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Abstract 

Neurotrophins (NTs) belong to a family of growth factors that play a critical 

role in the control of skin homeostasis. NTs act through the low-affinity 

receptor p75NTR and the high-affinity receptors TrkA, TrkB and TrkC. Here we 

show that dermal fibroblasts (DF) and myofibroblasts (DM) synthesize and 

secrete all NTs and express NT receptors. NTs induce differentiation of DF into 

DM, as shown by the expression of α-SMA protein. The Trk inhibitor K252a, 

TrkA/Fc, TrkB/Fc or TrkC/Fc chimera prevents DF and DM proliferation. In 

addition, p75NTR siRNA inhibits DF proliferation, indicating that both NT 

receptors mediate DF proliferation induced by endogenous NTs. Autocrine NTs 

also induce DF migration through p75NTR and Trk, as either silencing of 

p75NTR or Trk/Fc chimeras prevent this effect, in absence of exogenous NTs. 

Finally, NGF or BDNF statistically increase the tensile strength in a dose 

dependent manner, as measured in a collagen gel through the GlaSbox device. 

Taken together, these results indicate that NTs exert a critical role on fibroblast 

and could be involved in tissue remodelling and wound healing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 Neurotrophin (NT) family comprises a group of functionally and 

structurally related proteins that play a fundamental role in the survival and 

differentiation of neuronal cells (Ernsberger et al, 2009). NT family includes 

nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), 

neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). These proteins exert their 

effects through the binding and activation of two kinds of transmembrane 

receptors, the low-affinity receptor p75NTR, which interacts with all of the NT 

with the same affinity, and the high-affinity receptors Trk (TrkA, TrkB and 

TrkC), which bind a particular NT (Snider, 1994). NTs are synthesized and 

released by many skin cells that also express NT receptors, thus creating a 

complex network between the different cellular populations (Botchkarev et al, 

2006). Therefore, in skin, NTs act not only as trophic molecules for skin 

innervation but also as growth/survival factors for skin cells, being involved in 

different autocrine and paracrine functions (Peters et al, 2007).  

Fibroblasts (DF) represent the main cellular component of the dermis, 

and are implicated in the homeostatic maintenance of skin extracellular matrix 

(ECM). They are metabolically active cells and their role is associated with the 

synthesis and secretion of collagens, proteoglycans, fibronectin and 

metalloproteases. Dermal fibroblasts play a role in different physiopathological 

processes in the skin, including wound healing and fibrosis (Werner et al, 

2007; Krieg et al, 2007). After injury, different factors, in particular TGF-β1 

(Desmoulière et al, 2003), promote DF differentiation into myofibloblasts (DM), 

characterized by the expression of α-Smooth Muscle Actin (α-SMA) (Hinz, 

2007), which is therefore used as DM differentiation marker. DM are the key 

effectors in injury/repair processes and fibrosis, as they control ECM 

component deposition, tissue contraction and wound resolution (Hinz, 2007), 

and their subsequent apoptosis is essential for the tissue re-epithelization 

(Desmoulière et al, 2005).  

While the expression and function of NTs and their receptors in 

keratinocytes and melanocytes were extensively studied (Marconi et al, 2003; 

Marconi et al, 2006), little is known on the correlation between NTs and 



fibroblasts. In the corneal and muscular systems, NGF promote fibroblast 

migration and differentiation into DM (Hasan et al, 2000; Micera et al, 2007; 

Poduslo et al, 1998).  

In the present work, we report that DF and DM express all NTs and their 

receptors. We also show that NTs promote fibroblast survival, differentiation 

and migration. Finally, NTs can stimulate fibroblast contraction in a 3D collagen 

system.    

 

Material and methods 

 

Cell cultures  

Human dermal fibroblasts were obtained by explant culture from foreskin and 

grown in Dulbecco's modified Eagle's medium (DMEM) containing 5% fetal 

bovine serum S. TGF-β1 (1 ng/ml, Sigma, St. Louis, MO) was added in 

fibroblast secondary culture for six days to promote differentiation into 

myofibroblasts. The myofibroblast phenotype was check by immunostaining of 

α-SMA.  

