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1 Introduction14

Strict Nash equilibrium is a solution concept that possesses desirable features.1 In15

this paper, we identify a class of games where every pure-strategy Nash equilibrium16

is essentially strict. Only pure-strategy Nash equilibria are considered in the paper.17

Equilibria in mixed strategies might also be considered, but then a proper definition of18

mixed strategies should be carefully provided, tackling the difficulty of modeling the19

independence of a continuum of players. We refer the interested reader to Khan et al.20

(2015) for a possible solution. More precisely, we consider games with an atomless21

space of players (or types, if the game if of incomplete information), and action sets22

that are second countable and satisfy a mild separation property.2,3 In addition, we23

restrict attention to games where the payoff functions satisfy the strict single crossing24

property (Milgrom and Shannon 1994) in players (types) and actions. We are aware that25

this is a severe restriction. However, from the one hand, we relax such an assumption26

to some extent by considering, first, partial orders on the action sets together with27

quasisupermodular utility functions and, second, partial orders on the player (type)28

sets together with a comparability property that limits the numerosity of uncomparable29

players (types). On the other hand, we think that the strict single crossing property30

is less demanding when we come to applied models, where instead the possibility to31

work with action spaces such as the real line (or its intervals) is usually appreciated.32

Our main contribution is the identification of conditions that guarantee that every33

Nash equilibrium is essentially strict (Theorem 1). However, the same conditions do34

not guarantee that a Nash equilibrium actually exists. To obtain existence of essen-35

tially strict Nash equilibria, one can apply our result together with one of the many36

equilibrium existence theorems that the literature provides. Actually, we follow this37

line in Sect. 4, where in Sects. 4.1 and 4.2 we provide applications of our main result to38

incomplete information games and large games. In particular, we show the existence39

of an evolutionarily stable strategy in a general class of incomplete information games,40

and strict Nash equilibrium in a class of population games with heterogenous players.41

The paper is organized as follows. In Sect. 2, we introduce the assumptions. In42

Sect. 3, we state our main result. We conclude with Sect. 4, where we provide a43

discussion, first showing how to combine our main result with existence theorems and44

then commenting on the assumptions and the findings. The “Appendix” collects one45

technical lemma (Lemma 1), its proof, and the proof of Proposition 2.46

2 Assumptions47

Let us consider a non-atomic game Γ = 〈I, {(Ti , Ti , τi )}i∈I , {Ai }i∈I , {ui }i∈I 〉, where:48

1 When working with a finite set of actions, strict Nash equilibria have been proven to be evolutionary

stable (see, e.g., Crawford 1990) and asymptotically stable (see, e.g., Ritzberger and Weibull 1995).

2 Second countability implies a cardinality less than or equal to the cardinality of the continuum.

3 The separation property that we assume ensures that every two actions that can be strictly ordered can

also be separated by a third action not greater than the largest of the two.

123

Journal: 40505 Article No.: 0090 TYPESET DISK LE CP Disp.:2015/12/9 Pages: 15 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Strict Nash equilibria in non-atomic games with strict...

• I is a finite set of player groups or institutions;449

• for all i ∈ I , (Ti , Ti , τi ) is an atomless probability space with Ti set of players for50

group/institution i , Ti σ -algebra and τi probability measure;551

• for all i ∈ I , Ai is the set of actions for players in group i ;52

• for all i ∈ I , ui : Ti × F → R is the utility function for all players of group i ,53

where F =
∏

j∈I

∏
t∈T j

A j .54

We call f ∈ F a profile of actions, since it maps, for all i ∈ I , every player t ∈ Ti55

into an action ft ∈ Ai .
6

56

We denote with f−t the restriction of f to F−t =
∏

j∈N

∏
t ′∈T j ,t

′ �=t A j , and we57

call it a profile of actions by players other than t .7 We write ui (t, a, f−t ) to indicate58

the utility accruing to player t ∈ Ti if she chooses action a ∈ Ai and faces a profile of59

actions f−t .60

We now introduce assumptions on {(Ti , Ti , τi )}i∈I (collected in AT), on {Ai }i∈I61

(collected in AA), and on {ui }i∈I (collected in AU).62

Assumption (AT). For all i ∈ I :63

AT1 (Ti ,≤
T
i ) is a partial order;64

AT2 for every T ′ ⊆ Ti such that there do not exist t, t ′ ∈ T ′ with either t ≤T
i t ′ or65

t ′ ≤T
i t , we have that (1) T ′ ∈ Ti , and (2) τi (T

′) = 0.66

Assumption AT2 provides a bound on the cardinality of sets of uncomparable play-67

ers, basically requiring for each Ti that any subset of players such that every pair is68

uncomparable has negligible size. Indeed, the possibility that some players are not69

comparable is left open by AT1, since the order may not be total. We observe that AT270

is trivially satisfied when (Ti ,≤
T
i ) is a linear order. More interestingly, AT2 allows us71

to consider other cases that might be of interest in applications. For instance, think of72

Ti as made of a finite or countably infinite number of populations, where comparability73

is within each population, but not across populations. This is not allowed if Ti is a74

linear order, while it is compatible with our assumption. Moreover, AT2 is satisfied75

if, for every i ∈ I , Ti is made by a subset of a multidimensional Euclidean space, as76

shown in the Proof of Proposition 2.77

Assumption (AA). For all i ∈ I :78

AA1 (Ai ,≤
A
i ) is a lattice, i.e., for every two actions a, a′ ∈ Ai , there exists the least79

upper bound a ∨ a′, and the greatest lower bound a ∧ a′;80

4 Here we follow the labeling proposed by Khan and Sun (2002), which allows to encompass both games

with many players and games with incomplete information.

