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Abstract: We study the existence of at least one increasing heteroclinic solution

to a scalar equation of the kind ẍ = a(t)V ′(x), where V is a non-negative double

well potential, and a(t) is a positive, measurable coefficient. We first provide with a

complete answer in the definitively autonomous case, when a(t) takes a constant value

l outside a bounded interval. Then we consider the case in which a(t) is definitively

monotone, converges from above, as t → ±∞, to two positive limits l∗ and l∗, and

never goes below min(l∗, l
∗). Furthermore, the convergence to max(l∗, l

∗) is supposed

to be not too fast (slower than a suitable exponential term).
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1 Introduction

The existence of heteroclinic solutions to a variational equation of the kind
ẍ = W ′x(t, x) was widely studied in the case in which W (t, x) is periodic or
almost periodic with respect to t (see, for instance, [10],[11]). On the contrary,
at our knowledge, rather few results are available under assumptions of different
nature: for instance, we refer to [4] (§5, Example 1) for the case in which W (t, x)
is definitively monotone with respect to t, and to [2] (Chapter 2, Thm. 2.2) for
equations of the kind

ẍ = a(t)V ′(x), (1.1)

where V is a double well potential, the coefficient a(t) > 0 converges to a
positive limit l as |t| diverges and fulfils the inequality a(t) ≤ l everywhere: in
this case, the authors prove that a solution always exists, which also minimizes
∗Supported by M.I.U.R. - Italy
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the associated integral functional. On the contrary, when a(t) ≥ l, it looks
difficult to get an exhaustive answer, and even more so when a(t)− l changes its
sign. In [5] we began to tackle the case a(t) ≥ l by means of minimax methods,
and proved the existence of a solution under the technical assumption that the
ratio a(t)/l is bounded from above by a constant which depends on the shape
of V (see also [12] for a recent improvement of this result). In [6], where we
employ perturbative methods, we do not need this bound, but we require that
a(t) is definitively monotone.

In the present paper we are going to introduce further techniques for tackling
the problem. As esplained by the title, they arise from the study of the first
order system which corresponds to (1.1):

u̇ = f(t, u), u = (x, y) ∈ IR2, (1.2)

where f(t, x, y) = (y, a(t)V ′(x)). For the sake of simplicity, we suppose that
the two wells of V are located at ±1, so that (1.2) presents two saddle points
at (±1, 0). Our aim is to solve problem (2.1), that is to find an increasing,
heteroclinic solution of (1.1) which connects the two unstable equilibria ±1. On
this subject, the two main results are Theorems 2.4 and 5.1, which are proved
by means of fairly different techniques: in the former, indeed, we deal with the
”definitively autonomous” case (2.2), and exploit the well-known property that
a hamiltonian flow preserves area. In the latter, on the contrary, a(t) converges
to two possibly different limits l∗ and l∗ as t diverges, respectively, to −∞ and
+∞, and the proof is based on a shooting method.

The plan of the work is conceived as follows: in §2 we first state Theorem 2.4,
and present some preliminary results. In particular, we explain some properties
of measure-preserving diffeormorphisms in the plane, which are summed up in
Lemma 2.7. The proof of the theorem is based on the following, simple idea: the
heteroclinic trajectory of the autonomous version of (1.2) which joins (±1, 0) in
the half-plane y > 0 is compelled to meet its image through the hamiltonian flow,
because the differential form

∫
ydx is shown to be preserved, in this framework.

Actually, the search for monotone solutions gives rise to some difficulties: in
order to tackle them, indeed, we need a technical result (Lemma 2.5) which is
proved in §6. As far as we are only interested in (2.1a-b), however, the proof
becomes more simple, and condition (ii) can be replaced by other assumptions
(Theorem 2.10).

In §3 we begin to explain our shooting method, where the two equilibria
(−1, 0) and (1, 0) of (1.2) act respectively as the starting point and the target:
roughly speaking, we consider the family of all solutions x of (1.1) such that
x(−∞) = −1, and put in evidence, at the beginning of the section, the two
cases (H−) and (H+), which correspond to disjoint open sets C− and C+ in
the projection of the unstable manifold of (−1, 0) on the plane tx. If we are able
to prove that both cases occur, then a connectedness argument shows that they
cannot be exhaustive, so that some function x of the family should converge to 1,
or to some critical point of V between ±1: since, however, the latter behaviour
is ruled out by condition (ii) of §2, we should actually get x(+∞) = 1.
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In §4 we perform a detailed study of (1.1) near the well x = −1, also by
means of variational methods. In particular, the unstable manifold of (1.2) in
the neighbourhood of (−1, 0) is represented in the form η = η(τ, h), where τ ,
−1 + h and η stand for time, position and speed respectively. This function
η allows to outline correctly our shooting method: in particular, its continuity
shows that both sets C− and C+ are actually open (Lemma 3.3). Furthermore,
other useful properties of η are explained, some of which are due to the particular
conditions that the coefficient a(t) is supposed to satisfy in Theorem 5.1. The
section ends with a study of the functions (3.4-5) and some related estimates.

In §5 we accomplish our shooting method, by showing that the two sets C−

and C+ we introduced before are actually non-empty, so as to prove Theorem
5.1, that is the existence of solutions to (2.1) under the following assumptions:
a(t) converges from above to l∗ and l∗, is definitively monotone and never goes
below min(l∗, l∗). Furthermore, the convergence to max(l∗, l∗) is not too fast,
since we require an exponential bound on the speed of that convergence, which
is given by (5.1) or (5.2). We point out that this condition recalls very closely
the one which appears in [7], [8] (Thm. 1.7). The paper ends with the already
quoted §6, which is an appendix to §3.

With respect to the results of [5], [12] and [6], the main advantage of Theorem
5.1 is the possibility to deal with different limits l∗, l∗. Furthermore, as regards
a comparison with [5], [12], it needs no bounds from above on the coefficient
a(t). On the other hand, in [5] and [12] no conditions are required on the
convergence of a(t) to l, and also the condition (ii) on the potential V can
be dropped. In order to conclude, we remark that the assumptions which are
needed in the different approaches of [5], [12], [6] and the present paper do not
cover all possible cases: nevertheless, at our knowledge, no counter-example to
the existence of heteroclinic solutions to (1.1) was found yet, when l∗ = l∗. On
the contrary, in the case l∗ 6= l∗, several counter-examples can be produced (see
Remarks 3.6 and 5.5).

Acknowledgements. The author thanks Lúıs Sanchez for the useful discus-
sions on the subject of this work. He thanks the referee as well, for having
noticed a mistake in an example of the original version, so as to allow the au-
thor to get the new results of §2, and also for suggesting the more general setting
of the present Remark 5.5.

2 The definitively autonomous case.

We are interested in the following problem: ẍ(t) = a(t)V ′(x(t)) (a)
x(−∞) = −1, x(+∞) = 1 (b)
ẋ > 0 (c)

(2.1)

Throughout this section we assume that:

(i) V ∈ C2(IR; [0,+∞[), V (±1) = 0, V ′′(±1) > 0.
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(ii) V ′ vanishes at just one point x0 ∈ ]− 1, 1[, where V ′′(x0) < 0.
(iii) a ∈ L∞(IR; [0,+∞[).
(iv) There exist l, S, T ∈ IR such that l > 0, S < T, and

a(t) = l for t /∈ [S, T ]. (2.2)

Conditions (i) and (ii) are shared by some of the most common double well
potentials. In particular, they entail the strict inequality V > 0 on ]− 1, 1[. Of
course, it does not matter that the two wells are located at ±1, as we supposed
for the sake of simplicity.

Remark 2.1. Since the coefficient a(t) is only supposed to be measurable, the
solutions of (2.1a) are to be understood in the usual weak sense, that is to say:
x is C1, ẋ is absolutely continuous and (2.1a) holds almost everywhere (more
precisely: at any Lebesgue point of a).

Sometimes it will be useful to suppose that V fulfils the further condition we
are going to introduce below. Actually, as explained by the following remark,
we are allowed to do it, without loss of generality:

V ′′(x) ≡ V ′′(±1) for |x| ≥ 1. (2.3)

Remark 2.2. In order to justify (2.3), it is enough to modify V outside [−1, 1],
so as to get a new potential V1 which fulfil (2.3). Indeed, put V = V1 in (2.1),
and suppose to have found a solution x = x(t) of the corresponding problem:
since ẋ > 0, it is −1 < x(t) < 1 everywhere, so that x solves the original
problem as well. In particular, (2.3) entails that V ′ has a linear growth, so that
all solutions to (2.1a) are global.

Definition 2.3. We say that a field f admits a linear domination if there exists
a constant C such that ‖f(t, u)‖ ≤ C(1 + ‖u‖) for t ∈ IR, u ∈ IR2.