 

Immunofluorescence  

Human dermal fibroblasts were plated into chamber slides and stimulated or 

not with 100ng/ml TGF-β1 or 100ng/ml recombinant NT (NGF, BDNF, NT-3 or 

NT-4) (Sigma) in medium with BSA 0,1%. After six days, cell were washed in 

PBS and fixed in situ in 3,6% formaldehyde for 20 minutes. After washing, 

cells were permeabilized by incubation for 5 minutes with 0.5% Triton X-100, 

for 15 minutes with 0.5% bovine serum albumin and 5% goat serum, and then 

for 60 minutes at 37°C with the mouse monoclonal α-SMA antibody (1:400, 

Sigma, St Louis, MO). After a brief washing, the cells were incubated for 60 

minutes with the secondary antibody anti-mouse AlexaFluor 488 (1:130 

dilution) (Molecular Probe Inc, Eugene, OR, USA). Fluorescent specimens were 

analyzed by a confocal scanning laser microscope (Leica TCS SP2; Leica, 

Heerbrugg, Switzerland). 

 



NT ELISA assay  

Dermal fibroblasts and myofibroblasts were plated and cultivated in 60 mm2 

tissue culture petri dishes. The medium was changed with 2 ml of medium with 

BSA 0,1% 24 hrs after seeding. Cells were lysed in 100 µl of RIPA buffer pH 

7.4 (50mM Tris-HCl, 150mM NaCl, 1% deoxycolate, 1% TritonX-100, 0.1% 

SDS, 0.2% sodium azide) and conditioned medium were collected and 

storaged with protease inhibitor. Media were store for 48 hrs at –80°C. The 

NGF, BDNF, NT-3 and NT-4 quantitation was performed by a two-site enzyme 

immunoassay (QuantikineTM, Promega Corporation, Madison, Wisconsin, USA) 

according to manufacturer instructions. The samples concentration was 

determined by absorbance at 540 nm against a known standard of 

recombinant human NT. NT protein levels are given in pg/mg of cell lysate and 

results are expressed as mean ± SEM of triplicate from three different 

experiments. 

 

Flow Cytometry Analysis 
 
About 100,000 dermal fibroblasts and myofibroblasts were plated and 

cultivated in 60 mm2 tissue culture petri dishes. After 24 hrs from treatment 

with 200nM K252a, BrdU (10 µM) was added in each plate. Afters 48 hrs from 

tratment with 200nM K252a, cells were trypsinized and BrdU incorporation and 

DNA amount were analysed with BrdU Flow Kits (BD Biosciences Pharmigen, 

San Diego, CA). Results are calculated as the mean ± SD of three different 

experiments.  

 

Western blotting analysis  

Cells were washed with PBS and lysed on ice, for p75NTR, α-SMA, cyclin B and 

procaspase-3 detection in lysis buffer pH 7.5 (NaCl 150mM, MgCl 15mM, EGTA 

1mM, HEPES 50mM, Glicerolo 10%, Triton 1%), for Trks detection in lysis 

buffer pH 7.4 (50mM Tris-Hcl, 1% NP40, 0.25% sodium deoxycholate, 150mM 

NaCl, 1mM EGTA,  1mM Na3VO4, 1mM NaF) containing protease inhibitors, as 

described previously (Marconi et al, 2003). Total proteins (20 µg) were 

analyzed under non reducing conditions on 7% polyacrylamide gels for 



p75NTR, under reducing condition on 10% polyacrilammide gels for Trk 

receptors and α-SMA and under reducing condition on 12% polyacrilammide 

gels for cyclin B and procaspase-3. The proteins were blotted onto 

nitrocellulose membranes. To verify equal loading of total proteins in all lanes, 

the membranes were stained with Ponceau Red. The blots were blocked for 2 

hrs in blocking buffer (PBS buffer, pH 7.4 with 0.2% Tween 20 and 5% nonfat 

milk) and incubated with mouse monoclonal anti-human p75NTR antibody 

(1µg/ml Upstate Biotechnology, Lake Placid, NY), rabbit polyclonal anti-TrkA 

(1:1000, Upstate Biotechnology, Lake Placid, NY), rabbit polyclonal ant-TrkB 

(1:1000; Upstate Biotechnology, Lake Placid, NY), goat polyclonal anti-TrkC 

(1:750; Upstate Biotechnology, Lake Placid, NY), mouse monoclonal anti a-

SMA (1:3000; Sigma, St Louis, MO), anti-cyclin B mouse monoclonal (1:1000; 