5 For games with incomplete information, the set I of groups/institutions has to be interpreted as the set of

players, while the set of players Ti has to be interpreted as the set of types for player i ∈ I .

6 We note that, under this definition of F as uncountable cross product of action sets, measurability issues

can emerge. These issues cannot be settled without imposing further structure, that is however unnecessary

for our main result. Therefore, we choose to take care of measurability only in the applications of Sect. 4.

7 In case of incomplete information games (where i is intepreted as a player and Ti as her set of types),

player i has already known her type t when computing expected utility. So, it is redundant to consider the

actions that would be taken by types in Ti \{t}, and hence, we have to require that ui (t, f ) is constant over

the actions chosen by types t ′ ∈ Ti \{t}.
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E. Bilancini, L. Boncinelli

AA2 (Ai ,Si ) is a topological space;81

AA3 (Ai ,Si ) is second countable, i.e., there exists a countable base for topology Si ;82

AA4 (Ai ,Si ) is such that for every two actions a, a′ ∈ Ai , with a <A
i a′, there exists83

an open set S ∈ Si such that a′ ∈ S and a′′ /∈ S for every a′′ ≤A
i a.84

Beyond imposing a lattice structure (AA1) and a topological structure (AA2) on the85

action space, AA contains two further topological properties: AA3, which is a standard86

assumption that imposes a bound on the topological size of the space, and AA4, which87

is about order separation with respect to the lattice structure and turns out to be a88

strengthening of the axiom of separation T0.889

Assumption (AU). For all f ∈ F , i ∈ I , t, t ′ ∈ Ti , and a, a′ ∈ Ai :90

AU1 ui is quasisupermodular in actions, i.e., ui (t, a, f−t ) ≥ ui (t, a∧a′, f−t ) implies91

ui (t, a∨a′, f−t ) ≥ ui (t, a′, f−t ), and ui (t, a, f−t ) > ui (t, a∧a′, f−t ) implies92

ui (t, a ∨ a′, f−t ) > ui (t, a′, f−t );93

AU2 ui satisfies strict single crossing in players and actions, i.e., for all t <T
i t ′ and94

a <A
i a′, we have that ui (t, a′, f−t ) ≥ ui (t, a, f−t ) implies ui (t

′, a′, f−t ′) >95

ui (t
′, a, f−t ′).96

Assumption AU1 is always satisfied when Ai is a total order, while it implies a sort of97

complementarity in own actions when Ai is a partial order, as for instance when Ai =98

[0, 1]k for some k > 1. Assumption AU2, instead, introduces a sort of complementarity99

between actions and players.9100

Finally, we present some further definitions. A profile of actions f ∈ F is said to101

be (essentially) a Nash equilibrium in pure strategies, or simply a Nash equilibrium,102

if, for all i ∈ I , for τi -almost all t ∈ Ti , we have that ui (t, ft , f−t ) ≥ ui (t, a, f−t ) for103

all a ∈ At . A Nash equilibrium f is said to be essentially strict if, for all i ∈ I , for104

τi -almost all t ∈ Ti , we have that ui (t, ft , f−t ) > ui (t, a, f−t ) for a �= ft such that105

ai ∈ Ai , while it is said to be monotone if, for all i ∈ I , for all t, t ′ ∈ Ti , we have that106

t ′ >T
i t implies ft ′ ≥A

i ft .107

3 Main result108

We are ready to state our main result.109

Theorem 1 Let Γ be a game that satisfies AT, AA, and AU. Then, every Nash equi-110

librium of Γ is essentially strict and monotone.111

8 T0 requires that any two distinct points in a set are topologically distinguishable, i.e., the sets of neigh-

borhoods of the two points differ one from the other.

9 We note that AU2 is slightly different from the standard definition of strict single crossing property since

the profile of opponents’ actions, which is a third argument of function u in addition to t and ft , is not

exactly the same in f−t and f−t ′ : Indeed, the behavior of players different from t and t ′ is the same, while

the behavior of t is considered in f−t but not in f−t ′ , and the behavior of t ′ is considered in f−t ′ but not

in f−t . This difference disappears if, for instance, we assume individual negligibility (see discussion at the

end of Sect. 3) or if we constrain players to care only about actions of groups/institutions different from

theirs (as it happens, e.g., in games with incomplete information).
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Strict Nash equilibria in non-atomic games with strict...

