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Abstract—We present an investigation in the device parameter
space of band-to-band tunneling in nanowires with a diamond
cubic or zincblende crystalline structure. Results are obtained
from quantum transport simulations based on Non-Equilibrium
Green’s functions with a tight-binding atomistic Hamiltonian.
Interband tunneling is extremely sensitive to the longitudinal
electric field, to the nanowire cross section, through the gap,
and to the material. We have derived an approximate analytical
expression for the transmission probability based on WKB theory
and on a proper choice of the effective interband tunneling
mass, which shows good agreement with results from atomistic
quantum simulation.

Index Terms—tunnel FET, band-to-band, computational elec-
tronics, nanoelectronics.

I. I NTRODUCTION

Conventional field-effect transistors (FETs) are based on the
modulation of thermionic injection of charge carriers fromthe
source by tuning the potential barrier between channel and
source via the voltage applied on the gate electrode. A crucial
parameter in FETs is the subtreshold swingS - defined as the
gate voltage variation required for a tenfold increase of the
drain current. In the ideal case of perfect electrostatic control,
when the potential in the channel exactly follows the gate
voltage,S is limited by the tail of the Maxwell-Boltzmann
distribution tokBT ln 10, wherekB is Boltzmann’s constant
andT is the temperature.

At room temperature, the intrinsic limitation onS is there-
fore S ≥ 60 mV/decade, which represents a real threat to
continuous integration of semiconductor technology, due to
conflicting constrains. Indeed, supply voltage (VDD) reduction
must accompany device size scaling to keep power consump-
tion per unit area (∝ V 2

DD) under control, and digital logic still
requires the ratio of the current of the device in the on state
to be at least104 larger than than in the off state, effectively
requiring the threshold voltageVth ≥ 4S.

A promising option to reformulate this trade-off is to use
a device based on a modified operating principle such as the
tunnel FET (TFET) [1]. In a TFET the gate voltage allows to
modulate the band-to-band tunneling (BTBT) current between
source and channel, by modulating the width of the energy
window in which tunneling can take place. In this way, both
ends of the allowed energy window for transport are defined
by conduction and valence band edges, and the previously

discussed limitation onS is therefore removed, allowing
further reduction ofVDD. Several experimental and theoretical
works have been dedicated to explore various options for
tunnel FETs [2], [3], [4], [5], [6].

Two aspects are important for good performance of TFETs.
On the one hand, currents in the on state must be large for
obtaining small delay times, shifting one’s preference to lower
gap semiconductors, when BTBT can be large. On the other
hand, electrostatic control of the potential in the channelvia
the gate voltage must be ideal, not to unduly lose the advantage
on S, as can be obtained in ultra-thin-body or gate-all-around
devices.

In this work, we investigate the dependence of band-to-band
tunneling in the parameter space, considering different semi-
conductor materials, nanowire diameters, and electric fields
in the interband tunneling barrier. Our focus is understanding
their role in determining the achievable BTBT current and to
allow comparison of different material systems and channel
geometry. The information extracted at the atomistic level
provides relevant and reliable quantities to be used, within a
multi-scale approach, at a higher level of abstraction, allowing
a faster, but still accurate analysis.

As in [7], the approach is based on an atomisticsp3d5s∗

Hamiltonian for diamond cubic or zincblende crystals. The
spin-orbit interaction is not included in our model becauseit
has been shown that it provides only minor contribution to the
final current [8]. We have also verified its effect on the band
profiles to be sure that the effect is not crucial. In particular,
we focus on germanium and indium arsenide - which are
interesting candidates for TFETs for their relatively small gap
as bulk materials - and on silicon, as a reference material
for maximum ease of integration with CMOS technology.
Other materials as GaAs can be investigated within the same
computational scheme. Nanowire transport is computed in the
framework of Non-Equilibrium Green’s functions (NEGFs).
Finally, we propose a simple analytical expression derived
from the Wentzel-Kramers-Brillouin (WKB) approximation
with an ad-hoc tunneling effective mass, that is able to quan-
titatively reproduce results from atomistic quantum transport
simulations and can be used for device modeling at a circuit
level.

http://arxiv.org/abs/1201.4100v2
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Figure 1. Example of the investigated structures and its main properties:
InAs squared nanowire with diameter of 3.4 nm: (a) lattice structure of
the (001) plane transversal to the tunneling direction of the wire; (b) band
structure of the nanowire; (c) band edge profile considered for the calculation
of the tunneling coefficient; the tunneling energy window ishighlighted; (d)
transmission coefficient in the tunneling window as a function of energy for
different values of the longitudinal electric field.

