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Abstract

The presentvork is concerned with thanalyss of low-frequency linear vibrations

of SWNTs two approaches arpresented: a fully analytical method based on a
simplified theory and a serainalytical method based on the theory of thin shells

The semianalyticalapproach(shortly calledii n u me r i ¢ a)is basedoonth@ c h 0
Sanderoiter shell theoryand the Rayeigh-Ritz numerical procedure. The
nanotube deformation is described in terms of longitudinal, circumferential and
radial displacement fields, which are expanded by means of a double mixed series
based on Chebyshev polynomials. The Rayk&ghh method isthen applied to
obtain numerically approximate natural frequencies and mode shapes.

The second approads basedon a reduced version of the Sandéaster shell
theory, obtained by assuming small ring and tangential shear deformations. These
assumptionsallow to condense both the longitudinal and the circumferential
displacement fields. A fourtbrder partial differential equation for the radial
displacement field is derived. Eigenfunctions are formally obtained analytically,
then the numerical solutiorf the dispersion equation gives the natural frequencies
and the corresponding normal modes.

The methods are fully validated by comparthg natural frequencies of the SWNTs
with data available in literaturenamely: experiments, molecular dynamics
simulaions and finite element analyses. A comparison between the results of the
numerical and analytical approach is carried out in order to check the accuracy of
the last one.

It is worthwhile to stress that the analytical model allows to obtain results/engh

low computational effortOn the other hand the numerical approach is able to
handle the most realistic boundary conditionsS¥¥NTSs (free-free, clampedree)

with extreme accuracy. Both methods are suitable for a forthcoming extension to
multi-walled nanotubes and nonlinear vibrations.
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1 Introduction

Carbon Nanotubes were discovered in 1991 by lijima [1], who first analysed the
synthesis of molecular carbon structures in the form of fullerenes andejhened

the preparation of a new type of finite carbon structure consisting of Aéexle
tubes, the carbon nanotubes, described as helical microtubules of graphitic carbon.
Carbon Nanotubes (CNTs) are used as ultrahigh frequency nanomechanical
resonatorsn a large number of nanoelectromechanical devices such as sensors,
oscillators, charge detectors and field emission devices. The reduction of the size
and thaencrementof thestiffness of a resonator magnitg resonant frequencies and
reduce its eneggconsumption, improving its sensitivity.

The modal analysis afarbon nanotulseis important because it allows to obtain the
resonant frequencies and mode shapes, which influence the mechanical and
electronic properties of the nanotube resonators.

A large number of experiments and atomistic simulations were conducted both on
singlewalled (SWNTs) andnulti-walled carbonnanotubes (MWNTS).

Rao et al. [2] studied the vibrations of SWNTs by using Raman scattering
experimental techniques with laser excitatimavelengths in the range of the
nanometers. They observed numerous Raman peaks, which correspond to
vibrational modes of the nanotubes.

Bandow et al. [3] analysed the effect of the temperature growth on the diameter
distribution and chirality of SWNTs bycomparing different experimental
techniques, such as electron microscopya¥diffraction and Raman spectroscopy.
They studied the effect of the catalysts on the tube yield and the evolution of the
tube distibution vs. theenvironmeral temperature.

Jorio et al. [4] studied the vibrations of SWNTs by resonant confocal Ateraan
spectroscopy. They developed a method to assigvocally the cabon nanotube
chirality by measuring one radial breathing mode frequency and applying the theory
of resonant trasitions.

Because of their nanoscale size, it is very difficult to investigate the mechanical
properties of the nanotubes using experimental techniques, which require the use of
high resolution transmission electron microscopes @madnot allow to separate
easly the natural frequencies of the different vibration modes within the frequency
spectrum. On the other hand, it was found that molecular dynamics simulations
(MD) and finite element analyses (FE) provide good predictions of the mechanical
behaviour ® CNTs under external forces, with results close to the experinents

10].

Analytical and numerical methods have been recently developed in order teeanalys
clasgesof CNTs in a more general amdficient way; such methods are generally
based on continusumodels for the nanotube and allow a strong reduction of the
number of degrees of freeddiil-14].

Eisenberger et allp] analysed the effect of the Van der Waals interactions on the
vibration characteristics of multvalled carbon nanotubes. An elasticiltiple thin

shell model was used. Based on the simplified Donnell shell equations, the natural
frequencies and mode shapes of MWNTSs with various radii and number of tubes
were obtained.