BD Biosciences Pharmingen, San Diego, CA, USA), anti-caspase-3 rabbit 

polyclonal (1:1000; Cell Signaling Technology, Danvers, MA, USA), mouse 

monoclonal anti-β-actin (1:1000; Sigma, St Louis, MO) and mouse monoclonal 

anti-vinculin antibody (1:400; Sigma, St Louis, MO), overnight at 4°C. Then 

membranes were washed in PBS/Tween 20, incubated with peroxidase-

conjugated goat anti-mouse or goat anti-rabbit (1:3000; Biorad, Hercules, CA) 

or donkey anti-goat (1:5000; Santa Cruz Biotechnology Inc, Santa Cruz, CA) 

antibodies for 45 min at room temperature. Finally, membranes were washed 

and developed using the ECL chemiluminescent detection system (Amersham 

Biosciences UK Limited, Little Chalfont Buckinghamshire, England). 

 

 

Reverse transcription and polymerase chain reaction (RT-PCR)  

Total cellular RNA was extracted from cultures using TRI Reagent method 

performed as described by Sigma. One microgram of total cellular RNA 

extracted was reverse-transcribed and amplified as described (Pincelli et al, 

1994). To verify the integrity of the RNA in each sample, the α-actin mRNA 

was amplified by RT-PCR. Nucleotide sequences of the oligomers used were as 

follows: p75NTR :  



TrkA: 5’-ggctcctcgggactgcgatg-3’, 5’-caggagagagactccagagcg-3’ (nucleotides 

214-233 and 459-479, fragment 266 bp); TrkB: 5’-gacactcaggatttgtactgcc-3’, 

5’ tccgtgtgattggtaacatgtatt-3’ (nucleotides 990-1011 and 1481-1504, fragment 

515 bp); TrkC: 5’-ctctcttccgcatgaacatc-3’, 5’-tcttctggtttgtgggtcac-3’ 

(nucleotides 748-767 and 1416-1435, fragment 688 bp); α-actin: 5'-

tggatgatgatatcg ccgcgctcg-3', 5'-cacataggaatccttctgaccca-3' (nucleotides 75-98 

and 213-235, fragment 161 bp). The PCR was carried out at least three times 

for each sample. No reverse-transcribed mRNA and buffer without template 

were used as controls.  

 

siRNA transfection of fibroblasts 

About 100,000 cells/well, 50,000 cells/well, 1500 cells/well were plated 

respectively on 60 mm2 petri dishes, 12-well plates and 96-well plates in 

penicillin/streptomycin free medium. 24 hours later cells were transfected with 

100nM p75NTRsiRNA (Dharmacon Inc, Lafayette, CO, USA) or scrambled RNAi 

as mock control, combined with Lipofectamin 2000 and Opti-MEM (both from 

Invitrogen Corporation) as datasheet suggests. Fibroblasts were transfected 

twice and used for MTT, migration assay and to evaluated cyclin B and 

procaspase-3 expression by Western blotting. p75NTR protein level was also 

detected by Western blotting, as described above. 

 

MTT assay 

Dermal fibroblasts and myofibroblasts were plated in 96-well tissue culture 

plate (2500 cells/well). 72 hours after seeding, cells were treated with 

100ng/ml human recombinant NT (Sigma-Aldrich, St Louis, MO) or 2µg/ml 

recombinant human TrkA/Fc, 1 µg/ml recombinant human TrkB/Fc and TrkC/Fc 

chimeras (R&D Systems, Minneapolis, MN, USA), 200nM K252a, or 100nM 

p75NTR siRNA (Dharmacon Inc, Lafayette, CO, USA), in medium with BSA 

0,1%, for 24, 48 and 72 hours. Proliferative cells were detected by incubating 

with MTT (Sigma-Aldrich, St Louis, MO) solution at 37°C for 4 hours. They 

were solubilizated with DMSO and the formazan dye formation was evaluated 

by scanning multiwell spectrophotometer at 540 nm. The results are expressed 



as optical density units (OD) or as viability percentage respect of control. 