Proof We first show that every Nash equilibrium is essentially strict. Let Ri,t ( f )112

denote the set of best replies to f for player t ∈ Ti , namely Ri,t ( f ) = {a ∈ Ai :113

ui (t, a, f−t ) ≥ u(t, a′, f−t ) for all a′ ∈ Ai }. By Lemma 1 (see “Appendix 1”), we114

know that, for all i ∈ I , the set {t ∈ Ti : ||Ri,t ( f )|| > 1} is a countable union of sets115

having measure zero. Since the countable union of zero-measure sets has measure zero,116

we can conclude that τi ({t ∈ Ti : ||Ri,t ( f )|| > 1}) = 0 for all i ∈ I . This, together117

with the observation that when f is a Nash equilibrium we have ||Ri,t ( f )|| > 0 for118

τi -almost all t ∈ Ti and for all i ∈ I , implies that ui (t, ft , f−t ) > ui (t, a, f−t ) for119

τi -almost all t ∈ Ti and for all i ∈ I .120

We now show that every Nash equilibrium is monotone. Suppose that t ′ >T
i t ,121

a ∈ Ri,t ( f ), a′ ∈ Ri,t ′( f ) and, ad absurdum, a �A
i a′. Since a ∈ Rt ( f ), we have122

that u(t, a, f−t ) ≥ u(t, a ∧ a′, f−t ), but then u(t, a ∨ a′, f−t ) ≥ u(t, a′, f−t ) by123

quasisupermodularity in actions, and u(t ′, a ∨a′, f−t ) > u(t ′, a′, f−t ) by strict single124

crossing property in players and actions and a ∨ a′ �= a′, which in turn comes from125

a �A
i a′. We simply observe that u(t ′, a ∨ a′, f−t ) > u(t ′, a′, f−t ) is in contradiction126

with a′ ∈ Ri,t ( f ). ⊓⊔127

The fact that f is essentially strict follows from (Ti , Ti , τi ) being atomless for all i ∈ I128

and from the set of weakly best responders being countable. Then, a straightforward129

application of the property of strict single crossing in players and actions allows130

establishing the monotonicity between players and actions in Nash equilibria—this131

result following basically from Theorem 4’ of Milgrom and Shannon (1994).132

Let us conclude with a remark on players’ negligibility. In Theorem 1, utility133

depends on the actions of each single player t ∈ Ti , i ∈ I . We did this in order134

to state our findings in a setting which allows for a general form of utility functions.135

However, we note that when we have an atomless space of players, it may be rea-136

sonable to impose that any single player j �= t is negligible in terms of t’s utility.137

This assumption is particularly reasonable if one also assumes continuity of the utility138

function (see the discussion in Khan and Sun 2002, Section 2). To introduce negligi-139

bility in our framework, it suffices to impose that, for all i ∈ I , the utility function ui140

is such that whenever f, f ′ ∈ F agree on a set of measure one according to τi , we141

have that ui (t, f ) = ui (t, f ′) for every t ∈ Ti , such that ft = ft ′ . We observe that142

such kind of players’ negligibility is implied in the applications of Sect. 4.143

4 Discussion144

The celebrated result in Harsanyi (1973) says that independently perturbing the payoffs145

of a finite normal form game produces an incomplete information game with a contin-146

uum of types where all equilibria are essentially pure and essentially strict 10 and that147

for any regular equilibrium of the original game and any sequence of perturbed games

10 Note that strict Nash equilibria are called strong Nash equilibria in Harsanyi (1973).
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converging to the original one, there is a sequence of essentially pure and essentially148

strict equilibria converging to the regular equilibrium.11,12
149

For Theorem 1 to have some bite, it needs to be coupled with a result guaranteeing150

the existence of a pure-strategy Nash equilibrium. The literatures on incomplete infor-151

mation games and large games have provided several of such existence results. We152

first discuss some known existence results in non-atomic games. Then, in Sects. 4.1153

and 4.2, we illustrate how our contribution can be used to shed light on the strictness154

of Nash equilibria in applications to incomplete information games and large games,155

respectively. Unless otherwise specified, any topological space in this section is under-156

stood to be equipped with its Borel σ -algebra, and the measurability is defined based157

on it. Finally, in Sect. 4.3, we comment on the assumptions used in the paper, arguing158

in favor of their tightness.159

The use of single crossing properties is not new in the literature on games with160

many player types. Athey (2001) analyzes games of incomplete information where161

each agent has private information about her own type, and the types are drawn from162

an atomless joint probability distribution. The main result establishes the existence of163

pure Nash equilibria under an assumption called single crossing condition for games164

of incomplete information, which is a weak version of the single crossing property in165

Milgrom and Shannon (1994).13 In Sect. 4.3, we argue that such a property is not a166

sensible generalization for our purposes.167

In a finite-player incomplete information game with diffused information, if in168

addition players’ information is independent (instead of assuming an order structure),169

the existence of a pure Nash equilibrium can be established similarly to the one in a170

large game (with a non-atomic space of players). It is now well recognized (see Khan171

et al. 2006) that the purification principle due to Dvoretzky et al. (1951) guarantees172

the existence of pure Nash equilibria in non-atomic games14 when the action space is173

finite as, for example, in large games like Schmeidler (1973), or in games with diffused174

information as in Radner and Rosenthal (1982) and Milgrom and Weber (1985) (see175

Khan and Sun 2002, for a survey on games with many players).15,16 Existence of pure176

Nash equilibria does not extend, however, to general games. For action spaces that177

11 See also Dubey et al. (1980) for a related use of strict equilibria in large games.

12 The work of Harsanyi (1973) has been extended by a series of contributions providing more general

conditions for the existence of pure equilibria, but disregarding the issue of approachability and the existence

of strict equilibria (see Morris 2008 and references there in).

13 Reny and Zamir (2004) prove the existence of pure- strategy Nash equilibria under a slightly weaker

condition. McAdams (2003) further extends the analysis to multidimensional type spaces and action spaces,

while Reny (2011) extends it to more general partially ordered type spaces and action spaces.