Wang et al[15] examined the applicability and limitations of diéat simplified
models of elastic cylindrical shells for general cases of static buckling and free
vibrations of carbon nanotubes. They fouhdttthe simplified Fluggenodel, which
retains the mathematical simplicity of the Donnell mpban better aggement with

the Flugge equationsith respect tahe Donnelltheory.

In the present paper, we analyse the-fequency linear vibrations of SWNTs by
usingtwo shell modelsApplicability and limitations othesecontinuous models are
investigated in dethi

The first approach is semanalytical and it is based on the RayleRjitz numerical
procedur e, we call I t he $anderKditgr shallntheone r i ¢ a |
is considered in order to obtain the expressions of the elastic strain and kinetic
energy. The nanotube deformation is described in terms of longitudinal,
circumferential and al displacement fields, whicare expanded by means of a
double mixedseries based on Chebyshev polynomials for the longitudinal variable
and harmonic functionfor the circumferential variabl&he RayleighRitz method

is thenapplied to obtaimmumerically approximate natait frequencies and mode
shapes.

The second approach consistsanfanalytical model based orreduced version of

the SanderKoiter shell theory, obtained byassumingsmall ring and tangential
shar deformations. ARese assumptions allow to condense both the longitudinal and
the circumferential displacement fisldA fourth-orde partial differential equation

for the radial displacemeriteld is derived. Eigenfunctions are formally obtained
analytically, then the numerical solution of the dispersion equation ghesatural
frequencies and the corresponding normal modes.

In order to validate the presestudy, the natural frequencies of therlsan nanotube
predicted by thepresentnumerical model are compared with data available in
literature: experiments, molecular dynamsgsiulations and finite elemeanalyses.

A comparison between the results of themerical and analytical approac
caried out in order to check ¢haccuracy of the last onk is worthwhile tostress

that the analytical model allows to obtain results wihy low computational effort.

2. SandersKoiter shell theory (numerical solution)

First of all, it must be pointedut that in the present theory the seftects are not
considered; this simplification gives some limitations to the present model in terms
of type of nanotube and dynamic conditions. The small scale &ffisca significant
influence on the dispersionf dhe flexural wavesof SWNTs only for high
frequencies [12]Therefore, in order to make valid the assumptiohthe present
theory the following two limitationshave to be consideredhe low part of the
frequencyspectrum carbe analysed [15 carbonnanotubes with high aspect ratio
and large diameter can be studjd).

In Figure 1, a circular cylindrical shell having radiRslengthL and thicknes#$ is
represented; aylindrical coordinate systen®( x, d, z) is considered in order to take
advantage from the axial symmetry of the structure, the ofigof the referene
system is located at the cemof one end of the cylindrical shelh Figure 1, three
displacement fields are represented: longitudin@l d, t), circumferential (x, d, t)
and radiaw (x, d, t); the radial displacement field is considered positive outward
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and §, d) are the longitudinal and angular coordinates of an arbitrary point on the
middle surface of the shelt;is the radal coordinate along the thicknelsst is the
time.

Figure 1. Geometry of the circular cylindrical shéll) Complete shell; (b) crossection of the shell
surface.

3.1. Strain-displacement relationships
It should be pointed out that, due to the naates CNTs present huge natural
frequencies (THz) and infinitesimal dimensions; this can induce numerical troubles
to numerical algorithms if the governing equations are not transformed into a
nondimensionalorm.
Here, the three displacement fields\{, w) are nondimensionalized by means of the
radiusR of the carbon nanotube
u=Ri V=RV w=Rw (1)

where (i, v, w) are the nondimensional displacement fields.
In the SanderKoiter elastic thin shell theory, the transverse shear st(ainsy)
are neglected (Kirchhotft o v e 0 s ki nematic hypot hesi s) .
strains((}, () and the tangential shear straingat an arbitrary radius on the shell
thickness are related to the middle surface strajns { , & ¢) and to he changes
in curvature and torsion of the middle surface of the shgllkg ki ) by the
relationshipg19]

&= & K &= @ K 9= Fo K 2
where z is the distance of the arbitrary point d¢ime thickness from the middle
surfaceof the shell accor di ng thod t2h@D/ 2)pas dhowniino n (T
Figure 1.
The middle surface strainsﬁl,(), L"J;,,(px ¢) @re nondimensional parameters. The
changes in curvature and torsion of the middle surfaceeotitiell ki, kg, ky ) are
dimensional parameters, and thaust bewritten in nondimensional formthis is
achieved by considering the radiusR. The middle surface strains and
nondimensionathanges in curvature and torsicem be written as follogf[19]
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where (&, Y., are middle surface strainsof the shell

02 90’ x90) (8\'0’ 890’
(k. k,, k_,) arethe nondimensionahiddle surface changes in curvature and togsion
d=x/ L is the nondimensional longitudinal coordinatehe shell and)= R/ L.