Results are calculated as the mean ± SD of three different experiments.  

 

Migration assay 

A total of 200,000 dermal fibroblasts were plated on 12-well tissue culture 

plates and then treated with 5 µg/ml mitomycin C for 1 hour and 30 minutes. 

Subsequently, the cells were washed three times in serum-free medium and a 

line for each well were drawn along the cell monolayer with a sterile plastic tip. 

Plates were washed twice with serum-free medium to remove all detached 

cells and incubated in medium with BSA 0,1% with 100ng/ml TGF-β1, 

100ng/ml human recombinant NT (Sigma-Aldrich, St Louis, MO), 2 µg/ml 

human recombinant TrkA/Fc, 1 µg/ml human recombinant TrkB/Fc and TrkC/Fc 

chimeras (R&D Systems, Minneapolis, MN, USA), 200nM K252a, or 100nM 

p75NTR siRNA (Dharmacon Inc, Lafayette, CO, USA). Serum-free medium, 

water (diluent) or water containing Lipofectamin 2000 and Opti-MEM (mock) 

were used as controls. Cells were monitored at 24 and 48 hours from 

stimulation. The result of each experiment was expressed as the mean of 

migrated cells from three different areas. The final results are expressed as the 

mean±SD of three different experiments.  

 

Tensile strength measurement 

Contractile strengths were measured with the GlaSbox® device as already 

described by Viennet (Viennet et al, 2005). This box contains 8 rectangle 

plates in which living dermal equivalents (LDE) are placed and maintained by 2 

thin flexible silicium blades with a grid in its inferior part on which LDE attach 

after a few minutes polymerisation. LDE are composed of 6 volumes of 1.76 

concentrated DMEM, 3 volumes of 2mg/ml type I collagen and 1 volume of a 

8.105 fibroblasts/ml suspension. During contraction of the LDE, the gold 

covering blades get out of shape inducing changes in the electrical resistance 

measured by a Wheastone bridge. Variations are registered real time for 24 

hours by a computer and converted as milliNewton (mN). The effects of 

neurotrophin concentrations (10–100ng/ml; Sigma-Aldrich, St Louis, MO) were 



examined in triplicate and positive (2.5ng/ml TGF-b1, Sigma-Aldrich, St Louis, 

MO) and neutral control (DMEM alone) were performed. 

 
Statistical Analysis 

Results from each experiments were analysed by Student’s T-Test, obtaining a 

p-values refered to the mean comparison between treated samples and its 

controls in each triplicate experiment.  

 

Results 

 

DF and DM synthesize and secrete all NTs and express NT receptors 

It was previously demonstrated that epidermal cells express NT and their 

receptors at different levels and that NTs are implicated in different 

physiopathological processes in the skin (Botchkarev et al, 2006). In order to 

evaluate the role of these proteins also in DF and DM, we have analyzed their 

production in fibroblasts with or without treatment with TGF-β1 (Figure 1a-b).  

We have observed that DF and DM synthesize and release NTs, although at 

different levels, as shown by ELISA Assay (Figure 1c-1f). Overall, the more 

differentiated DM release higher levels of NTs than DF. In particular, DF and 

DM synthetize highest levels of NT-3 and NT-4, while they release NGF, NT-3 

and NT-4 in similar amounts. BDNF is expressed at low levels in both cell 

lysates and in the medium. 

In order to evaluate whether DF and DM could also be the target of NTs, we 

have analyzed NT receptor expression at the mRNA and protein levels. Both DF 

and DM express TrkA, TrkB, TrkC and p75NTR mRNA, as shown by RT-PCR 

(Figure 1g). NT receptor expression is also confirmed by Western Blotting 

(Figure 1h). DF express TrkA protein at higher levels than DM, while TrkB and 

p75NTR are expressed at higher levels in DM than in DF. TrkC protein is 

slightly more expressed in DM than in DF. These findings suggest that DF and 

DM could participate in the NT network not only by releasing NTs but also by 

responding to their action.  

 



NTs maintain DF and DM viability through Trk receptors. 