Theorem 2.4 Let (i)-(iv) hold. Then problem (2.1) admits a solution.

The proof of this result requires some preliminary arguments: first of all, in
order to fulfil (2.1c), we need to modify the field (1.2) in a suitable way, since
the technique we are going to adopt does not provide, in a natural way, with
monotone solutions. To this end we introduce the following, technical result,
whose proof is given in §6.

Lemma 2.5 Let a and V fulfil conditions (i)-(iii) and f be as in (1.2): then
there exists a hamiltonian field f∗(t, x, y) such that f∗ ≡ f for y ≥ 0, f∗ admits
a linear domination, f∗ − f is autonomous and C1, and the following property
holds: whenever u = (x, y) solves the equation u̇ = f∗(t, u) and u(±∞) =
(±1, 0), it is y > 0 everywhere.

According to the previous result, whenever we are able to find a solution u =
(x, y) of the equation u̇ = f∗(t, u) which fulfils the conditions u(±∞) = (±1, 0),
then x solves (2.1). On the other hand, for t /∈ [S, T ] and y ≥ 0, f agrees
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with the autonomous field f l : (x, y) 7→ (y, lV ′(x)). As is known, the conditions
−1 < x < 1, y =

√
2lV (x) define, in the phase plane, a curve Γ which is a

heteroclinic trajectory for f l, and joins together the two equilibria (±1, 0). We
can conclude that (2.1) surely admits a solution if so does the following problem:{

u̇(t) = f∗(t, u(t)) (a)
u(S), u(T ) ∈ Γ (b) (2.4)

Remark 2.6. Since the field f∗(t, u) is hamiltonian, its flow ψ(t;σ,w) enjoys
the following property: for any σ, t ∈ IR, the map w 7→ ψ(t;σ,w) preserves
area. Indeed, even if f∗(t, u) is only supposed to be measurable with respect
to t, the same arguments as in Lemma 2.8 ensure that ψ is continuously dif-
ferentiable with respect to w, and the matrix ∇wψ(t;σ,w) solves a well-known
variational equation, from which we argue, by virtue of Liouville’s Theorem,
that its determinant is identically 1.

On the ground of the previous remark, we are going to explain some properties
of measure preserving diffeomorphisms on IR2, whose family we denote by F .
In particular, we are interested in the behaviour of the differential form

∫
ydx

under the action of a map φ ∈ F . To this end, we introduce the family P of all
piece-wise regular arcs γ : I → IR2, where I = [−1, 1], and put F (γ) =

∫
γ
ydx

for any γ ∈ P. We also define P∗ ⊆ P as the family of all simple, regular arcs
γ : I → IR2 such that γ(±1) = (±1, 0), and F∗ ⊆ F through the conditions
φ(±1, 0) = (±1, 0). Then we put, for any φ ∈ F∗:

Ω(φ) = F (φ ◦ γ)− F (γ), (2.5)

where γ ∈ P∗ is arbitrarily chosen. Such a definition is actually well-posed, since
the right-hand side of (2.5) defines a closed differential form on the whole plane,
as we can easily check through the identity det ∇φ ≡ 1. We also recall that,
whenever γ, η ∈ P∗, we can define a closed arc γ∗η− ∈ P, where η−(s) = η(−s),
and the symbol ∗ denotes the usual operation between consecutive paths.

Lemma 2.7 The following properties hold true.

(a) φ ◦ γ ∈ P∗ for any φ ∈ F∗, γ ∈ P∗.

(b) Ω(φn ◦ ... ◦ φ1) = 0 whenever φi ∈ F∗ and Ω(φi) = 0 (i = 1, ..., n).

(c) Ω is continuous from C1
loc(IR

2; IR2) to IR.

(d) If φ(χ(I)) = χ(I) for some χ ∈ P∗, then Ω(φ) = 0.

(e) If Ω(φ) = 0, then φ(γ(I◦)) ∩ γ(I◦) 6= ∅.

Proof. (a) Let γ ∈ P∗, η = φ ◦ γ: then φ(±1, 0) = (±1, 0) ⇒ η(±1) = (±1, 0).
Since φ is a diffeomorhism, η is simple and regular, like γ.

(b) The previous step entails that φ := φn ◦ ... ◦ φ1 ∈ F∗. Now, let γ0 ∈ P∗,
and put γi = φi ◦ γi−1 for i = 1, ..., n: the equality Ω(φi) = 0 implies F (γi) =
F (γi−1), so that F (φ ◦ γ0) = F (γn) = F (γ0).
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(c) Let φ ∈ F∗: then Ω(φ) =
∫ 1

−1
β(s, 0)α′x(s, 0) ds, where α and β are the

components of φ. Indeed, let us put γ̄(s) = (s, 0) for any s ∈ I, and apply (2.5)
to γ = γ̄: since F (γ̄) = 0, we get Ω(φ) = F (φ(γ̄)), which actually yields the
integral above. Now our assertion follows easily.

(d) Since φ(χ(I)) = χ(I), the two regular arcs χ and ρ := φ ◦ χ have the
same trace and direction, so that F (ρ) = F (χ). Hence the right-hand side of
(2.5) vanishes, when putting γ = χ.

(e) By contradiction, suppose that η(I◦)∩ γ(I◦) = ∅, where η = φ ◦ γ. Then
γ ∗ η− is a Jordan arc, which encloses a regular domain with area λ > 0. Now
Green’s formulas yield the contradiction F (γ ∗ η−) = F (γ)− F (η) = ±λ 6= 0.

The following result can be proved by the same techniques which allow to get,
under suitable assumptions, the differentiability of a flow with respect to initial
conditions, and the continuity of its jacobian matrix with respect to a parameter
(see, for instance, [1]).

Lemma 2.8 Let σ, τ ∈ IR, σ < τ . For any n ∈ IN∗ := IN ∪ {∞} let an ∈
L∞([σ, τ ]) be such that an → a∞ in L1([σ, τ ]) as n → +∞. Let K < +∞ be
the least upper bound of ‖an‖∞ when n ranges over IN∗. For any n ∈ IN∗,
u ∈ IR2, let us put fn(t, u) = an(t)p(u) + q(u), where p, q ∈ C1(IR2; IR2) are two
given vector fields which admit a linear domination, according to Def. 2.3. Let
ψn(t;σ,w) denote the flow of fn, and put φn = ψn(τ ;σ, ·). Then, as n→ +∞,
φn → φ∞ in C1

loc(IR
2; IR2).

Lemma 2.9 Let a, V and f∗ be as in Lemma 2.5. Let σ < τ , and put φ =
ψ(τ ;σ, ·), where ψ(t;σ,w) denotes the flow of f∗. Then φ ∈ F∗, and Ω(φ) = 0.

Proof. Of course, f∗ is of the same kind as f∞ in the previous lemma, provided
we put p(x, y) = (0, V ′(x)) and q(x, y) = g̃(x − x0, y), where g̃ comes from
(6.3). In particular, φ is C1 on IR2. Furthermore, according to Remark 2.6, φ
preserves area, so that φ ∈ F . On the other hand, (±1, 0) are equilibria for f∗,
so that φ ∈ F∗. Now we divide the proof into three steps.

1) Let us first suppose a(t) ≡ λ on [σ, τ ], where λ > 0 is a given constant.
Then f∗ turns out to be autonomous on [σ, τ ]. More precisely, for y ≥ 0, f∗
is nothing but the field (x, y) 7→ (y, λV ′(x)), which admits the invariant curve
χ(s) = (s,

√
2λV (s)), s ∈ I. Now Lemma 2.7d ensures that Ω(φ) = 0.

2) a is a positive step function on [σ, τ ]. Let us put t0 = σ: then there
exist an integer n ≥ 2 and numbers tk and λk (k = 1, ..., n) such that tn = τ ,
tk−1 < tk (k = 1, ..., n) and a(t) ≡ λk > 0 on [tk−1, tk[ (k = 1, ..., n). Now we
can write φ = φn ◦ ... ◦φ1, where φk = ψk(tk; tk−1, ·). But Ω(φk) = 0, according
to the previous step: hence Lemma 2.7b ensures that Ω(φ) = 0.