II. RESULTS AND DISCUSSION

In Fig. 1(a) we show an example of a transversal cross
section of a zincblende nanowire with the axis oriented
in the [001] direction. We use a tight-binding Hamiltonian
with a sp3d5s∗ first-nearest neighbour representation, where
10 atomic orbitals are considered (spin orbit coupling is
neglected). This representation is extensively employed in
modeling semiconducting nanowires and it is the most used
for refined numerical calculations [9], [10], [11]. It also gives
quantitative agreement with experimental results [12].

We have developed a tool to handle generic Hamiltonians
with an arbitrary number of atomic orbitals. In order to speed-
up the calculation of the transmission probabilities, we have
optimized the tool exploiting the four-atomic-layer periodicity
of zincblende materials in the [001] direction.

The computation of transmission is based on Non-
Equilibrium Green’s functions, using a recently developed
closed-form method for the calculation of the lead self-
energies [13]. Due to the complexity of the investigated
structures, a closed-form self-energy scheme was requiredto
reduce the computing time with respect to iterative procedures.
In particular, the adopted procedure has been demonstratedto
be ten times faster than the Sancho-Rubio iterative method
[14].

The transmission probability is obtained with the well
known formula

T = Tr[Gr · ΓL ·Ga · ΓR], (1)

whereGr,a are the retarded and advanced Green’s function
matrices andΓL,R represent the tunneling-rate matrices for

the left and right lead, respectively. A detailed description of
the NEGF transport theory can be found in the literature [15],
[16]

To investigate the possible use of nanowires with zincblende
crystalline structure as channels for tunnel FETs we have
computed the transmission coefficient due to band-to-band
tunneling. We first compute the dispersion relations of the
nanowire under investigation as shown in Fig. 1(b), in order
to extract the energy gap. Then, even if the potential in an
interband tunneling barrier is not fully linear, we assume a
constant electric field as in Fig. 1(c), to facilitate comparison
among different materials and geometry, and to enable the
description of interband tunneling in terms of local physical
quantities, useful for modeling tools at a higher level of
abstraction. We apply a potential energy drop larger thanEg

in order to open an inter-band tunneling window of 0.3 eV.
This ensures limited mismatch and a transmission probability
almost independent of energy, as shown in Fig. 1(d), where
trasmission probability exhibits a plateau in the interband
tunneling energy window. In the following analysis, we use
the value of the transmission coefficient in such plateau as
a metrics for comparing interband tunneling among different
materials and as a function of the applied longitudinal field.

Nanowire tunnel FETs pose different tradeoffs: a smaller
nanowire cross section implies a better electrostatic control,
and therefore a better subthreshold behavior. On the other
hand, it also implies a larger gap, and therefore a smaller
tunneling current in the on state. To explore this tradeoff
from a quantitative point of view for different materials, we
consider nanowires in which propagation occurs along the
[001] direction, and the lateral surfaces are on [110] planes,
as shown in Fig. 1(a).

The side of the square cross sectionl is determined by an in-
teger parameter N according to the formulal = a0

√
2

2
N where

a0 is the lattice constant for the material under investigation
(a0 = 5.43, 5.65, 6.05Å for Si, Ge and InAs, respectively). In
Fig. 2 we show results forN = 4, 6, 8, corresponding to a side
l between roughly 1.5 nm and 3 nm depending on the material.
As can be seen in Fig. 2(d), with increasing cross section area
the gap rapidly decreases, causing a very steep increase of
the tunneling probability. In addition, as can be seen from
Figs. 2(a)-(c) the transmission coefficient increases by several
orders of magnitude for an increase of the longitudinal electric
field of just one order of magnitude. In the case of InAs, in
particular, for the nanowire withl ≈ 3 nm, the transmission
probability can be very high, opening the possibility for very
large ON currents.

As we pointed out before, full band calculations, as the
ones presented here, are computationally very demanding
for diamond cubic and zincblende nanowires. It is therefore
interesting to verify whether simplified expressions are reliable
in predicting the behavior of the tunneling coefficient. In
Fig. 3 a comparison between the transmission probability
plateau obtained from the atomistic NEGF calculation and the
WKB results is shown. The WKB transmission coefficient is
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Figure 2. The plateau of transmission probability as a function of the
longitudinal electric field is shown for nanowires along the[001] direction,
with square cross section of sidel = a0

√
2

2
N with N = 4 (a), N = 6

(b) , N = 8 (c), wherea0 is the lattice constant (a0 = 5.43, 5.65, 6.05Å)
for Si, Ge, and InAs, respectively). In every plot the transmission coefficient
is shown for three different materials: Si, Ge and InAs. (d) dependence of
the energy gap onl, for the different materials, extracted from the dispersion
relation.

obtained with the formula

TWKB = exp

[

−2

∫ z0

0

√

2m

~2
eFz dz

]

, (2)

whereF is the longitudinal electric field andm = m0 · m∗

is the “interband tunnelling” effective mass in the plottedin
Fig. 3(d) (m0 is the electron mass at rest).

