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Abstract

Reeb graphs are very popular shape descriptors in computational frameworks. Indeed, they capture
both geometrical properties of the shape, and its topological features. Some different comparison
methodologies have been proposed in literature to compare Reeb graphs for estimating the simi-
larity of the shapes they are describing. In this context, one of the most important open questions
is whether Reeb graphs are robust against function perturbations. In fact, it is clear that any data
acquisition is subject to perturbations, noise and approximation errors and, if Reeb graphs were
not stable, then distinct computational investigations of the same object could produce completely
different results. In this paper we present an initial contribution to establishing stability properties
for Reeb graphs. More precisely, focusing our attention on 1-dimensional manifolds, we define an
editing distance between Reeb graphs, in terms of the cost necessary to transform one graph into
another. Our main result is that changes in Morse functions imply smaller changes in the editing
distance between Reeb graphs.
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1 Introduction

Let M be a closed compact smooth manifold endowed with a simple Morse
function f: M — R. The quotient space obtained from M identifying points
that belong to the same connected component of each level set of f is the
body of a finite simplicial complex of dimension 1, called a Reeb graph.
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Originally defined in 1946 by the mathematician George Reeb [5], Reeb
graphs have been introduced in Computer Graphics in 1991 [6], becoming, in
a few years, very popular shape descriptors in computational frameworks, es-
pecially in applications such as 3D shape matching, shape coding and compar-
ison. Indeed, they capture both geometrical properties of the shape, according
to the behavior of the function over the space, and its topological features,
described by the connectivity of the graph.

Some different comparison methodologies have been proposed in literature
to compare Reeb graphs for estimating the similarity of the shapes they are
describing [4,1]. In this context, one of the most important open questions is
whether Reeb graphs are robust against function perturbations. In fact, it is
clear that any data acquisition is subject to perturbations, noise and approxi-
mation errors and, if Reeb graphs were not stable, then distinct computational
investigations of the same object could produce completely different results.

In this paper we illustrate the recent results proved in [3] on the stability
problem of Reeb graphs under function perturbations, when the considered
manifolds are 1-dimensional. To be more precise, we define an editing distance
for comparing Reeb graphs, in terms of the cost necessary to transform one
graph into another through a finite sequence of allowed editing operations on
their vertices (Definitions 3.1 and 3.2). Then we prove that perturbations
in the functions imply smaller changes in the editing distance between Reeb
graphs, and therefore the stability.

This is only an initial contribution to establishing stability properties for
Reeb graphs. Indeed, our purpose is to extend such results to the more in-
teresting case of surfaces. In this sense, we want to underline that, even if
the editing operations would need to be appropriately modified, the general
technique we have used to prove our main result can be easily generalized.

2 Preliminaries on Reeb graphs

This section provides basic notions on Reeb graphs and the notations we will
use in the rest of the paper.

Let M be a smooth (i.e. differentiable of class C*°) compact n-manifold
without boundary, and let f : M — R be a simple Morse function on M, i.e.,
a smooth function with finitely many non-degenerate critical points, each of
them belonging to a different critical level.

Following [5], let us recall what a Reeb graph is.

Theorem 2.1 (Reeb, 1946) The quotient space of M under the equivalence
relation “p and q belong to the same connected component of the same level
set of f7is a finite and connected simplicial complex of dimension 1.

This simplicial complex, denoted by I'y, is called the Reeb graph associated
2
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with the pair (M, f). Its vertex set will be denoted by V(I'f), and its edge
set by E(I'f). Since the vertices of the Reeb graph correspond in a one to
one manner to the critical points of f, we will often identify each v € V(I'y)
with the corresponding critical point p of f. Moreover, if vy, v, € V(I'f) are
adjacent vertices, i.e., connected by an edge, we will write e(vy,v2) € E(I'y).