3) Conclusion. Let a ∈ L∞([σ, τ ]), a ≥ 0: then a can be expressed as the
limit, with respect to the L1-norm, of a sequence of positive step functions an.
Now we can define the fields fn and the corresponding maps φn as in Lemma
2.8, provided we put a∞ = a, while p and q are as at the beginning of this proof.
Then φn → φ∞ = φ in C1

loc. But Ω(φn) = 0, according to the previous step:
hence Lemma 2.7c ensures that Ω(φ) = 0.
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Proof of Theorem 2.4. Let f∗(t, u) be as in Lemma 2.5: according to the
arguments which follow that lemma, we only need to show that (2.4) admits
a solution. We point out that Γ = χ(I◦), where χ(s) = (s,

√
2lV (s)) for any

s ∈ I. So, let us define ψ and φ as in Lemma 2.9, where we put σ = S, τ = T .
Then Ω(φ) = 0, and we can apply Lemma 2.7e to γ = χ, so as to infer the
existence of a point w+ ∈ φ(Γ)∩ Γ. Then the function u(t) = ψ(t;T,w+) fulfils
(2.4a) and the second condition in (2.4b). Furthermore w+ ∈ φ(Γ), so that
there exists a unique w− ∈ Γ such that w+ = φ(w−). On the other hand,
w+ = u(T ) = ψ(T ;S, u(S)) = φ(u(S)), so that u(S) = w− ∈ Γ.

It may seem that condition (ii) was not exploited in the proof above: actually,
we need it in the proof of Lemma 6.3, which implies Lemma 2.5. On the other
hand, as far as we are not interested in monotone solutions, we can directly
apply the previous arguments to the field (1.2) rather than to f∗, so as to skip
Lemma 2.5. In this case, however, it is not right, in general, to modify V outside
[−1, 1] as in Remark 2.2, so as to get a linear domination on V ′ and be sure
that the corresponding flow is defined on the whole phase plane. Then we need
to control the behaviour of V (x) for |x| ≥ 1 as well. Furthermore, in lack of (ii),
the condition V > 0 on ]− 1, 1[ has to be required explicitly.

Theorem 2.10 Let conditions (i),(iii) and (iv) hold, suppose that V is positive
on ]− 1, 1[ and V ′′ is bounded on IR. Then problem (2.1a-b) admits a solution.

3 The shooting method.

Let a and V fulfil (i)-(iii). Let us fix positive numbers r, µ, ν in such a way that,
by virtue of the assumption V ′′(±1) > 0, the inequalities µ ≤ V ′′(x) ≤ ν hold
for |x± 1| ≤ r. Then

1
2
µ(x± 1)2 ≤ V (x) ≤ 1

2
ν(x± 1)2, |x± 1| ≤ r. (3.1)

Let C := IR×]0, r[: as we are going to see in the next section, there exists a
continuous function η : C → IR such that the solutions of the following Cauchy
problems {

ẍ(t) = a(t)V ′(x(t))
x(τ) = −1 + h, ẋ(τ) = η(τ, h) (τ, h) ∈ C, (3.2)

all fulfil the condition x(−∞) = −1. In other words, the points of the kind
(τ,−1 + h, η(τ, h)) lie in the unstable manifold of the equilibrium (−1, 0) of
(1.2). Now, let us denote by U the set of all functions x above, and suppose, for
the sake of simplicity, that they are defined on the whole real line, according to
the final part of Remark 2.2. For any x ∈ U , let us consider the two following
cases:

(H−) There exists θ ∈ IR such that ẋ(θ) = 0 and x(t) < 1 for any t ≤ θ.

(H+) There exists θ ∈ IR such that x(θ) = 1 and ẋ(t) > 0 for any t ≤ θ.
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Then we denote by U− and U+ the sets of those functions x ∈ U such that (H−)
and (H+) respectively hold, and by C− and C+ the sets of the corresponding
pairs (τ, h) ∈ C of (3.2).

Remark 3.1. From (3.2) we argue that, whenever x ∈ U , the inequality ẋ > 0
holds definitively to the left: in particular, in the case (H−), the set ẋ−1(0) is
closed, non-empty and bounded from below, so that it admits a minimum value
θ = θ(x), which obviously satisfies (H−), together with the inequality ẋ(t) > 0
for t < θ. On the other hand, if x ∈ U+, the point θ = θ(x) of condition (H+)
is unique. Finally, if x ∈ U does not fulfil (H−) neither (H+), we can put
θ(x) = +∞, so as to define a map θ : U →]−∞,+∞].

Remark 3.2. Let us suppose that x ∈ U does not satisfy (H−) neither (H+).
Then, for any t ∈ IR, ẋ(t) > 0 and x(t) < 1, so that, as t → +∞, x(t) must
converge to some point of ] − 1, 1] at which V ′ vanishes: this point, however,
cannot be the point x0 of condition (ii), since the inequality V ′′(x0) < 0 would
imply ẍ(t) > 0 for t large enough, in contrast with the condition x(t)→ x0 from
the left as t→ +∞. Then the point above is nothing but 1, that is x(+∞) = 1:
since x(−∞) = −1 for any x ∈ U , (2.1b) holds, so that x solves (2.1). In order
to find such a function x or, equivalently, a pair (τ, h) ∈ C which lies outside C−

and C+, we point out that these two sets are disjoint subsets of the connected,
open set ]− 1, 1[ and, as we are going to show in the next result, they are open.
Then, under assumption (ii), problem (2.1) surely admits a solution if we are
able to show that

C \ C− 6= ∅, C \ C+ 6= ∅. (3.3)

Lemma 3.3 C− and C+ are open.

Proof. In order to show that C− is open, let us take (τ0, h0) ∈ C− and put
ξ0 = −1 + h0, η0 = η(τ0, h0), x(t) = ψ1(t; τ0, ξ0, η0), where ψ = (ψ1, ψ2) is the
flow of (1.2). According to Remark 3.1, let θ0 = θ(x): since x(θ0) > x0, it is
ẍ(θ0) = a(θ0)V ′(x(θ0)) < 0, so that we can find θ > θ0 such that ẋ(θ) < 0
and M(θ) := maxx([τ0, θ]) < 1. Now, let ε = min(−ẋ(θ), 1 − M(θ)): from
well-known continuity properties of ψ, we can find δ = δ(ε) > 0 such that
‖ψ(t; τ, ξ, η)− ψ(t; τ0, ξ0, η0)‖ ≤ ε whenever τ0 ≤ t ≤ θ, and the values |τ − τ0|,
|ξ− ξ0|, |η−η0| do not exceed δ. Furthermore, as we are going to see in Lemma
4.2, the function η is continuous: then we can find ρ0 = ρ0(δ) > 0 such that
|η(τ, h) − η(τ0, h0)| ≤ δ for |τ − τ0| ≤ ρ0, |h − h0| ≤ ρ0. Now it is easy to see
that (τ, h) ∈ C− for |τ −τ0| ≤ ρ, |h−h0| ≤ ρ, where ρ = min(δ, ρ0). In a similar
way we can prove that C+ is open.

Remark 3.4. In order to solve problem (2.1) by means of a shooting method
we could obviously consider, instead of the unstable manifold of (1.2) in the
neighbourhood of (−1, 0), its stable manifold near (1, 0). Of course, the two
approaches are equivalent, and lead to a duality in the assumptions to be done on
a and V , as is shown by the two alternative conditions (vii) and (viii) of Theorem
5.1. This duality can also be explained by the following, simple argument,
which allows to exchange the roles of the two equilibria (−1, 0) and (1, 0): let
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us suppose that, in (2.1), a and V are respectively replaced by ã(t) = a(−t)
and Ṽ (x) = V (−x), and denote by (P̃ ) the corresponding new problem. Then
it is easy to check that, whenever (P̃ ) admits a solution x̃, the function x(t) =
−x̃(−t) solves the given problem.

Now we are going to deduce some inequalities which follow from the comparison
of (2.1a) with an autonomous equation: we introduce them now, even if they
will be useful in the following sections. To this end, let x ∈ U be given: we
begin to study some properties of the functions

Eλ(t) =
1
2
ẋ(t)2 − λV (x(t)), λ > 0, t ∈ IR, (3.4)

E(t) =
1
2
ẋ(t)2 − a(t)V (x(t)), t ∈ IR. (3.5)

First of all, we point out that

Ėλ(t) = (a(t)− λ)V ′(x(t)) ẋ(t) a.e. (3.6)

Then, according to Remark 3.1, we put θ = θ(x), so that the point x0 of
condition (ii) is surely attained at some time θ0 < θ. Now, let us suppose
0 < l ≤ a ≤ L. Hence, by virtue of (3.6):

Ėl(t) ≥ 0 ≥ ĖL(t) for t ≤ θ0, (3.7)
Ėl(t) ≤ 0 ≤ ĖL(t) for θ0 ≤ t < θ. (3.8)

In particular, [2LV (x(t))]−1/2 ẋ(t) ≤ 1 ≤ [2lV (x(t))]−1/2 ẋ(t) for any t ≤ θ0,
that is to say: El ≥ 0 ≥ EL on ] −∞, θ0]. Indeed, the last inequalities follow
easily from (3.7-8), since El and EL both vanish at −∞. Therefore, whenever
t1 ≤ t2 ≤ θ0, x1 = x(t1), x2 = x(t2),∫ x2

x1

[2LV (x)]−1/2dx ≤ t2 − t1 ≤
∫ x2

x1

[2lV (x)]−1/2dx. (3.9)