3.2. Force and moment resultants
The nondimensional force N(,N,,N,,0,0,) and moment /M, M)
resultants canébwritten in the followingdrm

Vs 4+ve N S _x o.os N - _(1-v). _N,
N =€, +VE), = J Ny=¢€,,+Ve = 70 N, = B Voo™ je ©))
~ - - (1-v) R’ (1-v) ~ R’
QA:R|: xx+Vk6v+ 2R k9x9 EQ\' QQZR 2 kx0)+_(k99+‘/k\/9) :3 9 (6)
Mx:];x-’_w;e:%Mx M9:~9+V];\-:%M9 stz(l_z‘/)lgxe):%Mxe (7)

where (N,, N, N, Q, Q) are the force resultants per unit length the shell
(M,,M_, M, ) are the momentesultantsper unit length of the shell = Eh/ (1 7?)
and D =ER’/(12@1 17?)).

3.3. Elastic strain energy

According b the SanderKoiter theory, the elastic strain enertlyof a circular

cylindrical shellis written in the fornj21]
1o’ " o
U :ELRn n(sxr? S, 8% qxl‘) dgd dz (8)
0 0-h/2

The elastic strain enerdy can be nondimensionaéd, leté bethe nondimensional
elastic strain energyt can beexpressed in the form

2

N (e A r Y
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whereA = EhLRandb=h/R.

3.4. Kinetic energy

The kinetic energyl’ of a cylindrical shell (rotary inertia effect being neglected) is
given by[21]
12n

—phLR”(u +V7 + W) dndo (10)

where} is the mass density of the shell and the overdot denotes a time derivative.
The time variablg can benondimensionalized by introducing a reference natural
frequencyy in the following form[20]

t=w't - ’L
(o] l/,/0 (1_ n2) RZ (11)



whereUis the nondimensional time variable.
The velocity fields {, v, w) can benondimensionalized by considering the rad®us
and the reference natural frequengyin the following form

. du C oo dy C o dw

iI=Ro i u=— V=RV V=— w=RoOW W=—
u Wl L oV a7 oW . 12)

where @, 7, w) are the nondimensional velocity fields.
Let 7 bethe nondimensional kinetic energy, which is expressed in the form

ol jzj(u W )dnde—% iﬂ(dj (dv) (?:j }dndG—ylA (13)

whereo=} ?‘?xo / E.

3.5. Linear vibration analysis (complete Sander&oiter shell

theory)

In the linear vibration analysis, the threendimensionaldisdacement fields are
expanded bwsing a doublenixed series, then the RayleigRitz method is applied

to the linearized formulation of the problem, in order to obtain approximated
eigenfunctions. The linear vibration analysis is carried out considering only the
guadratic terms in equation)(8

A modal vibration, i.e., a synchronous motion, carfdryenally written in the form

[43]

i(n.0,7)=UM.,0)f(r) ¥(n.0,7)=V(n,0)f(tr) wn.0,7)=W(n,0)f(r) (14)

where U(d, d), ¥ (d, d), W (d, d) describe the mode shape of the shell f(id
represents theommon timelaw, which is supposed to be the same for each
displacement field in the modal vibration analysis.

The moe shape I, V, W) is expanded by means of a double mixed series, in
terms of mth order Chebyshev polynomialE, (d) in the axial direction and
harmonic functions (cos dsinn ¥in the circumferential diion, in the following
form [23]

Umn,0)= ZZU T (m)cosnd V(1n,0)= ZZ V., T (n)sinnd W (n,0)= 2 Wme(n)cosnG (a5)

m=0 n=0 m=0 n

whereTm = Tm (257 1), mis the polynomials degrea,denotes the number of nodal
diameters and{ , ¥ , W ) are unknown coefficients.

m,n

3.5.1. Boundary conditions
Clamped and e SWNTsarenow analysed; the boundary conditions are imposed
by applying constraints to the unknown coefficients (, v , w ) of the

expansions15).