The potential profile is linear with the slope given by the
applied electric field, as shown in Fig. 1(c). The integration
region is determined byz0 = Eg/F . After few manipulations
the formula (2) can be written as follows:
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3
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F

]

, (3)

whereEg is expressed in eV andF in V/nm (this equation

Figure 3. Comparison between the transmission probabilityplateau obtained
from the atomistic NEGF calculation (solid lines) and the WKB results (dotted
lines). Nanowires with three different cross section sidesl are considered:
l = a0

√
2

2
N with N = 4 (a),N = 6 (b),N = 8 (c). The values of interband

tunnelling effective mass used for the WKB approximation are shown in (d);
they have been extracted from the energy-band profile of the corresponding
atomistic calculation for InAs and as a fitting parameter forGe and Si.

coincides with the Eq. (6) of Ref. [17] ifEg is expressed in
Joule andF in V/m).

The interband tunnelling effective mass is “effective” in
the sense that - used in approximating the energy dispersion
relation in the gap (i.e. for imaginary wave vectors) - enables
to obtain results in agreement with full band quantum simu-
lations. According to definition, it is therefore loosely related
to the effective mass in the common definition, which is used
for approximating the energy dispersion relation near the band
edges, i.e. to describe transport near at the band edge.

Indeed, with (3) we fit the numerical results for InAs and
Ge, but we have to choose the effective masses in two different
ways: for InAs, which exhibits two clear well-separated con-
duction and valence bands, the “interband tunnelling” effective
mass is well approximated by the effective mass in the first
conduction band. On the other hand, for Ge and Si the inter-
band tunnelling effective mass must be obtained as a fitting
parameter, because multiple quasi-degenerate conductionand
valence bands are present. The values of the mass are shown in
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Fig. 3(d). For Si, one synthetic effective mass is not sufficient
to reproduce the atomistic NEGF results for the tunneling
probability: we need to modify the functional dependence of
the WKB transmission probability on the electric field using
the formula

T Si

WKB = exp

[

−
20

3
m

1

2

∗

E
3

2

g

F 0.71

]

. (4)

and to extract the interband tunnelling effective mass as a fit-
ting parameter (values shown in Fig. 3(d). As can be seen, the
simplified formulas of Eqs. (3,4) reproduce quite accurately
full-band calculations for InAs, Ge and Si respectively. We
want to stress two issues: i) the agreement between WKB and
full-band calculations is obtained for a range of wire diameters
reaching 3.4 nm for InAs, that is in line with state of the
art calculations for this structures and forsp3d5s∗ models
[8]; ii) the agreement is reached for a range of electric field
of up to 1 V/nm which is already very high for nanowires.
A more complex implementation of the WKB approximation
could in principle be used to obtained better accuracy [8], but
our results show that the simplest version can still providea
very good quantitative agreement. In addition, the provided
simple expression can be easily included at a higher level
of abstraction in circuit simulators, or in Monte Carlo codes
in order to provide the generation rate in correspondence
of the tunneling barrier. Therefore, first-principle numerically
accurate calculations can be reproduced by simple analytical
formulas, with effective masses extracted from the band profile
of the atomistic structure or from fitting procedures. This
makes self-consistent calculations of currents a much less
demanding computational task compared to full-band NEGF
calculations.

We also want to underline that detailed simulations [8], [18]
show that electron-phonon coupling only affects current by
at most a factor of two, which is a relatively small factor
considering that, in the range of electric field considered,
the current varies by several orders of magnitude. Indeed,
BTBT current is so sensitive to the electric field that - for
a given current - coherent transport would overestimate the
electric field in the barrier by only few percents. Since thisis
well below the accuracy with which the electric field in the
interband tunneling barrier of an actual device is known, the
inclusion of electron-phonon coupling would not change our
conclusion.

III. C ONCLUSION

We have investigated diamond cubic or zincblende
nanowires for different materials and for different cross sec-
tions up to a side of3.4 nm using atomistic Hamiltonians
based onsp3d5s∗ tight-binding representation.

The extreme sensitivity of the tunneling probability to
the electric field and to the cross section side provides a
hint of the sensitivity of the tunnel FET ON current to the
variability of the nanowire cross section and to the presence
of random charged defects in the nanowire region where
interband tunneling takes place. We have shown that tunneling
probabilities between 0.01 and 0.1 - suitable for achieving

reasonable ON currents in TFETs - can be obtained with
longitudinal electric field close to 1 V/nm (still smaller than
the dielectric breakdown field) in InAs forl > 1.5 nm and
for Ge for l > 3 nm. We have also shown that full-band
calculations are quantitatively reproduced by simple formulas
derived from the WKB approximation, considering an ad hoc
interband tunneling mass.

