using the equivalent parameters (h, E, ɜ, ɟ) of Table 1. The modes (j 

= 0, n = 2) and (j = 1, n = 2) correspond to the Rayleighôs inextensional symmetric 

mode (uniform vibration) and Loveôs asymmetric mode (one-half of the wave 

length), respectively (Ref. [20]). The modes (j = 2, n = 2) (wave length) and (j = 4, n 

= 2) are symmetric, the modes (j = 3, n = 2) and (j = 5, n = 2) are asymmetric, with 

respect to the central transversal section of the CNT. Such graphical representation 

of modes could be useful for interpreting the previous results and comparisons. 

 

a) 

 

b) 

 
Figure 5. Natural frequencies, zigzag (10, 0) SWNT. n = 2. Free edges. ñ-§-ò, complete Sanders-

Koiter theory (CSKT); ñ-ƴ-ò, reduced Sanders-Koiter theory (RSKT). a) L = 3.0 nm; b) L = 10.0 nm. 
 

a) 

 

b) 

 
 

Figure 7. Natural frequencies, zigzag (10, 0) SWNT. n = 2. Clamped edges. ñ-§-ò, complete Sanders-

Koiter theory (CSKT); ñ-ƴ-ò, reduced Sanders-Koiter theory (RSKT). a) L = 3.0 nm ; b) L = 10.0 nm. 
 

 

 

 

 

 

 