2.1 Labelled Reeb graphs of closed curves

Let us focus on M = S'. The Reeb graph I'; associated with (S', f) is a
cycle graph on an even number of vertices, corresponding, alternatively, to
the minima and maxima of f on S*. Furthermore, let us label the vertices of
I't, by equipping each of them with the value of f at the corresponding critical
point. We denote such a labelled Reeb graph by (I'y, f,), where f, : V(I'y) — R
is the restriction of f : S' — R to its set of critical points. To facilitate the
reader, in all the figures of this paper, we consider f as the height function,
so that f,(v;) < f (v;) if and only if v; is lower than v; in the picture.

1
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Moreover, we will also identify two labelled Reeb graphs (I'y, f) and
(I'y,9,), and write (I'y, ;) = (I',g,), if there exists an edge-preserving bi-
jection @ : V(I'y) — V(T'y) such that f (v) = g,(®(v)) for every v € V(I'y).

3 Editing distance between labelled Reeb graphs

Now, we define all the editing operations admissible to transform a labelled
Reeb graph into another, their costs, and the editing distance in terms of these
costs.

3.1 FEdit operations on labelled Reeb graphs

Definition 3.1 Let (I'y, fl) be a labelled Reeb graph with 2n vertices, n > 1.
An elementary deformation T of (I'y, f,) is any of the following transforma-
tions:

(B) (Birth): If e(vi,v2) € E(I'y) with f (v1) < f (v2), then T(I'y, f,) = (I'g, 9))
such that
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- V() = VI(Iy) U{ur, ua);
- e(vr, ur), e(ur, ug), e(ug, va) € E(I'y);
vy T £
- g/(01) < g/(u2) < g,(u1) < g,(va).
(D) (Death): If e(vi,u), e(ur, us), e(ug, va) € E(T'y) with f(v1) < f(u2) <
fi(u1) < f,(v2), then T'(I'y, f) = (I'y, g,) such that
V() = VI(Ty) = {u, ug};
- e(v,v2) € E(Ty);
"9 = f\wrp—{ul,ug}'
(R) (P;elabellling): T(Ty, f) = (T'y, g,) such that
. ifge(vl,fvg),e(vg,vg) € E(Ty), then f(v2) < f(v1), f(v3) if and only if
g,(v2) < g,(v1), g,(v3).

The table below schematically illustrates the elementary deformations de-
scribed in Definition 3.1.

T2 T2 T2 T2 U4 U6
U6
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As proved in [3, Prop. 3.2], each elementary deformation transforms a
labelled Reeb graph into another one, simply by changing the labels attached
to its vertices, or by adding, or deleting a pair of adjacent vertices. So, we
can apply elementary deformations iteratively to transform any labelled Reeb
graph into any other.

Definition 3.2 We shall call a deformation of (I'y, f)) any finite ordered se-
quence T = (11,15, ..., T,) of elementary deformations such that T} is an ele-
mentary deformation of (I'y, f,), 7% is an elementary deformation of 7' (I'y, f,),
..., T, is an elementary deformation of 7,11, _o-- - T7(I'y, f‘) We shall denote
by T'(I'y, f)) the result of the deformation T" applied to (I'y, f,).

Now, we associate a cost with each type of deformation.

Definition 3.3 Let 7" be an elementary deformation transforming (I'f, f)

into (I'y, g,).

o If T'is of type (B) inserting the vertices uy,us € V(I'y), then we define the
associated cost as

g () — g, ()]

= 5 :

o(T)
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o If T is of type (D) deleting the vertices uy,us € V(I'y), then we define the
associated cost as
oy = M) =109

o If T is of type (R) relabelling the vertices v € V(I'y) = V(I'y), then we
define the associated cost as

oT) = max [,() =g (0)]

’UEV(Ff

Moreover, if ' = (T1,...,T,) is a deformation such that T,.---Ti(I'y, f)) =
(I'y, g,), we define the associated cost as ¢(T) = > ¢(T;).

i=1
Let us introduce the concept of inverse deformation.