Finally, the presented results - obtained with rigorous quan-
tum transport simulations based on an atomistic tight binding
Hamiltonian - can be used as input for semiclassical modeling
of electron devices, where interband tunneling has to be
represented with a synthetic scattering rate.

Support from the EC through the FP7 STEEPER Project
(contract n. 257267) is gratefully acknowledged.
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K. Schrüfer, J. Holz, C. Pacha, T. Schulz, M. Ostermayr, A. Olbrich,
G. Georgakos, E. Ruderer, W. Hansch, and D. Schmitt-Landsiedel, “The
tunneling field effect transistor (TFET) as an add-on for ultra-low-voltage
analog and digital processes,”IEDM Technical Digest. IEEE International,
pp. 195–198, 2004.

[3] K. K. Bhuwalka, J. Schulze, and I. Eisele, “Scaling the vertical tunnel
FET with tunnel bandgap modulation and gate workfunction engineering,”
IEEE Trans. Electron Devices, vol. 52, pp. 909–917, 2005.

[4] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling Field-
Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60
mV/dec,” IEEE Electron Device Lett., vol. 28, pp. 743–745, 2007.

[5] K. Boucart and A. M. Ionescu, “Double-Gate Tunnel FET With High-κ
Gate Dielectric,”IEEE Trans. Electron Devices, vol. 54, pp. 1725–1733,
2007.

[6] G. Fiori and G. Iannaccone, “Ultralow-Voltage Bilayer Graphene Tunnel
FET,” IEEE Electron Devices Lett., vol. 30, pp. 1096–1098, 2009.

[7] M. Luisier, A. Schenck, W. Fichtner, and G. Klimeck, “Atomistic simula-
tion of nanowires in thesp3d5s∗ tight-binding formalism: From bound-
ary conditions to strain calculations,”Phys. Rev. B, vol. 74, pp. 205323-
1–205323-12, 2006.

[8] M. Luisier and G. Klimeck, “Simulation of nanowire tunneling transistors:
From the Wentzel-Kramers-Brillouin approximation to full-band phonon-
assisted tunneling,”J. Appl. Phys., vol. 107, pp. 084507-1–084507-6,
2010.

[9] J. C. Slater and G. F. Koster, “Simplified LCAO Method for the Periodic
Potential Problem,”Phys. Rev., vol. 94, pp. 1498–1524, 1954.

[10] T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, “Diagonal
parameter shifts due to nearest-neighbor displacements inempirical tight-
binding theory,”Phys. Rev. B, vol. 66, pp. 125207-1–125207-6, 2002.

[11] T. B. Boykin, G. Klimeck, and F. Oyafuso, “Valence band effective-mass
expressions in thesp3d5s∗ empirical tight-binding model applied to a Si
and Ge parametrization,”Phys. Rev. B, vol. 69, pp. 115201-1–115201-10,
2004.

[12] K. Ganapathi, Y. Yoon, and S. Salahuddin, “Analysis of InAs vertical and
lateral band-to-band tunneling transistors: Leveraging vertical tunneling
for improved performance,”Appl. Phys. Lett., vol. 97, pp. 033504-1–
033504-3, 2010.

[13] M. Wimmer, “Quantum transport in nanostructures: Fromcomputational
concepts to spintronics in graphene and magnetic tunnel junctions,” Ph.D.
dissertation, Fakultät für Physik, Universität Regensburg, Regensburg,
Germany, 2008. Available: http://epub.uni-regensburg.de/12142/

[14] M. P. Lopez Sancho, J. M. Lopez Sancho, and J. Rubio, “Highly con-
vergent schemes for the calculation of bulk and surface Green functions,”
J. Phys. F, vol. 15, pp. 851–858, 1985.

[15] S. Datta, “Nanoscale device modeling: the Green’s function method,”
Superlattice Microst., vol. 28, pp. 253–278, 2000.

[16] D. A. Ryndyk, R. Gutiérrez, B. Song, and G. Cuniberti, “Green
Function Techniques in the Treatment of Quantum Transport at the
Molecular Scale,” in “Energy Transfer Dynamics in Biomaterial Systems,”
I. Burghardt, V. May, D. A. Micha, and E. R. Bittner, Eds.Springer Series
in Chemical Physics, vol. 93, 2009, pp. 213–335.

http://epub.uni-regensburg.de/12142/


5

[17] A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy-
efficient electronic switches,”Nature, vol. 479, pp. 329–337, 2011.

[18] S. O. Koswatta, M. S. Lundstrom, and D. E. Nikonov, “Influence of
phonon scattering on the performance ofp-i-n band-to-band tunneling
transistors,”Appl. Phys. Lett., vol. 92, pp. 043125-1–043125-3, 2008.


	I Introduction
	II Results and Discussion
	III Conclusion
	References