3.5.1.1. Clampeeclamped
Clamped clamped boudary conditions are given by3p

ii=0 5=0 =0 W, =0 h=01  (16)



where (3= O¢.L) / O
The previous conditionsnply the following equations

ZU T' ()= oZV T ()= OZW T ()= OZWme(n) 0 gi [0,2 p ni [0, N] a7

m=0 m=0 m=0

The linear algebraic system given by the equati@@sdan be solved analytically in
terms of the (:oeff|C|entsu(0 u .,V V W W W W ), forni [0, N].

Ln> " 0,n°

3.5.1.2. Fre€free
Freel free boumnlary conditions are giveny [23]

N,=0 N +M,=0 Qnagé” =0 M,=0  h=01 (19
It can be observed that the boundary conditidi@ &ppliedat the free edges of the
SWNTsare of naturatype; since ie RayleighRitz method is used fdinding the
solution, just the geometric boundary conditions have to be exactly satisfied: it
means thait is not necessary to satisye natural conditionslg) by theexpansions

(15) since they will besatisfied by the minimization of the energy of the system.

3.5.2. RayleighRitz method

The maximum number of variables needed for describing a general vibration mode
with n nodal diameters is obtained by the relatiby € My, + My + My, + 37 p),

where My, = My, = M,,) denote the degree of the Chebyshev polynomialspand
describes the number of equatiore®ded to satisfjhe boundary conditions.

A specific convergence analysis is carried out to select the degree of the Chebyshev
polynomials: degree 11 is fod suitably accuratéM, = M, = M,, = 11), see Refs.
[21-23] for the details.

For a multtmode analysis including different values of nodal diametershe
number of degrees of freedom of the system is computed by the reMigrF N,

x (N + 1)), where N represents the maximum value of the nodal diameaters
considered.

For example,n the case of a SWNT with free edgps=(0), the number of degrees

of freedom of the system witim € 2) nodal diameters is equal t8nfax= Np x (N +

1) =36 x (2 + 1) =08).

Equations {4) are inserted into the expsions of the elastic strain enerdy, eq.

(9), and kinetic energyl’, eq.(13), to compute the Rayleigh quotiegRi(q) = Umaxl

T, whereUmaX= max () is the maximum of the potential energy during a modal

vibration, 7°= 7/ ¥*, T = max (T) is the maximum of the kinetic energy

during a modal vibrationy represents the circular frequency of the synchronous
harmonic motionf ( = cos¥U q is a vector containing lathe unknown variables

(its structure depends theboundary conditions) [

T
q:|: Um,m V~m.n Vi}m,n jl (19)



After imposing the stationarity to the Rayleigh quotient, on@iob the eigenvalue
problem [3]

(~0*M+K)3=0 (20)
which furnshes approximate natural frequencies (eigenvalues) and mode shapes
(eigenvectors and eigenfunctions).
The approximate mode shape of jitb mode is given by the equatiorid), where
the coefficientsz(i VLW ) are substituted Wlth(X ) which denote the

components of theth elgenvecto q, of the equat|0n2(0). The vector function [Z]
T
Qo= Tme) 700 n.) | (21)
is the approximation of theth eigenfunction vector of the originatoblem.

4. Reduced SanderKoiter shell theory (analytical solution)
In the present section, a remkd form of the Sandekoiter shell theory is
developed. Also in this model, the transverse shear s{@inss ) are neglectedn
the present workye considersmall amplitude vibrations of CNTand a potential
energy is predominantly due tbending, torsion andongitudinal tensions.
Therefore, we can suppose ttHzoth in-plane circumferential normal sin and
tangential shear strain of the middle surface of the fhklloc ) ar e fAsmal |
di fferences of r e R0Ohandthey tagy belnegleaed. Duptoahist i t i e s
assumptionpne carreduce the number oependent variablebpth the longudinal
and the circumferential displacements can be expressed via theoraial
By assuming the linear expansions of the longitudifalcircumferential v and
radial w displacenent fields as

ii(n,0,7)=U(M)cos(nB)e ™ ¥(1,0,7) =V (1)sin(nd)e ™" w(n,0,7) = W (n)cos(nf)e™™  (22)
using the conditiolf absence of ringr{-planecircumferential) deformation effects

g, g—gw 0 (23)
andthe condition ofibsence ofangetial shear deformation effects
- it Bv
yx@,O = 89 an (24)

we can obtain the following expressions for the nondimensional varla%im:d
LEas functions of the radial dlsplaceméiﬁt

0 :@ ) = "’“"&(” (25)