Given that DF and DM express NT receptors and release NTs, we first analyzed 

the effect of endogenous and exogenous NT on DF and DM proliferation. When 

NT were added (100ng/ml) to fibroblast and myofibroblast cultures, no effect 

was observed on their proliferation up to 72 hrs (Figure 2a-b). Likely, autocrine 

release of NT could suffice for proliferation of DF and DM. To confirm this 

hypothesis, we treated DF and DM with either K252, an inhibitor of Trk 

phosphorylation or specific TrkA, TrkB or TrkC/Fc chimeras that act as soluble 

receptors to prevent binding of NTs to their membrane receptors. Addition of 

TrkA/Fc or TrkC/Fc, but not of TrkB/Fc statistically reduced DF proliferation 

from 24 up to 72 hrs, as compared to control (Figure 2c). This is consistent 

with the negligible amount of BDNF protein released by DF and with the almost 

absence of TrkB protein in DF (see figure 1f and g). Similarly, K252 statistically 

diminished DF proliferation at all time points. Moreover, all Trk chimeras 

statistically reduced DM proliferation from 24 up to 72 hrs, as compared to 

control (Figure 2d). In these cells, also TrkB/Fc statistically reduced DM 

proliferation, in agreement with the higher expression of TrkB protein in DM 

with respect to DF (see figure 1f and g). Similarly, K252 statistically diminished 

DM proliferation at 48 and 72 hrs. 

To better understand DF and DM reduced viability, we treated these cells with 

K252a and analyzed cell cycle and caspase-3 activation after 48 hrs (Figure 

2e-f). Inhibition of Trk receptor signalling induced cell cycle arrest in G0-G1 

phase. At the same time, blocking Trk resulted in activation of caspase-3 both 

in DF and DM.  

 

NTs maintain DF viability through p75NTR. 

Because p75NTR can act as a co-receptor that refines Trk affinity and 

specificity for NT, we investigated its role in DF proliferation. To this purpose, 

we silenced p75NTR by siRNA (100nM) (Figure 3a) and evaluated DF 

proliferation. p75NTR siRNA-treated DF proliferated to a significantly lesser 

extent, as compared to DF treated with scrambled siRNA (Figure 3b). p75NTR 



siRNA-treated DF underwent G2-M arrest, as shown by increased cyclin B 

expression at 48 hrs, while caspase-3 was not activated (Figure 3c).  

These findings indicate that p75NTR co-operates with Trk receptors to mediate 

DF proliferation induced by autocrine NTs.  

 

Neurotrophins promote DF differentiation into DM 

It has been shown previously that NTs mediate differentiation in neuronal and 

non-neuronal cells (Spittau et al, 2010), and NGF can induce a-SMA expression 

in lung and skin fibroblasts, with an effect comparable to that of TGF-β1 

(Micera et al, 2006). 24 hrs after treatment with NGF, BDNF, NT-3 or NT-4, α-

SMA expression was induced to the same extent as after stimulation with TGF-

β1 (Figure 4a). α-SMA protein expression was maintained for six days after 

addition of all NTs with a pattern similar to that induced by TGF-β, (Figure 4a-

b). This finding indicates that NTs induce the differentiation of DF into DM at 

early and later points, with the same TGFβ1 kinetics.  

 

Neurotrophins induce DF migration 

Fibroblast migration plays an essential role in several physiopathologic 

processes at the skin level, including wound healing (Walter et al, 2010) and 

melanoma progression (Wu et al, 2010). Because NTs are involved both in 

wound healing (Sun et al, 2010) and in melanoma cell migration (Truzzi et al, 

2008), we wanted to investigate the migratory capacity of fibroblasts after 

treatment with NTs (Figure 5a). NGF, BDNF, NT-4 or NT-3 stimulated DF 

migration in a statistically significant fashion both at 24 and 48 hrs, as 

compared to diluent alone (Figure 4a). NGF was shown to act as the strongest 

migratory stimulus, effect being more potent than TGF-β1, as shown by the 

number of migrated cells in the scratching assay (Figure 5b).  Addition of 

K252a, TrkA/Fc, TrkB/Fc, TrkC/Fc chimeras statistically prevented DF migration 

as compared to control, in absence of exogenous NT (Figure 5c). This was 

shown by the reduction of migrated cells in the scratching assay (Figure 5d). 