14 Interest in games with many players has recently spanned across different settings (see, e.g., Alós-

Ferrer and Ritzberger 2013, for extensive form games and Balbus et al. 2013, for games with differential

information), and different notions of equilibrium (see, e.g., Correa and Torres-Martínez 2014, can exists

when the make for essential equilibria).

15 Mas-Colell (1984) deals with the issue of Schmeidler (1973) using a different approach based on dis-

tributions rather than measurable functions. See Khan et al. (2013b) for a recent discussion of related

issues.

16 Approximated versions of the result in Schmeidler (1973) have been given for a large but finite number

of players (Rashid 1983; Carmona 2004, 2008).
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Strict Nash equilibria in non-atomic games with strict...

are countable and compact, conditions for the existence of pure Nash equilibrium are178

given in Khan and Sun (1995) and then generalized in Yu and Zhang (2007). When179

the action space is an uncountable compact metric space, saturated probability spaces180

can be used to guarantee the existence of a pure-strategy Nash equilibrium, as shown181

in Keisler and Sun (2009) and Khan et al. (2013a).17
182

4.1 An application to incomplete information games183

We now show how Theorem 1 can be used to shed light on the strictness of a Nash184

equilibrium in a Bayesian setting. We use the setup given by McAdams (2003),18
185

which is a generalization of the one in Athey (2001). More precisely, we consider the186

incomplete information game Γ I = 〈I, ([0, 1]h, φ), A, {ui }i∈I 〉, where:187

• I is the set of players with cardinality ||I || = n ∈ N;188

• for all i ∈ I , ([0, 1]h, φ) describes the h-dimensional common type space, with189

φ : Rnh → R++ the positive and bounded joint density on type profiles;190

• for all i ∈ I , A ⊂ Rk is the set of actions for types of player i ,19 with A being191

either a finite sublattice with respect to the product order or [0, 1]k ;192

• for all i ∈ I , u I
i (ti , ai ,α−i ) =

∫
[0,1]h(n−1) Ui (ai ,α−i (t−i ))φ(t−i |ti )dt−i is the util-193

ity function for all types of i , where α−i (t−i ) is the vector of others’ actions as a194

function of their type, t−i is the vector of others’ types, φ(t−i |ti ) is the conditional195

density of t−i given ti , and Ui is bounded, Lebesgue measurable and, if A = [0, 1]k ,196

also continuous in a ∈ An .197

In Γ I a strategy for player i can be described by function αi : [0, 1]h → A. So, we can198

say that a strategy profile (α1, . . . , αn) is a Nash equilibrium of game Γ I if it induces199

a profile of actions such that for all i ∈ I , for all t ∈ [0, 1]h , ui (t, αi (t),α−i ) ≥200

ui (t, a,α
−i ) for all a ∈ A.201

By construction, Γ I satisfies AA and AT. So, if Γ I also satisfies AU, then by virtue202

of our Theorem 1 every Nash equilibrium of Γ I is essentially strict, and monotone in203

types and actions. Moreover, existence of a Nash equilibrium follows from Theorem204

1 in McAdams (2003) that can be applied since AU2 implies the single crossing205

condition—which is required by the Theorem.206

Perhaps more interestingly, we can use the setup of incomplete information games207

to show what Theorem 1 can say from the perspective of evolutionary game theory.20
208

Indeed, although the notion of evolutionarily stable strategy remains a prominent209

solution concept in evolutionary game theory, its use has some shortcomings when210

17 See Carmona and Podczeck (2009) for a discussion on the relationship between alternative formalizations

of non-atomic games and existence results, with a focus on large games. See also Fu and Yu (2015) for a

discussion of the connection between the class of large games and the class of finite-player Bayesian games.

18 McAdams (2006) applies and extends this setup to prove existence of pure Nash equilibria in multiunit

auctions.

19 As noted by McAdams (2003), the assumptions of a common support for types and a common set for

actions are just for notational simplicity and can be safely removed.

20 Evolution in the context of Bayesian games is analyzed in Ely and Sandholm (2005) and Sandholm

(2007).
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continuous strategy spaces are employed.21 If an order structure is imposed on types,211

our Theorem 1 can allow to tackle the issue. This follows a seminal idea in Riley (1979),212

where incomplete information and a form of the strict single crossing property are used213

to show existence of an evolutionarily stable strategy in the “war of attrition”.214

For this purpose, we restrict attention to a game Γ I that is symmetric, i.e., we focus215

on game Γ I S = 〈I, ([0, 1]h, φ), A, u〉. We also provide some further useful notation216

and definitions.217

The following expression denotes ex-ante utility for a player choosing strategy α218

when all other players choose strategy α′:219

V (α, α′) =

∫

[0,1]h

(∫

[0,1]h(n−1)