Similarly, from the first equality in (3.8) we get El(t) ≥ El(t2) ≥ −lV (x2) for
all t ∈ [θ0, t2], so as to infer, whenever θ0 ≤ t1 ≤ t2 ≤ θ, x1 = x(t1), x2 = x(t2),

t2 − t1 ≤
∫ x2

x1

[2l(V (x)− V (x2))]−1/2dx. (3.10)

We point out that, in the autonomous case, the function E(t) in (3.5) is nothing
but the energy of the system, which keeps constant along any solution. On the
contrary, in the general case, E(t) increases or decreases in an opposite way
with respect to a(t). Indeed, let J = [t0, t1] be a given interval, and denote by
∆K the variation of kinetic energy which x(t) undergoes along the interval J .
If we multiply both sides of (2.1a) by ẋ(t) and integrate over J , we get

∆K =
1
2
ẋ(t1)2 − 1

2
ẋ(t0)2 =

∫ t1

t0

a(t)V ′(x(t)) ẋ(t)dt. (3.11)
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Then, whenever a ∈ BV (J), integration by parts shows that:

∆K = a(t1)V (x(t1))− a(t0)V (x(t0))−
∫ t1

t0

V (x(t)) da(t), (3.12)

that is to say

E(t1)− E(t0) = −
∫ t1

t0

V (x(t)) da(t). (3.13)

Remark 3.5. The script a ∈ L∞(IR) could be misleading, when dealing with a
Riemann-Stieltjes integral with respect to da, as above. From now on, in order
to avoid ambiguities, we agree that the function a(t) is univocally defined (not
up to negligible sets): of course, this clarification is important when working on
those intervals where a is monotone.

Remark 3.6. From (3.13) and the obvious property E(−∞) = 0 we argue
that, whenever a(t) is monotone on the whole real line, but not constant, it
is E(+∞) 6= 0, so that ẋ(+∞) 6= 0 as well. Actually, this is the reason why,
instead of (2.2), we did not consider the more general case in which a(t) takes
two different values l∗ and l∗ on the two half-lines ]−∞, S[ and ]T,+∞[. Indeed,
we can easily build a monotone coefficient a(t) such that a(t) ≡ l∗ for t < S,
a(t) ≡ l∗ for t > T : then, according to the previous argument, (2.1) has no
solution.

Remark 3.7. Thanks to (3.12), we can easily compare the signs of ∆K and
∆a := a(t1) − a(t0) whenever a is monotone on [t0, t1], and V takes the same
value β at the points x(t0) and x(t1). Indeed, by virtue of (ii), it is V (x) ≥ β
on [x(t0), x(t1)]: then the following relation, which follows at once from (3.12),
shows how, in this situation, ∆K and ∆a have opposite signs. In particular,
this circumstance will be useful in §5.

1
2
ẋ(t1)2 − 1

2
ẋ(t0)2 = −

∫ t1

t0

(V (x(t))− β) da(t). (3.14)

4 The unstable manifold.

Throughout this section we suppose that conditions (i)-(iii) of §2 hold, and that
a(t) admits finite, positive limits l∗ and l∗ as t → ±∞. More precisely, the
following conditions will hold true, where the former is to be explained in the
next remark.

(v) a(t) ↓ l∗ as t→ −∞, a(t) ↓ l∗ as t→ +∞.
(vi) a(t) ≥ min(l∗, l∗) > 0 for any t ∈ IR.

Remark 4.1. By a(t) ↓ l∗ we mean that a(t) → l∗ as t → −∞ and, for some
S ∈ IR, a(t) is increasing on ]−∞, S]. Similarly, a(t) ↓ l∗ means that a(t)→ l∗

as t→ +∞ and, for some T ∈ IR, a(t) is decreasing on [T,+∞[. In both cases
we do not require strict monotonicity.
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We begin to study the unstable manifold of the field (1.2) in a neighbourhood
of (−1, 0). To this end, we could exploit general results about the behaviour
of a non-autonomous dynamical system near a hyperbolic rest point (see, for
instance, [9], Thm. IV.3.1). The particular nature of equation (1.1), however,
suggests to adopt a variational point of view. To this end, we recall that,
whenever W : IR→ [0,+∞[ is a C2 function such that W (0) = 0 and inf W ′′ > 0
then, for any τ, h ∈ IR, the variational problem

min
{∫ τ

−∞
(
1
2
ż(t)2 + a(t)W (z(t)))dt; z ∈ H1(]−∞, τ ]), z(τ) = h

}
(4.1)

has a unique solution z(t), which is characterized by the following properties:{
z̈(t) = a(t)W ′(z(t)) (a)
z(τ) = h, z(−∞) = 0 (b) (4.2)

In particular, (4.2a) is the Euler equation of (4.1), while the second condition
of (4.2b) is fulfilled by any function z ∈ H1(] −∞, τ ]), as is shown in [3], Cor.
VIII.8. In order to fix ideas, let us suppose h > 0: then it is easy to see that,
for any t ≤ τ ,

h ≥ z(t) > 0, ż(t) > 0, (4.3)

so that the values of W outside [0, h] do not affect problem (4.1). Hence, as far
as we are interested in initial values h ∈ ]0, r], with r as in (3.1), the arguments
above hold also for W (z) = V (−1 + z). In this case, if we put η(τ, h) = ż(τ), it
is easy to understand that η is the function which appears in (3.2). First of all,
we need to know the behaviour of η(τ, h) as h→ 0+. To this end, let us apply
the arguments which follow (4.1) to the quadratic approximation of V (−1 + z)
near 0, that is W (z) = 1

2σ
2z2, where σ =

√
V ′′(−1). We point out that, in this

case, the Euler equation of (4.1) is linear:

z̈ = σ2a(t)z. (4.4)

Hence, if we know the solution z1 of (4.1) for a fixed pair (τ1, h1) it is easy to
check that z(t) = hz1(t)/z1(τ) solves (4.1) for any given pair (τ, h): in order to
fix ideas, we put τ1 = 0, h1 = 1. Then we extend z1 to ]0,+∞[ as a solution of
(4.4). We also define z2 as the solution of (4.4) such that z2(0) = 0, ż2(0) = 1.
From (4.4) and the initial conditions of z1 and z2, we easily argue that z1(t) > 0
for t ∈ IR, while z2(t) < 0 for t < 0. In particular, for i = 1, 2, the two functions
qi := żi/(σzi) will be respectively considered on IR (for i = 1) and ]−∞, 0[ (for
i = 2). Now, let S ∈ IR be as in Remark 4.1. Then:

E(t) :=
1
2

(ż1(t)2 − σ2a(t)z1(t)2) ≤ 0 for t ≤ S, (4.5)

q̇1(t) = σ(a(t)− q1(t)2) a.e. on IR. (4.6)

Indeed, the function E(t) in (4.5) can be got from (3.5) when replacing V (x)
by W (z) = 1

2σ
2z2, and x by z1. Then, according to the arguments which
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follow (3.10), E(t) decreases on ] −∞, S]: since E(−∞) = 0, (4.5) follows. As
regards (4.6), it is enough to recall that z1 solves (4.4). Now, let 0 < µ < σ

√
l∗,

b ∈ L∞(IR), β := b(−∞) ∈ IR and put, for t ≤ 0, J1(t) =]−∞, t], J2(t) = [t, 0].
Then, as t→ −∞:

(a) q1(t)→
√
l∗, (b) q2(t)→ −

√
l∗, (4.7)

(a) z1(t)e−µt → 0, (b) z2(t)→ −∞, (c) z1(t)z2(t)→ −1
2σ
√
l∗
, (4.8)

pi(t) := zi(t)−1

∫
Ji(t)

b(s)zi(s)ds→
β

σ
√
l∗
, i = 1, 2. (4.9)

Indeed, the function E(t) of (4.5) and the right-hand side of (4.6) have opposite
signs, so that q1(t) is increasing for t ≤ S. Since q1(t) ≥ 0 (because (4.3)
holds for z = z1), it converges from above to some non-negative, finite value
as t → −∞: actually, from (4.6) we argue that this value is nothing but

√
l∗,

so as to get (4.7a). As regards (4.8a), let us take λ ∈ ]µ/σ,
√
l∗[: thanks to

(4.7a) and the definition of q1, we find τ ≤ 0 such that ż1(s)/z1(s) ≥ µ1 for
s ≤ τ , where µ1 := λσ > µ. Now, for any t ≤ τ , we can integrate the previous
inequality from t to τ and put K = z1(τ) exp(−µ1τ), so as to get the inequalities
0 ≤ z1(t) ≤ K exp(µ1t), which imply (4.8a). On the other hand, (4.8b) follows
easily from the initial conditions of z2, since it solves (4.4). As regards (4.8c),
we remark that the Wronsk determinant w(t) of z1 and z2 is constant, and
w(0) = 1. Now we can regard the identity w ≡ 1 as a differential equation
with respect to z2: since z2(0) = 0, we get z2(t) := z1(t)