Since p75NTR contributes to the high affinity and cooperates with Trk 

receptors in several activities, we tested the role of p75NTR in NT-induced DF 



migration. Silencing p75NTR mRNA markedly reduced p75NTR protein 

expression (Figure 6a) and significantly inhibited DF migration, as shown by 

the number of migrated cells (Figure 6b) in the scratching assay (Figure 6c). 

This indicates that autocrine and paracrine NTs promote DF migration through 

the combined activity of NT receptors.  

 

NGF and BDNF stimulate dermal fibroblast contraction in vitro  

In order to evaluate DF contraction we have used GlaSbox®, a previously 

described device that measures tensile strength generated by human dermal 

fibroblasts embedded in a collagen gel to create a Living Dermal Equivalent 

(LDE) (Viennet et al, 2005).  All generated curves exhibit 2 distinct phases: the 

first 8 hrs phase shows a fast increase of the contractile strength reaching a 

maximum and then a 8h to 24h phase with a maximal and constant contractile 

strength. 

We analyzed the effect of NTs on the contractile strength in the GlaSbox. NGF 

significantly stimulated contractile strength in a dose dependent manner, as 

compared to controls, while only 100ng/ml dose was as effective as TGF-β1, 

used as a positive control (Figure 7a). The maximal strength was reached 

around 8-10 hrs with 100ng/ml and 50ng/ml. BDNF significantly stimulated the 

contractile strengths at 8 hrs only with 100ng/ml dose, although it was less 

effective than NGF at the same dose (Figure 7b). Contractile properties of NGF 

and BDNF were observed in the collagen gel, after extraction of the LDE from 

the GlaSbox® (Figure 7c and d). By contrast NT-3 and NT-4 failed to exert any 

effect on the contractile strength (Figure 7e, f, g and h). 
 
 
Discussion 

 

NTs form an intricate system at the epidermal level where they are released by 

several cell types which in turn express NT receptors (Raap and Kapp, 2010; 

Botchkarev et al, 2006). Fibroblasts participate in a number of critical functions 

in the skin, such as tissue remodeling and fibrosis (Werner et al, 2007; Krieg 

et al, 2007). Furthermore, fibroblasts play an important role in the skin 



immune system, as they promote the migration of dendritic cells and support 

the expansion of IL-17 producing T cells (Saalbach et al, 2010; Albanesi et al, 

2009; Schirmer et al, 2010). Fibroblasts together with the ECM are also 

essential for tumor invasion and metastasis (Li et al, 2009). In this work, we 

demonstrate that NTs, by modulating several fibroblast functions, extend their 

influence also in the dermis, making the skin NT network more and more 

complex.  

We have shown that DF and DM synthesize and release all NTs and express 

both the high affinity receptors, TrkA, TrkB and TrkC, and the low affinity 

receptor p75NTR. In particular, NGF and NT-3 are secreted at higher levels 

than other NTs, and DM produce higher amounts of NT than DF.  

It has already been shown that NGF is released by damage tissues (Hattori et 

al, 1996). In this context, metabolically active DM could release NGF and NT-3 

and stimulate tissue remodeling. Interestingly, NGF and NT-3 also induce 

keratinocyte proliferation (Marconi et al, 2003), suggesting that these NTs act 

on the two most important cells involved in wound healing. While TrkA is more 

expressed in DF than in DM, p75NTR is almost exclusively expressed in DM, in 

agreement with data reported for the corneal system (Micera et al, 2006). It is 

conceivable that NGF and NT-3 stimulate the differentiation of DF into DM 

through TrkA and initiate tissue remodeling. On the contrary, in DM, p75NTR 

could act as death receptor, as demonstrated in other systems, where p75NTR 

activation contributes to DM elimination in the final phase of the wound healing 

process (Desmoulière et al, 1995). Consistently, p75NTR-mediated apoptosis 

of DM is also necessary to prevent hepatic fibrosis (Kendall et al, 2009). 