Definition 3.4 Let T" be a deformation such that T'(I'y, f,) = (I'y, g,). Then
we denote by 77!, and call it the inverse of T, the deformation such that
T-'(Ty,9,) = (T'y, f,) defined as follows:

o If T is elementary of type (B) inserting two vertices, then T~ is of type
(D) deleting the same vertices;

o If T is elementary of type (D) deleting two vertices, then T~ is of type (B)
inserting the same vertices, with the same labels;

o If T is elementary of type (R) relabelling vertices of V(I'y), then 77! is
again of type (R) relabelling these vertices in the inverse way;

« If T =(Ty,...,T,), then T-' = (T}, ..., T; 1),

Obviously, from Definition 3.4, it follows that, if 7'(I;, f‘) = (I'y, g‘), then
(T = (7).

3.2 Editing distance

Let (I'y, f)) and (I'y, g,) be two labelled Reeb graphs. Then the set of all the
deformations 7" such that T'(I'y, f,) = (I'y, g,) is non-empty [3, Prop. 3.8]. Ac-
tually, this set, that from now on will be denoted by T((I'y, f,), (I'y, 9/)), con-
tains infinitely many possible deformations transforming (I'y, f)) into (I'y, g,),
each of them with a different cost. We define the distance between such two
graphs as the infimum cost we have to pay to transform the first graph into
the second.

Theorem 3.5 For every two labelled Reeb graphs (I'y, f,) and (I'y, g,), we set

d<<Ff7 f|)7 (F97 g|)) = TGT((FfI,I}S,(Fg,gl)) C(T)

Then d s a distance.
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Proof (Sketch) The properties of symmetry and triangular inequality can
be easily verified. The positive definiteness of d can be proved by observing
that, if (I'y, f,) and (I'y, g,) are labelled Reeb graphs associated with (S, 1)
and (S', g), respectively, then d((Ty, f,), (Ty,9,)) > iIT1f||f — g oT|co with 7

varying in the set of all homeomorphisms on S* (see [3, Cor. 4.2]). O

4 Local and global stability

Let F(S',R) be the set of smooth real valued functions on S*, endowed with
the C'* topology, and let us stratify such a space, as done by Cerf in [2]
(see also [3, Sec. 1.3]). Let us denote by F° the submanifold of F(S' R)
of co-dimension 0 that contains all the simple Morse functions f : ST — R.
Let, then, F! = F! U}"é be the submanifold of F(S*, R) of co-dimension 1,
where: F} represents the set of functions whose critical levels contain exactly
one critical point, and the critical points are all non-degenerate, except exactly
one; fﬁl the set of Morse functions whose critical levels contain at most one
critical point, except for one level containing exactly two critical points.

Since FY is dense in the space F (S, R) endowed with the C" topology,
2 <r < oo ([3, Sec. 1.3]), given two arbitrary functions f, g € F°,

the main idea we use to prove our stability result consists in

Theorem 4.1 (Global stability) Let f,g € F°. Then

d((Ts, £)): Ty, 9))) < f = gllee

b

Proof (Sketch) The proof is divided into three steps.

a2f
dx?

with || fl| = = max{max|f| ,max‘%} , max

 (Local stability) Let f € F°. Then there exists a positive real number
§(f) such that, for every §, 0 < § < §(f), and for every g € F° such that
I/ = gllce <0, it holds that d((I'y, f), (T'y, g,)) < 6.

e Let f,g € F° and let us consider the path h : [0,1] — F(S',R) de-
fined by h(\) = (1 — \)f + A\g. If h(\) € F° for every A\ € [0,1], then
d((Ty, ), (Tg, 9))) < ILf = gllce-

e Let f,g € F° and let us consider the path h : [0,1] — F(S',R) defined by
h(N) = (1=X\)f+Ag. If h(\) € FO for every A € [0, 1]\ {\}, with0 < X < 1,
and h transversely intersects F! at A, then d((T;, fl), (I'y, g‘)) <|If = gll -

a
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