∫ t
0
z1(s)−2ds, so that

z1(t)z2(t) can be seen as the ratio between the two functions
∫ t

0
z1(s)−2ds and

z1(t)−2, which respectively diverge to −∞ and +∞ as t→ −∞. Now a simple
application of de l’Hopital’s rule, together with (4.7a), yields (4.8c). In order to
get (4.7b), we remark that w = σz1z2(q2− q1): since w ≡ 1, (4.7b) follows from
the previous relation, (4.7a) and (4.8c). Finally, in (4.9), we point out that p1 is
well-defined, since (4.8a) ensures that z1 is summable on ]−∞, t]. Furthermore,
for i = 1, 2, pi(t) is the ratio between the two functions

∫
Ji(t)

b(s)zi(s)ds and
zi(t). Now, for i = 1, they both converge to 0, thanks also to (4.8). On the
other hand, for i = 2, and provided that β 6= 0, they surely diverge to ±∞
and −∞ respectively, where the first limit depends on the sign of β: in both
cases, we can apply again de l’Hopital’s rule, and get (4.9) by virtue of (4.7).
Also the case i = 2, β = 0, which was left apart, can be easily tackled: indeed,
according to the previous argument, the ratio Φ(t) between

∫
J2(t)

z2(s)ds and
z2(t) converges to 1/σ

√
l∗, and |p2(t)| ≤ |b(t)|Φ(t), where, in order to justify the

last inequality, it is useful to recall that z2(t) < 0 for t < 0, so that −|z2| can
replace z2 in the definition of Φ. Then p2(t) → 0, as required by (4.9) in this
particular case.

Now we suppose β = 0, denote by (L) the complete linear equation z̈ = σ2az+b
and try to solve the following problem: for any τ, h ∈ IR find η ∈ IR in such
a way that the solution of (L) which fulfils the initial data z(τ) = h, ż(τ) = η
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vanishes at −∞. To this end we put

p(t) = z2(t)
∫ t

−∞
b(s)z1(s)ds+ z1(t)

∫ 0

t

b(s)z2(s)ds, (4.10)

z(t; c1, c2) = c1z1(t) + c2z2(t) + p(t), t, c1, c2 ∈ IR. (4.11)

For t ≤ 0 it is p(t) = z1(t)z2(t)(p1(t) + p2(t)), as we can easily argue from
the definition of p1 and p2 in (4.9). Then, according to (4.9) and (4.8c), we
get p(−∞) = 0, since β = 0. On the other hand, p solves (L), as we can
see through variation of constants: hence any solution z of (L) takes the form
(4.11), and z(−∞) = 0 if and only if c2 = 0, according to the behaviour of z1,
z2 and p as t → −∞. Then the required value of η is given by c1ż1(τ) + ṗ(τ),
where c1z1(τ) + p(τ) = h. If w1 denotes the Wronsk determinant of z1 and p,
we actually get ηz1(τ) = hż1(τ) + w1(τ). Now, since z1 and p both vanish at
−∞, it is easy to infer the same property on ż1 and ṗ, so that w1(−∞) = 0.
Furthermore, ẇ1 = bz1, because z1 and p respectively solve (4.4) and (L). Then
w1(τ) =

∫ τ
−∞ b(s)z1(s)ds, so that:

η =
1

z1(τ)

(
hż1(τ) +

∫ τ

−∞
b(s)z1(s)ds

)
. (4.12)

Lemma 4.2 Let η(τ, h) be as in (3.2), S ∈ IR as in Remark 4.1. Then:
(a) η(τ, h)/h→ σq1(τ) as h→ 0+, uniformly with respect to τ ≤ S.
(b) The function (τ, h) 7→ η(τ, h) is continuous.
(c) q1(τ) ≥

√
m whenever, for some m > 0, it is a(t) ≥ m on ] −∞, τ ]. If

the latter inequality is strict on a set of positive measure, the former is strict as
well.

Proof. (a) Let τ ≤ S, h ∈ ]0, r] be given, z(t) = u(t; τ, h) be the corresponding
solution of (4.1), where W (z) = V (−1 + z), so that η(τ, h) = ż(τ). Let us put
γ(z) = V ′(−1 + z)− σ2z, consider the function β(t; τ, h) = a(t)γ(u(t; τ, h)) and
denote by B(τ, h) its norm in L∞(] − ∞, τ ]). Let also Ω(h) and ω(h) stand
for the maximum values on [0, h] of |γ| and |γ′|, so that Ω(h) ≤ hω(h) and,
according to (4.3), B(τ, h) ≤ LΩ(h), where L = ‖a‖∞. Since γ′(0) = 0, we
also get ω(h) → 0 as h → 0+. Furthermore, the ratio between

∫ τ
−∞ z1(s)ds

and z1(τ) admits the finite limit (σ
√
l∗)−1 as τ → −∞, as we can argue when

putting i = 1, b ≡ β = 1 and t = τ in (4.9): then it takes a maximum value Φ
on ]−∞, S]. On the other hand, z solves the equation z̈ = σ2a(t)z+ b(t), where
b = β(·; τ, h): in particular, it is b(−∞) = 0, since γ(0) = 0. Hence the value η
we get from (4.12) by putting in it b = β(·; τ, h) is nothing but η(τ, h) = ż(τ).
Thanks to the previous arguments, we get the following evaluation, which proves
our claim:∣∣∣∣η(τ, h)

h
− σq1(τ)

∣∣∣∣ ≤ B(τ, h)
hz1(τ)

∫ τ

−∞
z1(s)ds ≤ LΩ(h)

h
Φ ≤ LΦω(h). (4.13)

(b) From (4.13) we argue that η is locally bounded: then we only need to
prove that its graph is closed. To this end, let us put w(t; τ, h, η) = ψ1(t; τ,−1+
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h, η), where ψ = (ψ1, ψ2) stands for the flow of (1.2). Then u(t; τ, h) =
w(t; τ, h, η(τ, h)) and, according to (4.12), the value η = η(τ, h) can be char-
acterized as the only solution to the equation

ηz1(τ)− hż1(τ)− j(τ, h, η) = 0, (4.14)

where we put j(τ, h, η) =
∫ τ
−∞ a(t)γ(w(t; τ, h, η))z1(t)dt. We recall that, accord-

ing to (2.3), we can suppose that u (and therefore w) is defined everywhere, as
a function of t, and also that γ is bounded. Furthermore, according to (4.8a),
z1 ∈ L1(] − ∞, τ ]). Then j is well defined, and it is easy to prove that it is
continuous: indeed, whenever (ti, hi, ηi) → (t, h, η) as i → +∞, the Lebesgue
theorem, together with the continuity of γ and w, ensures the expected conver-
gence. Hence (4.14) defines a closed set of points (τ, h, η), as required.

(c) Let τ be fixed, and put in (4.1) W (z) = 1
2σ

2z2, h = z1(τ): then z1

obviously minimizes the corresponding functional Φτ (·; a). Since z1 solves (4.4),
a simple integration by parts on the first term of m1 := Φτ (z1; a) shows that
m1 = 1

2z1(τ)ż1(τ). Now, let us replace in the previous problem a(t) by the
constantm: then the corresponding solution is z∗(t) = z1(τ) exp(λ(t−τ)), where
λ = σ

√
m, so that m∗ := Φτ (z∗;m) turns out to be 1

2λz1(τ)2. In order to get our
first claim, according to the definition of q1 and the previous evaluations, it is
enough to prove the inequality m1 ≥ m∗, which follows from m1 ≥ Φτ (z∗; a) ≥
m∗. As regards the second assertion, we point out that z∗ > 0, so that, in this
case, the strict inequality Φτ (z∗; a) > m∗ holds.
The proof of the two conditions which appear in (3.3) will be given in §5, and
requires, respectively, evaluations from below and above of the following ratio,
which are achieved in the next result:

R(τ, h) =
1
2

η(τ, h)2

V (−1 + h)
, (τ, h) ∈ C. (4.15)

Lemma 4.3 Let S be as in Remark 4.1, R(τ, h) as in (4.15). Then:
(a) For any l1 > l∗ there exists h1 ∈ ]0, r[ such that R(τ, h) ≤ l1 whenever

τ ≤ S, 0 < h ≤ h1.
(b) Let l∗ ≥ l∗: for any T ∈ IR there exists a pair (τ, h) ∈ C such that τ ≥ T

and R(τ, h) ≥ a(τ).

Proof. (a) Since 2h−2V (−1 + h) → V ′′(−1) = σ2 as h → 0+, Lemma 4.2a
entails that, as h → 0+, the following relation holds uniformly with respect to
τ ≤ S, so that our claim follows from (4.7a).