4.1. Equations of motion

In order to get the adequate equation of motion in ternv&ofie cannot insert these

relations into equations of motion (1.120) of R&f)]] because of the Ar

nature of the circumferential atahgentiakshear reduced forces. Therefore, we have

to start from the following Aforceo form o
o’ _ON_ JN, BoM,
" X _ Xt = X :0 2
o “on 96 2 o6 (26)




9’y ON, oN ’M, 3 oM

_ON, W0 _ o _2 0 () 27
ot> 00 “ on p 06’ 2a[3 on (27)
W FM. M o’ M

N - -f—2-2 % =0 28
ar Vom0 B - B 208 5 (28)

where v , N,, N ) and (4, a,, i ,) are the reduced force and moment resultants
respectively.

The procedure of the equations reduction consists of a consecutive definition of the
expressions f0|7\7x0 and ZVH from the equation§26) and @7), and their substitidn

into the equation28).

Let us consider these actions in detail.
We take into account that the reduced forces and momenta have the following for

N .(n,0,7) =g, (mcos(nd)e”* N,(1,6,7) = @, (1) cos(nb)e ™" (29)
N ,(1.6,7) =, (M)sin(nd)e” M (n,6,7) = 1, (n)cos(nB)e " (30)
M,(1n,6,7)= p,(n)cos(nd)e " M ,(n,0,7)= 1, (M)sin(nf)e”" (32)
Substituting tlese relationships into equatior26{28), we obtain the relains
- Wh . b
-I/I/ZLE-aE A, Ny Mo (32)
", _o
WZ\JE+ry 11/7 - —ab o (33)
AR 4, -2 f/TZ w2b, - HWL% 0 (34)

Then we can obtaiy , 4 from equation §2) and substitute the resuitto equation
(33), the same procedure applieg tpthat issubstitutel into equaton (34).
The last step is to express tlmemainingreduced forces and momenta via the

corresponding deformatiomexcludingthe variableéfE and LE by therelations g5).

The final equation of motion for theondimensional radial displacement fiaf@ is
given by
“2"&+ n( r? '1)2b2vE (rt B(rt 1-n)+; o 2w
W’ n® 4 6(n° B A
a> Ve 12 w' B o4 4WE@
CRA(ne+l) B’ B 12n (n? 1)1- v
where the time dependence of the radial displacement is taken into account
explicitly.
The same equation can be obtained taking into accointhenbendingtorsion and
longitudinal stresse in the expression of the strain energy and expressing the
longitudinal and circumferential displacements via the radial one before the
application of thevariational procedure.

(35)

4.2. Boundary conditions
In the present section, both periodic and firee boundary conditions are
considered



4.2.1. Periodic boundary conditions
In the case of periodicdoindary conditions, equatiol35) leads to the dispersion
equation

szbzn“(nz-l)z R4 b’phin? Hn® & Nn ‘@2 hHbY-

12(n4+n2 HZI&]Z) (36)
wherej describes the number of halfaves along the CNT axis.
4.2.2. Freefree boundary conditions
Usingequation 85) and assuminy®=We"‘one obtains
et MW aa BV g W
“uAN + W @K VI B+~ 0
w2 TR (37)
where
(-0, L_(-Hn* 1A _, . a’ _ 12+n'p? _,
12(n* +1) 6(n° +1) ay n(n’+1) 120 (n2+1)a (38)
We can factorize equatio3q) as follows
S g I (39)
where the parametegsando are coupled by the relations
,ﬁg:”;'BW " - é—”;AB'CZ (40)

Thegeneral solutiof equaion (39) contairs both a harmonitype solution and an
aperiodic exponentidglype one ind; the latte one plays the role of the edgyer,
where the parametgrspecifies its magnitude. In such a case the pararaétean
effective wave number.

This equation should be completed with the firee boundary conditions af € 0)

and ¢ = 1), in terms ofhe radial displacemen .
The first boundary condition corresponds to the absence of bending m(zﬁﬂ)]cea]lt
the free edges of the carbon nanotube, which leads to the following relation

'/ 2 azW 2 T —
szo = o d—nz—\/(l’l -Hw=0 h=(0,1) (41)
The second boundary condition is related with the transverse @xroeombined

with the torsional momenMxe at the free edges of the carbon nanefwnd it leads
to the following relation

~ 1 aM@ ,OW ) oW h=(0.1
——— = — = =-)2-Vv)=—= =,
Otp a0 0= @ G (m-DC-G-=0 (0.1 (42)
It should be noted that the two remaining boundary conditions are
N =0 N,+M,=0 (43)

such conditions are satisfied thanks to the exclusion procedure discussed above.