U (α(t),α′
−i (t−i ))φ(t−i |t)dt−i

)
φi (t)dt,220

where φi (t) is the marginal density function of types for player i .221

Given two strategies α, α′, we define D(α, α′) as the set of types that pick different222

actions in α and α′, i.e., D(α, α′) = {t ∈ [0, 1]h : α(t) �= α′(t)}.223

The following definition adapts the standard definition of evolutionarily stable strat-224

egy to our setup. A strategy α is an evolutionarily stable strategy (henceforth, ESS) if225

and only if there exists ǫ > 0 such that, for all α′ such that
∫

D(α,α′)
φi > 0:226

(1 − ǫ)V (α, α) + ǫV (α, α′) > (1 − ǫ)V (α′, α) + ǫV (α′, α′).227

Basically, the above definition requires that a strategy performs strictly better than any228

invading strategy that differs non-negligibly from the incumbent strategy.229

While an evolutionarily stable strategy may not exist in general, we are able to230

prove the following result (see “Appendix 2” for the proof).231

Proposition 2 Suppose Γ I S satisfies AU. Then, (1) every pure-strategy Nash equi-232

librium is an evolutionarily stable strategy, and (2) an evolutionarily stable strategy233

exists.234

We observe that our Proposition 2 is not implied by the Harsanyi’s purification theorem,235

which applies only to games with a finite number of strategies for each player, while236

we allow for continuous strategies as well.237

4.2 An application to large games238

A pure Nash equilibrium is not necessarily a strict Nash equilibrium, so our Theorem 1239

can be usefully employed to establish Nash strictness in games where this is a desirable240

property (e.g., in games where the local stability of a Nash equilibrium is a crucial241

property). Below, we provide an example of such applicability.242

Consider the following game, which is an instance of the class of games considered243

in Khan et al. (2013a) (see discussion at p. 1130), and that represents a slight gen-244

eralization of a static population game (see Sandholm 2010, for a formal definition245

21 Alternative notions of evolutionary stability have been proposed in the literature (Vickers and Cannings

1987; Bomze and Pötscher 1989; Oechssler and Riedel 2001, 2002).
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Strict Nash equilibria in non-atomic games with strict...

of population games). There is a large population of heterogeneous players whose246

characteristics consist of both an individual payoff structure and an ordered numerical247

trait, with a player’s payoff depending on own action and societal summary of actions248

traits. In particular, a player’s payoff depends on her own action and type as well as the249

sum of the traits of the players choosing each action.22 Formally, consider the game250

Γ P = 〈([t, t], φ), (B, β), A, u P 〉 where:251

• there is a unit-mass population of players distributed over [t, t] according to the252

positive and bounded probability density φ;253

• B = {b1, . . . , bn} is a finite and totally ordered set of traits, with β : [t, t] → B a254

measurable function that assigns each player to a trait;255

• A = {1, . . . , m} is a finite and totally ordered set of actions, common to all players;256

• u P (t, a,α) = U (t, a, (σ11, . . . , σmn)) is agents’ utility function, which we assume257

to be measurable in t and continuous in (σ11, . . . , σmn), and where α : [t, t] → A258

is a measurable function representing the actions chosen by every player in the259

population, and σ jk =
∫
(α,β)−1( j,bk )

φt measures the amount of players with trait260

bk who play action j ∈ A.261

We observe that if, in addition to AA and AT which are satisfied by construction,262

Γ P also satisfies AU, then Theorem 1 implies that every Nash equilibrium of Γ P
263

is essentially strict, and monotone in players and actions.23 So, we know that all264

Nash equilibria of Γ P are locally stable with respect to dynamics typically applied in265

population games (see e.g., Sandholm 2015).266

We think that considering the heterogeneity of characteristics in a population is a267

natural addition to population games. Also, assuming the strict single crossing property268

in players and actions appears to us, at least in some cases, a reasonable hypothesis.269

Think of this variant of a congestion game, where the trait is the length of the car270

possessed, and the congestion along a route depends on the overall length of cars in271

that route. If a longer route is preferred by the owner of some car, then it means that272

the shorter route has heavier traffic. Hence, it is reasonable to assume that the owners273

of longer cars prefer a fortiori the shorter route, since a larger car typically performs274

relatively worse under heavy traffic.275

4.3 Discussion of assumptions276

Negligibility of sets of uncomparable players (AT2) This assumption cannot be dis-277

pensed with, in the sense that a positive measure of uncomparable players would allow278

the existence of Nash equilibria that are not essentially strict. Indeed, if there exists a279

non-negligible set of players such that every pair cannot be ordered, then the strict sin-280

gle crossing property cannot be employed to rule out that all such players are weakly281

best responders in equilibrium, and therefore, Nash equilibria need not be essentially282

strict. The following example illustrates why. Let ||I || = 1, and let the set of actions283

22 This last assumption can be easily generalized to any form of trait aggregation, in the same way as it is

typically done for aggregative games (see, e.g., Acemoglu and Jensen 2013).

23 We also note that the existence of a Nash equilibrium is not an issue in this game, e.g., one can invoke

Theorem 1, point (i), in Khan et al. (2013a).
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A be equal to the real segment [0, 1]. Also, let the set T be such that no t, t ′ ∈ T284

are comparable, so that AT1 is trivially satisfied while AT2 fails. Finally, suppose that285

ui (t, f ) = τ({t ′ : ft ′ = ft }), meaning that t’s payoff only depends on the fraction286

of players coordinating on her action ft . It is straightforward to see that any profile287

where a measure of τ(T )/k players coordinate on k distinct actions (with k a natural288

number) is a Nash equilibrium, since each t obtains a payoff of τ(T )/k which cannot289

be improved upon by deviating. However, for k ≥ 2, all t ∈ T are indifferent between290

any of the k actions played, and so the Nash equilibrium is not essentially strict.291