R(τ, h) =
η(τ, h)2

h2

h2

2V (−1 + h)
→ q1(τ)2. (4.16)

(b) If l∗ > l∗, it is obviously a(t) > l∗ on a set of positive measure ∆, but
also if l∗ = l∗, provided that a(t) is not constant: on the other hand, when
a(t) ≡ l∗ = l∗, the inequality to be proved becomes a trivial identity. So, let
∆ be as above, and fix T ∈ IR: of course, we can suppose that ∆∩] − ∞, T ]
has positive measure. Then, according to the last claim of Lemma 4.2c (where
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we put m = l∗), q1(t) >
√
l∗ for t ≥ T . Thanks to (4.16), we only need to

show that the inequality q1(τ)2 > a(τ) holds for some τ ≥ T . Let us suppose,
by contradiction, that q1(t) ≤

√
a(t) on [T,+∞[. Then, from (4.6), we should

argue q̇1 ≥ 0 on that half-line, so that q1 should converge from below to a limit
which, according to (4.6), is nothing but

√
l∗. Hence q1(t) ≤

√
l∗ for t ≥ T , in

contrast with the strict inequality we got before.

5 The asymptotically autonomous case.

In order to introduce the main result of this section, we put forward the following
conditions on the speed at which a(t) approaches its limits as t → ±∞, where
c is a positive constant to be specified below:

e−2ct(a(t)− l∗) → +∞ as t→ −∞, (5.1)
e2ct(a(t)− l∗) → +∞ as t→ +∞. (5.2)

Theorem 5.1 Let conditions (i)-(iii) of §2 and (v), (vi) of §4 hold, and put
c− =

√
l∗V ′′(−1), c+ =

√
l∗V ′′(1). Then problem (2.1) admits a solution,

provided that one of the two following assumptions is satisfied:

(vii) l∗ ≥ l∗, and (5.1) holds for some c < c−.
(viii) l∗ ≤ l∗, and (5.2) holds for some c < c+.

First of all we are going to get some evaluations on the transition times of the
trajectories of (3.2). To this end, we exploit inequalities (3.9-10), where we put
l = min(l∗, l∗), L = ‖a‖∞. In particular, we are interested in the time that
a given function x ∈ U needs for connecting two points at which V takes the
same value. To this end, we recall that the restrictions of V to the two intervals
[−1, x0] and [x0, 1] are both strictly monotone: then, for any h ∈ ]0, 1 + x0],
there exists a unique δ(h) ∈ ]0, 1− x0] such that

V (1− δ(h)) = V (−1 + h). (5.3)

For any (τ, h) ∈ C let us consider the corresponding solution x of (3.2): then
the value θ = θ(x) of Remark 3.1 can be written as θ = θ(τ, h), and we can put
ξ(τ, h) = x(θ(τ, h)), even in the case θ(τ, h) = +∞. Now, for any (τ, h) ∈ C
such that ξ(τ, h) > 1− δ(h), let T (τ, h) be the time that the solution x of (3.2)
needs for connecting the points −1+h and 1−δ(h). Furthermore, let L = ‖a‖∞,
and put, for any λ > 0, h ∈ ]0, r[,

I∗(λ, h) =
∫ x0

−1+h

[2λV (x)]−1/2 dx,

I∗(λ, h) =
∫ 1−δ(h)

x0

[2λ(V (x)− V (1− δ(h)))]−1/2 dx,
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and denote by t1, θ0 and t2 the times at which, respectively, x takes the values
−1 + h, x0, 1− δ(h). Then

I∗(L, h) ≤ θ0 − t1 ≤ I∗(l, h), (5.4)
t2 − θ0 ≤ I∗(l, h). (5.5)

Indeed, (5.4) follows from (3.9), where x1 = −1 + h, x2 = x0, (5.5) from (3.10),
where x1 = θ0, x2 = 1 − δ(h). But T (τ, h) = t2 − t1, so that, if we put
I(l, h) = I∗(l, h) + I∗(l, h),

I∗(L, h) ≤ T (τ, h) ≤ I(l, h). (5.6)

Remark 5.2. When x ∈ U+, the right hand side of (3.10) can be replaced
by
∫ x2

x1
(2lV (x))−1/2 dx, since El(t) ≥ El(θ) ≥ 0, where θ is taken from (H+).

Then the first inequality in (3.1), where we take the minus sign, implies that,
whenever 1− r ≤ x1 ≤ x2 < 1:

t2 − t1 ≤
1√
µl

log
1− x1

1− x2
. (5.7)

In the two following results we are going to prove that both conditions in (3.3)
take place, so that Theorem 5.1 will follow easily. We recall that V fulfils
conditions (i) and (ii) of §2: in particular, in Lemma 5.3, condition (ii) is to
ensure the evaluation from above in (5.6). From now on, in order to fix ideas,
we suppose l∗ ≥ l∗, so that l = l∗.

Lemma 5.3 Let conditions (i)-(iii), (v),(vi) hold, and l∗ ≥ l∗. Let (5.1) be
satisfied by some c ∈ ]0, c−[: then C \ C+ 6= ∅.

Proof. Let us argue by contradiction, and suppose that (H+) holds for any
x ∈ U : then we are going to build a function x ∈ U−. First of all, we suppose
c ≤
√
l∗µ, as we can actually do thanks to a suitable choice of the number r

in (3.1). Then we take S as in Remark 4.1 and, by virtue of (5.1), we choose
t1 < S such that

e−2c(S−t1) <
µ

ν

a(t1)− l∗
a(t1)

. (5.8)

Now we can find ρ ∈ ]0, 1[ such that ρ2 is strictly included between the two sides
of the inequality above, so as to get

l1 := a(t1)(1− ν

µ
ρ2) > l∗, (5.9)

S − t1 ≥
1
c

log
1
ρ
. (5.10)

Since l1 > l∗, we can find h1 > 0 as in Lemma 4.3a and take h ∈ ]0, h1[ such
that δ(h) ≤ r and R(τ, h) ≤ l1 for any τ ≤ S. We can also suppose that
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I∗(L, h) > t1 − S, since I∗(L, h) → +∞ as h → 0+, and take τ0 such that
t1 − τ0 > I(l, h). Then, from (5.6),

τ0 + T (τ0, h) < t1 < S + T (S, h),

where the function T (τ, h) is defined after (5.3), and can be easily shown to be
continuous on its domain, which contains C+. Then we can find τ ∈ ]τ0, S[ such
that τ+T (τ, h) = t1: we claim that (τ, h) ∈ C−. More precisely, as we are going
to show, the function x ∈ U which corresponds to the previous choice of τ and
h fulfils (H−) at the first time θ at which x(θ) = 1−ρ δ(h). First of all, we need
to show that θ ≤ S. To this end, let us apply (5.7) with x1 = x(t1) = 1− δ(h),
t2 = θ, x2 = x(θ) = 1 − ρ δ(h), so as to infer that θ − t1 does not exceed
(lµ)−1/2 log(1/ρ). Then it is enough to recall that c ≤

√
l∗µ, l = l∗ and (5.10)

holds in order to get θ ≤ S. In particular, we can suppose that a(t) is increasing
for t ≤ θ. Moreover:

1
2
ẋ(t1)2 − 1

2
η(τ, h)2 ≤ 0, (5.11)

V (x(θ)) = V (1− ρ δ(h)) ≤ 1
2
νρ2δ(h)2 ≤ ν

µ
ρ2V (1− δ(h)). (5.12)

Indeed, (5.12) can be deduced from (3.1), while (5.11) follows from (3.14), where
we put t0 = τ and recall that ẋ(τ) = η(τ, h) and V takes the same value on
x(τ) = −1 + h and x(t1) = 1− δ(h). Then

1
2
ẋ(θ)2 =

1
2
ẋ(t1)2 +

∫ θ

t1

a(t)V ′(x(t))ẋ(t)dt ≤

≤ 1
2
η(τ, h)2 + a(t1)(V (x(θ))− V (1− δ(h))) ≤

≤ l1V (−1 + h) + a(t1)(
ν

µ
ρ2 − 1)V (1− δ(h)) =

= V (−1 + h)[l1 − a(t1)(1− ν

µ
ρ2)] = 0.

In particular: the first equality follows from (3.11), in which we put t0 = t1,
t1 = θ. The first inequality holds by virtue of (5.11) and also because a(t) is
increasing on ]−∞, S], while V ′(x(t)) < 0 for t ≥ t1 > θ0. The second one, on
the contrary, follows from the inequality R(τ, h) ≤ l1 and (5.12). Finally, the
two last equalities follow from (5.3) and the definition of l1, which is given in
(5.9). Now, from the previous chain of relations, we get ẋ(θ) = 0: but θ is the
first time at which x(θ) = 1− ρ δ(h) < 1, so that x ∈ U−, a contradiction.