Exogenous NTs per se fail to stimulate DF and DM proliferation, possibly 

because endogenous production of NTs is sufficient to normal cell proliferation 

and survival. However, blocking their signaling pathway, through inhibition of 

Trk receptors, in absence of exogenous NTs, strikingly reduces DF and DM 

proliferation, in agreement with previous reports where the use of chimeric 

receptor that block Trk activity, inhibit cell proliferation in melanoma cell lines 

(Truzzi et al, 2008). In particular, inhibiting Trk receptor signalling induces DF 

and DM G0-G1 arrest, and caspase-3 activation, further confirming the 



importance of NT in maintaining DF and DM viability through Trk receptors. On 

the other hand, blocking p75NTR promotes G2-M arrest, demonstrating that in 

this context p75NTR only acts as Trk co-receptor. 

Interestingly, NTs also promote DF differentiation into DM, by inducing α-SMA 

expression, indicating that NTs could have a functional role in the fibro-

myofibroblasts system. In fact, it has been shown that NGF induce fibroblast-

like keratinocyte differentiation into DM (Micera et al, 2001; Micera et al, 

2007a), their contraction in 3D collagen matrix (Micera et al, 2001) and the 

expression of MMP-9 (Metalloprotease-9) in keratoconjunctivitis-derived 

fibroblasts (Micera et al, 2007b) and different works show the applicative 

possibility of this NGF capacity (Landi et al, 2003; Aloe et al, 2008; Sun et al, 

2010).  

DF migration and contractile strength are critical for matrix remodeling (Rhee, 

2009). We have demonstrated that all NTs promote DF migration while NGF, 

and BDNF promote DF contractile activity. Therefore NGF and BDNF, produced 

by dermal and epidermal cells, could be key regulators of the biomechanical 

properties in the dermis. Taken together, these results add a further functional 

element to the complex network created by NTs in the skin. In particular, NTs 

seem to participate in a cross talk between dermal and epidermal cells, 

pointing to a fundamental role in both physiologic conditions and diseases. 
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Legends  

 

Figure 1. Fibroblasts and myofibroblasts synthetize and secrete all NT 

and express NT receptors. (a) DF and DM in culture. DM were obtained by 

maintaining DF in TGF-β1-additioned medium. (b) α-SMA expression was 

evaluated by direct immunofluorescence in both DF and DM. (c-f) NGF, NT-3, 

NT-4 and BDNF protein level of both DF and DM were evaluated by ELISA 

assay in cell lysates and conditioned medium, as describe in Materials and 

Methods. Data are expressed as the mean ± SEM of triplicate from three 

different experiments. (g) TrkA, TrkB, TrkC and p75NTR mRNA were evaluated 

by RT-PCR and ethidium bromide staining. β-actin mRNA was used as an 

internal control. Control lanes (1, 2) represent amplification with no template 

and RNA without reverse transcription, respectively. (h) TrkA, TrkB, TrkC and 

p75NTR protein expression was studied by Western blotting in DF and DM, as 

described in Materials and Methods. β-actin was used as control.  

 

Figure 2. Neurotrophins support fibroblast viability through Trk 

receptors. (a-b) DF and DM were plated onto 96-well tissue culture plate and 

stimulated with NGF, BDNF, NT-3 or NT-4 (100ng/ml). MTT assay was 

performed at 0, 24, 48 and 72 hours later. (c-d) DF and DM were plated onto 

96-well tissue culture plate and treated with recombinant human TrkA/Fc 

(2µg/ml), TrkB/Fc, TrkC/Fc chimeras (1µg/ml), k252a (200nM) or diluent 

alone. MTT assay was performed 24, 48 and 72 hrs later. (e) DF and DM were 

treated with K252a (200nM) or diluent alone and after 24 hrs BrdU was added 

in each plate. After 48hrs from stimulus with K252a, control and treated cells 

were trypsinized and stained with.  Cell cycle was analyzed by flow cytometry; 

one representative experiment is shown. (h) DF and DM were treated with 

K252a (200nM) and lysed after 48 hrs. Cyclin B and Procaspase-3 were 

evaluated by Western Blotting. β-actin was used as internal control.  

 

 

 



Figure 3. Neurotrophins support fibroblast viability through p75NTR. 