Separability versus second countability (AA3) A space is called separable if it contains292

a countable dense subset. Separability is a topological property which is weaker than293

second countability but plays a similar role: It constrains the topological size of the294

space.295

However, if we assume that the action sets are separable instead of second countable,296

then our results fail. The following example, which is a modification of a standard297

argument to illustrate that a separable space need not be second countable, shows298

that if we replace second countability with separability then there may exist Nash299

equilibria that are not essentially strict. We consider a unique group of players, and we300

let the set T be the real line, denoted with R. We let the action set A be the Cartesian301

product R × {0, 1}. We give A the lexicographic order, i.e., (r, i) < (s, j) if either302

r < s or else r = s and i < j . For every profile of actions f , t’s utility function is303

u(t, f ) = −(t− f ′
t )

2, where f ′
t = s if ft = (s, i). In the order topology, A is separable:304

The set of all points (q, 0) with q rational is a countable dense set. However, f such305

that ft = (t, 0) for all t ∈ T is a Nash equilibrium that is not essentially strict since306

every agent t is indifferent between (t, 0) and (t, 1).307

Axioms of separation (T0, T1) versus order separation (AA4) Intuitively, our assump-308

tion on order separation ensures that different weakly best responders can be assigned309

to actions that are substantially different, in the sense that each action can be associated310

with a distinct base set. Then, second countability of the action set ensures that this311

function relating actions to base sets is enumerable.312

One might hope to weaken our assumption to something that is more in line with313

standard separation axioms (like T 0 or T 1): For all a > a′, there exists an open set314

S(a, a′) such that a ∈ S(a, a′) and a′ /∈ S(a, a′). However, we stress that this attempt315

would contrast with our technique of proof. Indeed, following the Proof of Lemma 1316

(see the “Appendix”), a t that is a weakly best responder might be associated with a317

set Ŝ obtained as
⋂

t ′∈Ri,t ( f ),t>T
i t ′ S(gi,1(t), gi,1(t

′)). But then an infinite intersection318

of open sets need not be open, and this does not allow us to conclude that a base set319

exists that is included in Ŝ and contains the action gi,1(t).320

Single crossing versus strict single crossing (AU2) Games of incomplete informa-321

tion are a very important class of games where single crossing properties are usually322

assumed in order to prove existence of pure Nash equilibria. In these cases, we can323

apply our Theorem 1 to obtain the existence of an essentially strict Nash equilibrium324

(see Sect. 4.1). We stress that this result is based on a strict version of the single cross-325
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Strict Nash equilibria in non-atomic games with strict...

ing property, while existence results in games of incomplete information (Athey 2001;326

McAdams 2003) use weaker assumptions. In particular, they are weaker under two327

respects. First, they assume single crossing instead of strict single crossing. Second,328

they require that the property of single crossing holds on a smaller domain: for each329

player, whenever all other players adopt strategies such that higher types take higher330

actions. Therefore, one may wonder whether our results still hold if we consider each331

of the two weakenings of strict single crossing. With respect to the first weakening, the332

following straightforward counterexample shows that single crossing is not enough.333

Assume that every agent has a constant utility function, so that everyone is always334

indifferent between any of her actions. Single crossing property is satisfied, and what-335

ever profile of actions is a weak Nash equilibrium. This trivial example also shows that336

we cannot recover our main result even if we replace the property of single crossing337

with the stronger one of increasing differences—i.e., for all f ∈ F , i ∈ I , t ′ >T
i t and338

a′ >A
i a, we have that u(t, a′, f−t ) − u(t, a, f−t ) ≤ u(t ′, a′, f−t ′) − u(t ′, a, f−t ′).339

With respect to the second weakening, we observe that restricting the domain to340

profiles that are monotone in types and actions for other players is a clever general-341

ization of single crossing when the purpose is to prove the existence of pure Nash342

equilibria. However, a strict version of this weaker property of single crossing does343

not work when we want to show that every Nash equilibrium is essentially strict. The344

reason is that it would allow the existence of some weak Nash equilibrium with a345

profile of actions for which no property of strict single crossing must hold.346

Strict increasing difference versus strict single crossing (AU2) One may wonder347

whether the result in Theorem 1 can be refined to prove strict monotonicity instead348

of monotonicity. It turns out that this is not the case, even if we adopt the stronger349

property of strict increasing differences in players (or types) and actions—i.e., for350

all f ∈ F , i ∈ I , t ′ >T
i t and a′ >A

i a, we have that u(t, a′, f−t ) − u(t, a, f−t ) <351

u(t ′, a′, f−t ′)−u(t ′, a, f−t ′)—instead of strict single crossing. The following example352

illustrates why. Let ||I || = 1 and let both set T and set A be equal to the real segment353

[0, 1]. For every profile of actions f , the utility function of t is u(t, f ) = (1 + t) ft . It354

is clear that there exists a unique Nash equilibrium where everybody plays action 1.355

Hence, monotonicity holds, but strict monotonicity does not.356

Acknowledgments We are particularly indebted to an associate editor and four anonymous referees for357

their useful suggestions that helped us to improve the paper. All mistakes remain ours.358

Appendix 1: Lemma 1 and its proof359

A key result for the Proof of Theorem 1 is that any set of weakly best responders is a360

countable union of sets having measure zero. Lemma 1 below provides such result.361