Lemma 5.4 Let conditions (i)-(iii), (v),(vi) hold, and suppose that l∗ ≥ l∗.
Then C \ C− 6= ∅.

Proof. Let T ∈ IR be as in Remark 4.1, take (τ, h) as in Lemma 4.3b and
consider the corresponding function x of (3.2). Let us suppose, by contradiction,
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that x ∈ U−, and take θ as in (H−). Since ẋ(θ) = 0 and (3.13) applies to t0 = τ
and t1 = θ, the following equalities hold true:

−a(θ)V (x(θ)) = E(θ) = E(τ)−
∫ θ

τ

V (x(t))da(t). (5.13)

We recall that E(τ) = 1
2η(τ, h)2 − a(τ)V (−1 + h), and R(τ, h) ≥ a(τ), so that

E(τ) ≥ 0. Since the the integral above is non-positive, from the second equality
of (5.13) we get E(θ) ≥ 0, while the first one entails E(θ) < 0: this contradiction
shows that, actually, x /∈ U−, so that C \ C− 6= ∅.

Proof of Theorem 5.1. As we already explained, it is enough to prove (3.3).
Furthermore, thanks to Remark 3.4, we only need to consider the case in which
(vii) holds: now our claim follows from Lemmas 5.3-4.

Remark 5.5. In lack of condition (vii) or (viii), Theorem 5.1 does not work,
as is shown by the simple example of Remark 3.6. Nevertheless, we think it
interesting to exhibit also examples in which a is not monotone. To this end, let
l∗, l
∗ > 0, S, T ∈ IR, a ∈ L∞(IR) be such that l∗ 6= l∗, S < T , a ≥ 0, a(t) ≡ l∗ for

t < S and a(t) ≡ l∗ for t > T . We are going to show that (2.1) has no solutions
if the difference ∆ := T − S is too small with respect to the norm R of a in
L∞([S, T ]). Indeed, let us suppose that (2.1) admits a solution x and put, for
any t ∈ [S, T ], ρ(t) = ‖u(t) − u(S)‖, where u = (x, ẋ). Let M0 and M1 denote
the respective norms of the functions 1

2V
′V −1/2 and V ′′ in L∞(]−1, 1[): on this

subject, we point out that 1
2V
′V −1/2 is actually bounded on ] − 1, 1[, since its

square admits the finite limits 1
2V
′′(±1) as x → ±1. We also put σ =

√
l∗/l∗,

and denote by K and γ suitable positive constants. Then:

(a) ẋ(S) =
√

2l∗V (x(S)), (b) ẋ(T ) =
√

2l∗V (x(T )), (5.14)

|ẋ(T )− σẋ(S)| =
√

2l∗|
√
V (x(T ))−

√
V (x(S))| ≤

≤
√

2l∗M0|x(T )− x(S)|, (5.15)

ẋ(S) |1− σ| ≤ |ẋ(T )− σẋ(S)|+ |ẋ(T )− ẋ(S)| ≤

≤ K ‖u(T )− u(S)‖ = Kρ(T ), (5.16)

‖u̇(S)‖ ≤ |ẋ(S)|+ |ẍ(S)| ≤ |ẋ(S)|+R|V ′(x(S)| ≤ γ ẋ(S). (5.17)

Of course, (5.14) is due to the conditions x(±∞) = ±1, and entails the equality
in (5.15). Since M0 is a Lipschitz constant for

√
V , the inequality in (5.15)

holds as well, and implies, in turn, the last inequality of (5.16), provided we
take K =

√
2l∗M2

0 + 1. Finally, as regards the last inequality in (5.17), we
point out that |V ′| does not exceed 2M0

√
V (in particular at x = x(S)), and

recall (5.14a): then it is enough to put γ = RM0

√
2/l∗ + 1. We also recall, in

(5.16) and (5.17), that ẋ(S) > 0. Now, let f be as in (1.2), L = RM1 + 1. We
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remark that the vector function u is absolutely continuous, so that ρ enjoys the
same property. Then:

|ρ̇(t)| ≤ ‖u̇(t)‖ = ‖f(t, u(t))‖ ≤

≤ ‖f(t, u(S))‖+ ‖f(t, u(t))− f(t, u(S))‖ ≤ (5.18)

≤ ‖u̇(S)‖+ L‖u(t)− u(S)‖ ≤ γ ẋ(S) + Lρ(t) a.e. on [S, T ],

ρ(t) ≤ (γ/L) ẋ(S) (exp(L(t− S))− 1), t ∈ [S, T ]. (5.19)

Indeed, the field f(t, ·) obviously admits the Lipschitz constant L, so that the
third inequality (from the beginning) in (5.18) holds true, while the last one
follows from (5.17). Finally, from (5.18), Gronwall’s Lemma and the condition
ρ(S) = 0, we easily argue (5.19). Now, let us put t = T in (5.19), and compare
the resulting inequality with (5.16): after removing the common factor ẋ(S) > 0,
we find that |1− σ| does not exceed C(eL∆ − 1), where C = γK/L. Hence:

∆ ≥ 1
L

log
(

1 +
|1− σ|
C

)
. (5.20)

We point out that the constants L and C do not depend on the solution x, while
they depend on a only through the values R, l∗, l∗. In particular, if we suppose
that l∗ and l∗ are given, we can write the right-hand side of (5.20) as λ(R), and
recall that λ(R) > 0, since l∗ 6= l∗ entails σ 6= 1. Now, in order to build the
required counter-example, we only need to fix R > 0, and take S, T ∈ IR in such
a way that 0 < ∆ = T − S < λ(R): then, according to (5.20), (2.1) cannot
admit solutions, as soon as 0 ≤ a ≤ R on [S, T ].

6 Appendix.

In this section we are going to prove Lemma 2.5. To this end, we put forward
the following Lemma 6.1, where the origin plays the role of the point x0 of
condition (ii). In a similar way, in Lemma 6.3, the variable x is shifted, with
respect to Lemma 2.5, in order to bring the point x0 to the origin.

Lemma 6.1 Let I = [σ, τ ] ⊆ IR, Ω ⊆ IR2, g(t, u) ∈ IR2 be a vector field on
I × Ω which is measurable with respect to t and continuous with respect to u.
For any t ∈ I, u ∈ Ω, λ ∈ IR let us define Qλ(t, u) as g(t, u) · (u+ λJu), where
J : (x, y) 7→ (y,−x). Let u = (x, y) ∈ AC(I; Ω), u̇(t) = g(t, u(t)) a.e. on I,
ρ(t) := ‖u(t)‖ > 0 on I. Let θ ∈ AC(I; IR) be such that x+ iy = ρeiθ on I, and
put ∆θ = θ(τ) − θ(σ). Suppose that, for some λ ≥ 0, Qλ ≥ 0 on I × Ω. Then
ρ(τ) ≥ ρ(σ) exp(λ∆θ).

Proof. It is known that a function θ as above exists, and ∆θ does not depend
on its choice. Furthermore θ̇(t)ρ(t)2 = −u̇(t) · Ju(t), ρ(t)ρ̇(t) = u(t) · u̇(t): since
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u̇(t) = g(t, u(t)), from Qλ(t, u(t)) ≥ 0 we get the inequality λθ̇ ≤ ρ̇/ρ, and we
only need to integrate it on I.

Definition 6.2. Let g(t, u) be a vector field which is measurable with respect
to t and lipschitzian with respect to u, ψ(t; τ, u) its flow, C a closed set, u ∈ ∂C:
we say that u is an exit point for C with respect to g, and write u ∈ Γ+(C),
if there exists τ ∈ IR such that ψ([τ, σ]; τ, u) \ C 6= ∅ for any σ > τ . For
instance, if C is the intersection of a finite number of half-planes of the kind
pi ·u ≤ βi (i = 1, ..., h), the same techniques as in [1] (Theorem 16.5) show that
Γ+(C) ⊆ ∂C \K, where K is the set of those points u ∈ ∂C such that, for a.e.
t ∈ IR, it is g(t, u) · pi ≤ 0 whenever pi · u = βi.

Lemma 6.3 Let a and V be as in Lemma 2.5, and put W (x) = V (x + x0),
x± = ±1 − x0 (so that x− < 0 < x+), H0(t, x, y) = 1

2y
2 − a(t)W (x). Then

there exists a function H(t, x, y) such that H ≡ H0 for y ≥ 0, H1 := H − H0

does not depend on t, H1 ∈ C2(IR2), and the field g(t, u) = J∇uH(t, u) enjoys
the following property: whenever u = (x, y) solves the equation u̇ = g(t, u) and
u(±∞) = (x±, 0), it is y > 0 everywhere.