4.3. General solution
The general solution of the egtion 39) can be written as follows

W(h) = geos(mhr,)d & exp( - g/} cdexp( (44)
where €, ¢, ¢3) and (i, Uy, Us) arenondimensiongbarameterso be determined

10



In equation 44), there are both symmetric and asymmetric constituents
corresponding to an even and odd number of-Wwalfes along thej-axis of the
CNT.

The respective values of tim@ndimensionlaparameters for the symmetric solution
(even number of longitudinal halWaves) are

C=¢ q= = d=g=7 (45)
andin the asymmetric one (odd number of longitudinal af/es)we have
C= G ag= 77 d=g=7 (46)
We can rewrite the symmetric and asymmetric solutions as follows
W, = cos[( #-1/2)] BsinR gg (h12) (47)
W, =sin[m( h-1/2)] bsin] ¢ A12) (48)

wherethe parameteb plays the role of the eddayer amplitude.

By substituting thes expressions into relationélj and @2), we finally obtain two
transcendent equations with respect to parametensd b, which must be solved
numerically.

5. Numerical results

In Tablel, effective and equivalepiarameters ofingleWalled Carbon Nanotulse

are reported 18]. These parameters are used to carry out comparisons with
experiments and MD simulationise. the model validation

The diameterD of a CNT can be directly calculated from dsirality indices(r, s)

as follows
D:S\/(r2 s &) (49)

r ands identify the chiral vector, which gives the rolling direction di@eycomb
crystal lattice of graphena;= 0.246 nm.

Therefore, a carbon nanotutmedelled as a thin circular cylindrical shidluniquely
described bythe lengthL and bythe indices 1, s), which allow to determin¢he
CNT diameterD. L and D are mutually connected by the aspect ratio L / D.

Therefore(r, s, 7) are the independent variables of a SWNT

Effective thicknes$y (nm) 0.10 + 0.15
Equivalent thicknesk (nm) 0.066
Effective Y Ey(mPg)od s 1.0+2.0
Equivalent Y&a(@mhayods 5.5
Ef fective Boi sso 0.12 +0.28
Equi valent ®oi ss| 0.19
Surface density of graphife(kg/nr) 7.718 x 10
Equivalent mass densigy(kg/nT) 11700

Table 1. Effective and equivalent parameters of the SM{#led Carbon Nanotulsq18§].

11



5.1. Validation of the numerical approach in linear field

In this section, the numerical model based on SlamdersKoiter shell theory is
validated in linear field. fle natural frequencies of the carbon nanatutesed on

this theory are compared with data available time literature experiments,
Molecular Dynamics (MD) simulations In Tables 23 all the compdsons are
reported. These comparisons show that the Sadetasr theory and the present
approach of solution give excellent results in terms of natural frequencies.
Furthermore, this proves that tequivalent parameters are corrdntthe following
subsections, detailed comments regarding this validation are given.

5.1.1. Radial Breathing Mode (RBM)

The RBM is the specific vibrational mode which is often used in order to identify
experimentally the CNgby Resonant Bman Spectroscopy.
Thismodecoreponds t o the fAy+®n=al),iawntadtudal number s
frequency can be easily calculated in the framework of the SaKdées elastic
shell theoryThe RBM appears only in the case of ffese boundary conditions.

The existing data fovibrations of CNTsaremainly focused orthe radial breathing
mode of SWNTs and MWNTBecause the spectrum of nanotubes is quite complex.
Moreover, he natural frequenc associated with theadial breathing mode of
SWNTs s inversely proportional to the tub#iameterand independen from the
length (aspect ratig) andchirality (symmetry) of the nanotube

For the radial breathing mode, the radial displacerfieltt v (d, d,  is spatially
uniform, i.e., it is independent of and d (w = w((). In this special case, the
bending stiffness of the SWNTs does not appear bectheseadial breathing
vibration does not involvéhe bending deformation and corresponds to an uniaxial
stress state of the giagne sheet

Resonant Raman Spectrosci®RRS) provides a powerful technique to study the
guantum properties of electrons goitbnons in carbon nanotubasd to determine
thar atomic structurgi.e., the chirality indicegr, s), of an isolated SWNTThe
radial breathing mode exhibistrong reonant characteristics in the Raman spectra,
becauset correspondto the symmetric ifphase motion of all the carbon atoms in
the radial direction of the tubén this configuratiorall the carbon atoms undergo
the same radial displacement