The logic of the Proof of Lemma 1 goes as follows. The joint use of quasisuper-362

modularity in actions (AU1) and strict single crossing in players and actions (AU2)363

is similar to that in Theorem 4 of Milgrom and Shannon (1994), and it allows to364

arrange multiple best replies of different players in a linear order. The crucial eco-365

nomic assumption is the strict single crossing property in players and actions, which366
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implies that the sets of weakly best replies of any two distinct players intersect at most367

at an extreme point and hence are—roughly speaking—rather separated one from the368

other. The technical assumptions on countability (AA3) and separation (AA4) com-369

plete the job, allowing at most a countable number of such sets (see Sect. 4.3 for a370

discussion on the importance of the countability and separation properties). Therefore,371

there can exist only a countable number of comparable players that are weakly best372

responders; for any such player, there can be many (even uncountable) players that are373

all uncomparable and weakly best responders, but for the comparability assumption374

(AT2) their measure is null. This leads to conclude that the set of weakly best respon-375

ders is formed by countably many sets having measure zero, and hence, its measure376

is zero as well.377

Preliminarily, we define Ri,t ( f ) as the set of best replies to f for t ∈ Ti , namely378

Ri,t ( f ) = {a ∈ Ai : ui (t, a, f−t ) ≥ u(t, a′, f−t ) for all a′ ∈ Ai }.379

Lemma 1 Let Γ be a game that satisfies AT, AA, and AU. Then, for every i ∈ I ,380

{t ∈ Ti : ||Ri,t ( f )|| > 1} is a countable union of sets having measure zero.381

Proof This is the outline of the proof. For a generic i ∈ I , first we define a function382

gi that maps every t ∈ {t ∈ Ti : ||Ri,t ( f )|| > 1} into a pair (a, a′) of her best replies,383

then we define a function hi , and we use it to assign (a, a′) to a base set. We show that384

function hi is injective and that function gi is such that any set of players assigned to385

the same pair of actions has measure zero. Finally, we invoke the fact that there exists386

only a countable number of base sets to obtain the desired result.387

For each i ∈ I , we consider the partial orders assumed in AA1 (lattice structure) and388

AT1 (partial ordering) and we take a function gi : {t ∈ Ti : ||Ri,t ( f )|| > 1} → A2
i389

such that gi (t) = (gi,0(t), gi,1(t)) with gi,0(t), gi,1(t) ∈ Ri,t ( f ), gi,0(t) <A
i gi,1(t),390

and gi,1(t) ≤A
i gi,0(t

′) for t ′ >T
i t . The following two arguments show that such a391

function exists for each i ∈ I . First, a ∈ Ri,t ( f ) and a′ ∈ Ri,t ( f ) imply a ∨ a′ ∈392

Ri,t ( f ), so that we can set gi,0(t) = a and gi,1(t) = a∨a′, with a∨a′ existing thanks to393

AA1 (lattice structure). In fact, ui (t, a, f−t ) ≥ ui (t, a∧a′, f−t ) since a ∈ Ri,t ( f ), and394

hence, ui (t, a ∨ a′, f−t ) ≥ ui (t, a′, f−t ) by AU1 (quasisupermodularity in actions),395

which in turn implies that ui (t, a ∨ a′, f−t ) = ui (t, a, f−t ) = ui (t, a′, f−t ) since396

a ∈ Ri,t ( f ) and a′ ∈ Ri,t ( f ). Second, a ∈ Ri,t ( f ) and a′ ∈ Ri,t ′( f ) for t ′ >T
i t imply397

a ≤A
i a′. This is true since ui (t, a, f−t ) ≥ ui (t, a ∧ a′, f−t ) due to a ∈ Ri,t ( f ), and398

hence, ui (t, a ∨ a′, f−t ) ≥ ui (t, a′, f−t ) by AU1 (quasisupermodularity in actions),399

and therefore, ui (t
′, a ∨ a′, f−t ) > ui (t

′, a′, f−t ) by AU2 (strict single crossing in400

players and actions), with a ∧ a′ existing thanks to AA1 (lattice structure).401

For all i ∈ I , by AA2 (topology structure), Ai has a topology and by AA3 (second402

countability) we can take a countable base Bi for such a topology. For each i ∈ I , we403

take a function hi : gi ({t ∈ Ti : ||Ri,t ( f )|| > 1}) → Bi such that a1 ∈ hi (a0, a1)404

and a /∈ hi (a0, a1) for all a ≤A
i a0. To see that such a function hi exists, note that405

by AA4 (order separation) for each (a0, a1) ∈ gi ({t ∈ Ti : ||Ri,t ( f )|| > 1}) there406

exists some open set Sa1 ⊂ Ai such that a1 ∈ S and a /∈ S for all a ≤A
i a0; since Bi407

is a base, there must exist some Ba1 ∈ Bi such that a1 ∈ Ba1 and Ba1 ⊆ Sa1 . We set408

hi (a0, a1) = Ba1 .409
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We check that, for all i ∈ I , gi is such that, for all (a, a′) ∈ A2
i , g−1

i (a, a′) has410

measure zero. For all t, t ′ ∈ {t ∈ Ti : ||Ri,t ( f )|| > 1}, t <T
i t ′, we have that411