(a) About 100,000 DF were plated onto 60 mm2 petri dishes and transfected 

with 100nM p75NTRsiRNA or scramble siRNA on the next day. p75NTR 

expression was controlled 24 and 48 hrs later by Western blotting. (b) About 

1500 DF were plated onto 96-well tissue culture plate and transfected with 

100nM p75NTRsiRNA or scramble siRNA on the next day. MTT assay was 

performed 24 and 48 hours later. Data are expressed as mean +/- SEM of 

triplicate from three different experiments. (c) About 100,000 DF were plated 

onto 60 mm2 petri dishes and transfected with 100nM p75NTRsiRNA or 

scramble siRNA on the next day. Cyclin B and procaspase-3 expression was 

evaluated by Western Blotting 24 and 48 hrs later. β-actin was used as internal 

control.   

 

Figure 4. Neurotrophins induce fibroblast differentiation into 

myofibroblast. DF were stimulated or not with TGF-β1 (100ng/ml) or NGF, 

BDNF, NT-3 and NT-4 (100ng/ml). (a) 24, 48 hrs and six-day after treatment, 

cells were lysed and α-SMA protein expression was evaluated by Western 

blotting. Vinculin was used as internal control. (b) DF were stimulated as 

previously described and six-day later, cells were fixed with formalin and 

stained with FITC conjugated antibody anti-α-SMA. Nuclei were stained with 

DAPI. Cells were analyzed by confocal microscopy. Bar, 15 µm 

 

Figure 5. Neurotrophins stimulate fibroblast migration through Trk 

receptors. (a) DF were plated onto 12-well tissue culture plate and treated 

with mitomycin C (5µg/ml) for two hours. One line for each well was drawn 

along the cell monolayer with a sterile tip. After washing with serum free 

medium, cells were incubated with TGF-β1 (100ng/ml) or NGF, BDNF, NT-3, 

NT-4 (100ng/ml) or diluent alone. After 24 and 48 hours, six areas were 

counted and expressed as mean of cell migrated/area. Data are expressed as 

mean +/- SEM of triplicate from three different experiments. (b) Cells were 

observed and photographed at 48 hours after stimuli.  (c) DF were plated onto 

12-well tissue culture plate and treated with mitomycin C (5µg/ml) for two 



hours. One line for each well was drawn along the cell monolayer with a sterile 

tip. After washing with serum free medium, cells were incubated with 

recombinant human TrkA/Fc (2µg/ml), TrkB/Fc, TrkC/Fc chimeras (1µg/ml) or 

k252a (200nM) or diluent alone. After 24 and 48 hours, six areas were counted 

and expressed as mean of cell migrated/area. Data are expressed as mean +/- 

SEM of triplicate from three different experiments. (d) Cells were observed 

and photographed at 48 hours from stimuli. 

 

Figure 6. Neurotrophins stimulate fibroblast migration through 

p75NTR. (a) About 100,000 DF were plated onto 60 mm2 petri dishes and 

transfected with 100nM p75NTRsiRNA or scramble siRNA on the next day. 

p75NTR expression was controlled 48 hrs later by Western blotting. (b) About 

50,000 DF were plated onto 12-well plates and transfected with 100nM 

p75NTRsiRNA or scramble siRNA on the next day. Mock and p75NTRsiRNA cells 

were treated with 5µg/ml mitomycin and scratched as previously described. 

Subsequently, cells were incubated or not with TGF-β1 (100ng/ml) or NGF, 

BDNF, NT-3 or NT-4 (100ng/ml). After 48 hours three areas were counted and 

expressed as the mean of cell migrated per area. Data are expressed as the 

mean ± SEM of triplicate from three different experiments. (c) Cells observed 

and photographed at 48 hours from stimuli. 

 

Figure 7. Neurotrophins induce fibroblast tensile strength. (a-h) Living 

dermal equivalent (LDE), formed as described in M&M, were placed into 

GlaSbox devices and stimulated with TGF-β1 (100ng/ml) or NGF, BDNF, NT-3 

or NT-4 at the concentration of 1ng/ml, 10ng/ml or 100ng/ml for each 

stimulus or neutral control (DMEM alone). Tensile strenght generated from 

each LDE was measured as changes in elettrical resistence by a Wheaston 

bridge and converted in milliNewton (mN) by a computerized system. Data are 

expressed as the mean of three different experiments. Each GlaSbox device, 

containing LDE, was observed and photographed after 24 hours.    

 

 
 