The RRS of aSWNT allows a uniqueassigment ofits chirality to be made by
measuring the RBMrequencyy rgm and using the theory of the resonant transitions.
By considering the frequency arttie intensity of the RBMmode in the RRS
spectra, it is possible to assige ttorrect chiralityr, s) to the reonant SWNT

The natural frequencies of the radial breathing vibration mode based preteat
numericalmodel are in good agreement with the experimeéRR$ resultsTable 2
presents a comparison fdifferent armcha, zigzag and chiral SWNTs under free
free boundary conditions, relative errors are less than 5%, it appears a satisfactory
accuracy.
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Natural frequency (THz) Difference %

(r,s) CSKT1i Present mode RRSi Ref. [4]

(8,7) 6.905 7.165 3.63
(10, 5) 6.785 7.105 4.50
(11, 4) 6.669 6.865 2.85
(14, 1) 6.177 6.295 1.87
(18, 0) 5.025 5.276 4.76
(17, 2) 4.964 5.216 4.83
(16, 4) 4.895 5.066 3.37
(15, 6) 4.788 4.947 3.21
(11, 11) 4,711 4.917 4.19
(19, 1) 4.594 4.797 4.23

Table 2. Natural frequencies thfe radial breathing modg= 0,n = 0): comparisons between the

complete Sandeikoiter theory CSKT) and theResonant Raman Spectroscopy (RRS).

Natural frequency (THz) Difference %
(r,s) = (5, 5) | G=5.26
Clampedi Free CF

@, n) CSKT1 Present mode MDSi Ref. [8]
0, 1) 0.217 0.212 2.36
(1, 1) 1.071 1.043 2.68
(2,1) 2.411 2.340 3.03

Clampedi Clamped CC
@, n) CSKT1 Present mode MDS1 Ref. [8]
(1,1) 1.018 0.975 4.41
(2,1) 2.192 2.105 4.13
(3,1) 3.529 3.404 3.67

(r,s) = (5, 5) | 6=10.34
Clamped Free CF

@, n) CSKT1 Present mode MDS1 Ref. [8]
0, 1) 0.058 0.060 3.33
(1,1) 0.338 0.344 1.74
(2,1) 0.856 0.864 0.93

Clampedi Clamped CC
@, n) CSKT1 Present mode MDS1 Ref. [8]
(1,1) 0.335 0.336 0.30
(2,1) 0.819 0.818 0.12
(3,1) 1.428 1.417 0.78

Table 3 Natural frequencies of the bedike modes § = 1): comparisonbetween the complete
SandersKoiter theory CSKT) and the Molecular Dynamics Simulatiohd§S).

5.1.2. BeamLike Modes (BLMs)

The accuracy of the present numerical model is now assesseeaiotike modes
(n = 1) by means of comparisons with MdimulationsandFE analyses

The natural frequecies of the bearhike modesobtained with the presé numerical
model are in good agreement with thDS results The comparisons shown in
Table 3for an armchair (55) SWNT with different aspect ratiasunder clamped
free and clampedlampedboundary conditionslenoterelative errors smaller than
5%.

13



In particular,in Table 3it may be seen that the perceattference betweerthe
present theory and MD$gr the first four flexural modeslecreases as the length of
the nanotube increases., when the influence of the boundary conditions on the
naturalfrequencies is reduce@urthermore, the natural frequencies under clamped
free boundary conditions are greater than those under clactgre@ed boundary
conditions for he correspondent vibration modes.

5.2. Dispersion curves of the analytical approach

In this section the accuracy of thanalytical model based on theduced Sanders
Koiter theoryis studied. The equivalent parameters of Table 1 are used and
numerical solutios of the transcendent equations fargzag (10, 0) SWTs of
various lengths arebtained.

12 4

—4=L=3.0nm

10 1 Reduced Sanders- —8—1=6.0nm

Koiter theory (51) L=[10.0nm

8 4

(102 Hz)

0 1 2 3 4 5 6

j
Figure 2. Eigenfrequencies of the first modes forziggag (10, 0) SWNT. Reduced Sandkrster
theory(Eq. (51). Periodic boundargonditionsn=2.f#8-0 L= 3. O-y-@lms 6i. 0z wm; A
L=10.0 nm

In Figure 2 the eigenfrequencieslculated with the dispersion relatioB6), are
shown; different lengthsare consideredhe boundary conditions ageeriodic j is

the number of half waves along the CNT axis ard2 denotes the number of nodal
diameters. From this figure, it is confirmed that the natural frequency of a
vibrational mode j( n) increases witlthe number of longitudinal half waves and
decreass with increasintgngth.