Proof. We divide the proof into several steps.
1) We define H as H0 +H1, where H1(x, y) takes the form 1

3p(x) min(0, y)3,
and the function p fulfils the following properties: p ∈ C2(IR), p ≥ 0, p(x)
is constant for |x| ≤ r0 (where r0 ∈ ]0,min(−x−, x+)[ is fixed from now on),
p is monotone on [x−,−r0] and [r0, x

+], p(x) = 0 for x ≤ x− and x ≥ x+.
The constant value p̄ on [−r0, r0] is chosen as follows: since inf a > 0 and
W ′′(0) = V ′′(x0) < 0, we can find m0,M > 0 such that m0 < 1 and

m0|x| ≤ a(t)|W ′(x)| ≤M |x|, t ∈ IR, |x| ≤ r0. (6.1)

Now, let 0 < ω < π/2, m = m0 cos2 ω, λ > (M + 1)/(2m), 0 < h <
r0 exp(−λ(π+ω)) sinω: then we put p̄ = 1/h. We point out that H1 ∈ C2(IR2),
and the two components H ′y and −H ′x of g = J∇uH are respectively given, for
y ≤ 0, by y + p(x)y2 and a(t)W ′(x)− 1

3p
′(x)y3. We also denote by gi the field

which correspond to Hi (i = 0, 1), so that g = g0 + g1. In the same way as Qλ
corresponds to g in Lemma 6.1, for i = 0, 1 we can associate to gi the function
Qiλ, so that Qλ = Q0

λ +Q1
λ.

2) According to the notations of Lemma 6.1, it is Qλ ≥ 0 on IR×Ω+, where
Ω+ := [−r0, r0] × [0,+∞[ and λ > 0 is taken as above. In order to prove this
claim, we first show that, whenever |x| ≤ r0, t, y ∈ IR and u = (x, y):

(a) g0(t, u) · Ju = y2 − a(t)W ′(x)x ≥ m0x
2 + y2,

(b) g0(t, u) · u = xy + a(t)W ′(x)y ≥ −mλ‖u‖2,

(c) Q0
λ(t, u) ≥ λ((m0 −m)x2 + (1−m)y2).

(6.2)

Indeed, the first inequality of (6.1) easily entails (6.2a) (since xW ′(x) ≤ 0 on
[x−, x+]), while the second one allows to evaluate from below g0(t, u) · u by
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−(M + 1)|xy|: then (6.2b) follows from 2|xy| ≤ x2 + y2 and M + 1 < 2mλ.
Now, in order to get (6.2c), it is enough to multiply (6.2a) by λ and add (6.2b).
Finally, we easily get our claim from (6.2c), since m < m0 < 1 and Qλ = Q0

λ

for y ≥ 0.
3) The inequality Qλ ≥ 0 holds on IR × D as well, where D is a suitable

subset of the half-plane y ≤ 0: namely, D is the the convex hull of the four
points p0 = (0, 0), q0 = (h/δ,−h), q1 = (r1,−h), p1 = (r1, 0), where δ = tgω
and r1 = r0 exp(−λπ): since sinω < δ and h < r1 exp(−λω) sinω, we get, in
particular, h/δ < r1, so thatD is a right trapezium. Furthermore, 0 ≤ x ≤ r1 for
any (x, y) ∈ D, so that p(x) ≡ 1/h and p′(x) ≡ 0. In particular, g1(u)·Ju = y3/h
and g1(u) · u = xy2/h. Since the latter quantity is non-negative, we argue that
Q1
λ(u) ≥ λy3/h: but −h ≤ y ≤ 0, so that, actually, Q1

λ(u) ≥ −λy2. Now we
can add the last inequality to (6.2c): since m0 = m(1 + δ2), we get Qλ(t, u) ≥
λm(δ2x2 − y2), where the last term is non-negative, because −δx ≤ y ≤ 0 on
D.

4) Let us define U , U1, Q−, Q+ as, respectively: [0, x+]×]−∞,−h], [r1, x
+]×]−

∞, 0], ] −∞, x−]×] −∞, 0], [x−,+∞[×[0,+∞[. According to the criterion we
gave at the end of Def. 6.2, the properties of the function p(x) and also (2.3),
we can easily check that Γ+(U) and Γ+(Q−) are empty, while Γ+(Q+), Γ+(U1)
and Γ+(D) are respectively contained in p0x

+, p1q1, p0q0 ∪ q0q1.
5) Let u = (x, y) be a solution of the equation u̇ = g(t, u) such that u(±∞) =

(x±, 0): then y is definitively positive (to the right and to the left). Indeed,
according to the nature of the equilibrium (x−, 0), the convergence of (x(t), y(t))
to (x−, 0) is from the left or from the right on both components. Actually,
since Γ+(Q−) = ∅, the former case is ruled out, because x(+∞) = x+. Then
y(t)→ 0+ as t→ −∞. In a similar way we can show that y(t)→ 0+ as t→ +∞,
since (2.3) ensures the negative invariance of the set [x+,+∞[× ]−∞, 0].

6) By contradiction, let u = (x, y) be as in the previous step, but suppose
that y is not everywhere positive: we are going to show that u(t) goes into D.
Indeed, since y is definitively positive to the left, we can consider the first time
τ0 at which y(τ0) = 0. But Γ+(Q+) ⊆ p0x

+, so that 0 ≤ x(τ0) ≤ x+, and
x(] − ∞, τ0]) ⊇ ]x−, 0]: then we can find σ0 < τ0 such that x(σ0) = −r0 and
y(σ0) > 0. Now we can show that x(τ0) ≥ r1: of course, since r1 < r0, it is
right to suppose x(τ0) ≤ r0, so that u(t) ∈ Ω+ for σ0 ≤ t ≤ τ0. In this case,
according to the second step, we can apply Lemma 6.1, by putting in it Ω = Ω+,
σ = σ0 and τ = τ0 (so that 0 ≤ −∆θ ≤ π): since ρ(σ0) ≥ |x(σ0)| = r0 and
ρ(τ0) = x(τ0) we actually get x(τ0) ≥ r1. Then, after the time τ0, u(t) reaches
U1. Now, since y(t) is definitively positive to the right, u(t) must leave U1: but
Γ+(U1) ⊆ p1q1, so that u(t) enters D at a certain time σ1.

7) We show that u(t) ∈ U definitively. Indeed, what we told about D in the
fourth step ensures that, after the time σ1, u(t) must cross p0q0 or q0q1. Let
us suppose, for instance, that the former case occurs at a certain time τ1: then
ρ(τ1) ≤ λ0, where λ0 = h/ sinω is the length of p0q0. According to the third
step, let us put Ω = D, σ = σ1 and τ = τ1 in Lemma 6.1 (so that 0 ≤ −∆θ ≤ ω):
we get ρ(τ1) ≥ r1 exp(−λω), so that r1 ≤ λ0 exp(λω), in contrast with our choice
of h. Hence u(t) must cross q0p1 and go into U : but Γ+(U) = ∅, so that u(t)
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does not leave U , where y(t) cannot converge to zero.

Proof of Lemma 2.5. We first modify the field g = J∇uH of the previous
result in such a way that it admits a linear domination, according to Def. 2.3.
To this end, we remark that H(t, x, y) = G(x, y) − a(t)W (x), where G(x, y) =
1
2y

2 + 1
3p(x)y3 for y ≤ 0: in particular, since 0 ≤ p(x) ≤ 1/h, G(·,−h) takes

values in the interval J := [h2/6, h2/2]. Now, let χ ∈ C2(IR) be such that
χ(s) = s for s in an open neighbourhood of J , χ′ ≥ 0 and χ′ has compact
support: then the function G̃(x, y) which agrees with G(x, y) for y ≥ −h and
with χ(G(x, y)) for y < −h is C2 as well. Furthermore its gradient is bounded
for y ≤ −h, thanks to the properties of χ, but also for −h ≤ y ≤ 0, since p is
bounded in C1(IR). On the other hand, ∇G̃(x, y) = (0, y) for y ≥ 0, so that
the field g̃ = J∇G̃ fulfils a linear domination. Furthermore, thanks to (2.3), the
same can be said for g∗(t, x, y) = g̃(x, y)+(0, a(t)W ′(x)). We also point out that
g∗ ≡ g for y ≥ −h, while πxg∗ = χ′(G)πxg for y < −h, where πx denotes the
projection on the x-axis: in particular, since χ′ ≥ 0, also the positive invariance
of the strip U is preserved, when replacing g by g∗. Now, in order to get the
field f∗ of Lemma 2.5, we only need to shift g∗ with respect to x, so as to get
f∗(t, x, y) = g∗(t, x− x0, y), that is to say:

f∗(t, x, y) = (0, a(t)V ′(x)) + g̃(x− x0, y). (6.3)
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