gi,0(t) < gi,1(t) ≤ gi,0(t
′) < gi,1(t

′) from the definition of function gi . Therefore,412

t, t ′ ∈ g−1
i (a, a′) implies t �T

i t ′ and t ′ �T
i t , and AT2 (negligibility of sets of413

uncomparable players) guarantees that τi (g
−1
i (a, a′)) = 0.414

We check that, for all i ∈ I , hi is injective. For all (a0, a1), (a
′
0, a′

1) ∈ gi ({t ∈ Ti :415

||Ri,t ( f )|| > 1}), (a0, a1) �= (a′
0, a′

1), we know that either a0 < a1 ≤ a′
0 < a′

1 or416

a′
0 < a′

1 ≤ a0 < a1. Suppose, without loss of generality, that a0 < a1 ≤ a′
0 < a′

1.417

Then, by the definition of function hi , we know that a1 ∈ hi (a0, a1), a′
1 ∈ hi (a

′
0, a′

1),418

and a1 /∈ hi (a
′
0, a′

1) since a1 ≤ a′
0. Hence, hi (a0, a1) �= hi (a

′
0, a′

1).419

Therefore, g ◦ h maps {t ∈ Ti : ||Ri,t ( f )|| > 1} into Bi in such a way that420

for every B ∈ Bi such that there exists t ∈ Ti with h(g(t)) = B, we have that421

τi ({t ∈ Ti : h(g(t)) = B}) = 0. Since Bi is countable, we can conclude that {t ∈ Ti :422

||Ri,t ( f )|| > 1} is the countable union of sets having measure zero. ⊓⊔423

Appendix 2: Proof of Proposition 2424

We start by checking that Theorem 1 can be applied to Γ I S . Clearly, Γ I S is a special425

case of Γ I . First, we note that Γ I is a specific instance of Γ . To see this, set i’s type426

space Ti = [0, 1]h , with associated probability space (Ti , Ti , τi ) where Ti is the sigma427

algebra of all Lebesgue measurable subsets of Ti and measure τi is the one induced by428

φi , implying that τi is atomless since φi is bounded. Furthermore, set i’s action space429

Ai = A. Finally, note that utility u I
i is a special case of ui where the utility of type t430

does not depend on the actions chosen by other types of the same player role.431

We next check that all hypotheses of Theorem 1 are satisfied.432

AU is satisfied by assumption.433

We check AT. Since [0, 1]h is a partial order, AT1 is satisfied. Take a set T̂ ⊆434

[0, 1]h which is made of types that are all uncomparable. For any (t1, t2, . . . , th−1) ∈435

[0, 1]h−1, there exists at most one th ∈ [0, 1] such that (t1, t2, . . . , th−1, th) ∈ T̂ ;436

otherwise, we would have two elements belonging to T̂ that are comparable. This437

shows that T̂ is contained in the graph of a function from [0, 1]h−1 to [0, 1], which438

constitutes an hypersurface in [0, 1]h . We know that an hypersurface has Lebesgue439

measure equal to zero and hence T̂ as well. Therefore, the measure of T̂ according to440

the marginal density function φi is null, since the integration of φi over a zero-measure441

set is zero. So, AT2 is satisfied.442

We check AA. If A is a finite lattice, then AA1–AA4 hold trivially. If A = [0, 1]k ,443

then AA1 and AA2 are satisfied by considering, respectively, the standard order and444

the Euclidean topology on [0, 1]k . It is well known that the Euclidean space (and any445

of its subsets) is second countable (it is enough to consider as base the set of all open446

balls with rational radii and whose centers have rational coordinates). So AA3 is also447

satisfied. Finally, consider a, a′ ∈ [0, 1]k such that a′
i ≥ ai , a′ �= a. Then take an448

open ball centered at a′ with radius lower than the Euclidean distance between a′ and449

a; clearly, a′ belongs to the ball, while every a′′ ∈ [0.1]k such that a′′
i ≤ ai does not450

belong to the ball. This shows that AA4 is satisfied.451
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So, we can apply Theorem 1 to conclude that every pure-strategy Nash equilibrium452

must be essentially strict and monotone in types and actions.453

Consider now a symmetric pure-strategy Nash equilibrium where every player454

chooses strategy α. Consider also any strategy α′, with α′ �= α. We have already shown,455

by exploiting Theorem 1, that α is essentially strict, and so u I (t, α(t),α−i (t−i )) >456

u I (t, α′(t),α−i (t−i )) for almost all t ∈ [0, 1]h . Therefore,457

∫

[0,1]h

(
u(t, α(t),α′

−i (t−i ))
)
φi (t)dt >

∫

[0,1]h

(
u(t, α′(t),α−i (t−i ))

)
φi (t)dt, (1)458

which means that V (α, α) > V (α′, α). Hence, for ǫ small enough, we can conclude459

that (1−ǫ)V (α, α)+ǫV (α, α′) > (1−ǫ)V (α′, α)+ǫV (α′, α′). We have so established460

that α is an ESS.461

Finally, to show that an ESS exists, we can rely on Theorem 1 in McAdams (2003)462

that can be applied since AU2 implies the single crossing condition—which is required463

by the Theorem. Such theorem, if applied to symmetric games, establishes the exis-464

tence of a symmetric pure-strategy Nash equilibrium.24 By the previous argument, we465

conclude that the strategy played in such equilibrium must be an ESS.466
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