It is significant to compare theesuls of the dispersion relatior8§), from the
redued SanderKoiter theory (RSKT), with those corresponding to the exact
solution Equation 1.120 of Ref.2[]). This may besee in Figure 3 From the
comparisonsit may beobservé that theexact solution and the RSKT are in good
agreementn the case of a small number of half waves along the CNT ja&is (3 )
when the ring and tangential shear deformation effects are small. On the other hand,
the differencencreagswith j.

In Figure 4, tle dependence of the eigenfrequencies of thefbrst modes on the
ratio U= R/ L) of a CNT having ¢, s) = (10, 0)is shown the eigenfrequencies
decrease as the CNT length increases. In the Urit ,Ghe eigenfrequency is the
same for any wave nurabj, because it corresponds to the eigenfrequencytluha
circular ring,in the followingform [24]
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_on(r-1)

=22 4
o ,/12(n2 +1) (50)

—&— Exact solution of
(1.120) Ref. [38]

~f—Reduced Sanders-
. L=6.0nm Koiter theory (51) nz2

F(10%2 Hz)

14 T T T T T 1
0 1 2 3 4 5 6

]
Figure 3. Dispersion curvedsr thezigzag (10, 0) SWNTL=6.0nmnh= 28-0 ,A exact sol uti on
(Eg. (1.120)Re. [20] )-y-0 i r e d u c-Koiter tBemry E@ (58.

10 ~

Reduced Sanders-
Koiter theory (51)

£(10%2Hz)

u T T T T 1
0.00 0.05 0.10 0.15 0.20 0.25

Figure 4. Dependee of the eigenfrequencies on traio (U= R/ L). Zigzag (10, 0) SWT.
Reduced Sandetsoiter theory (Eq. (5)). Periodic boundary conditione.=2.#8-0 j= 1y-0 jfi
= 27 -0 fi=3;fx0 j=4

5.3. Comparison between the models

In this section, the analytical and numerical models, based on the reduced -Sanders
Koiter theory (RSKT) and the complete Sanel¢oiter theory (CSKT), are
compared.

RSKT can be applied to the calation of the eigenfrequencies of CNT vibrations
with Aangul ar nOi [24.&hebpproximationsbtkerREKT with
respect to theCSKT take into account theelative smallness of the bending and
torsion stiffness with respect to those of tension and shé&#s involves acorrect
description of longvave modesthe range bRSKT aplicability can be extended
for an increased length of CNT

The resultsof the RSKT and theCSKT for different lengts and boundary
conditionsof a (10, O)SWNT are shownn Figures 56. From the comparisonst
can be firstly noted that the difencesdetweerRSKT and CSKTare significanfor
short CNB in a large range of longitudinalaveform numbersj, as expected
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Indeed, in this case the effecbf the circumferentialand tangential shear
deformations is not negligible. Furthermore, whenlérgth of the CNT increases,

differences betweeRSKT and CSKT decrease, because the influence of the

boundary conditions on the natural frequeaceduces.
In Figure 7 the firstsix mode $iapes of gr = 10,s= 0,6 = 12.8) SWNTwith free
edges for theircumferential wavenumben E 2) are reportedThese mode shapes
are obtained by using the equivalent parameteis, @, }) of Table 1. The modes (

=0,n=2)and(=1,n=
mode (uniform vibat i on)

2)

and
length), respectively (Ref2f)]). The modesj(= 2,n = 2) (wave length) and € 4,n

= 2) are symmetric, the modgs<(3,n = 2) and | = 5, n = 2) are asymmetric, with
respect to the central trewersal section of the CNT. Such graphical representation
of modes could be useful for interpreting the previous results and comparisons.

correspond

to

t he

a)

8 4

== CSKT

=& RSKT

F{10%2 Hz)

free

edges

1] 1 2
I

3

4

5

b)

16

1.5 1

F(102Hz)

—+—CSKT

=f=RSKT

free
edges

1
4 5

Figure 5 Natural frequenciegigzag (10, 0) SWNTn = 2. Fee edgesi§ -0
( C SyKoTreducediSandetsoiter theory (RSKT)a)L = 3.0 nm; b)L = 10.0 nm.
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