
A&A 539, A133 (2012)
DOI: 10.1051/0004-6361/201118681
c© ESO 2012

Astronomy
&

Astrophysics

Efficient deconvolution methods for astronomical imaging:
algorithms and IDL-GPU codes

M. Prato1, R. Cavicchioli1, L. Zanni1, P. Boccacci2, and M. Bertero2

1 Dipartimento di Matematica Pura ed Applicata, Università di Modena e Reggio Emilia, via Campi 213/b, 41125 Modena, Italy
e-mail: marco.prato@unimore.it

2 Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova, via Dodecaneso 35, 16146 Genova, Italy

Received 19 December 2011 / Accepted 16 January 2012

ABSTRACT

Context. The Richardson-Lucy method is the most popular deconvolution method in astronomy because it preserves the number of
counts and the non-negativity of the original object. Regularization is, in general, obtained by an early stopping of Richardson-Lucy
iterations. In the case of point-wise objects such as binaries or open star clusters, iterations can be pushed to convergence. However, it
is well-known that Richardson-Lucy is an inefficient method. In most cases and, in particular, for low noise levels, acceptable solutions
are obtained at the cost of hundreds or thousands of iterations, thus several approaches to accelerating Richardson-Lucy have been
proposed. They are mainly based on Richardson-Lucy being a scaled gradient method for the minimization of the Kullback-Leibler
divergence, or Csiszár I-divergence, which represents the data-fidelity function in the case of Poisson noise. In this framework, a line
search along the descent direction is considered for reducing the number of iterations.
Aims. A general optimization method, referred to as the scaled gradient projection method, has been proposed for the constrained min-
imization of continuously differentiable convex functions. It is applicable to the non-negative minimization of the Kullback-Leibler
divergence. If the scaling suggested by Richardson-Lucy is used in this method, then it provides a considerable increase in the effi-
ciency of Richardson-Lucy. Therefore the aim of this paper is to apply the scaled gradient projection method to a number of imaging
problems in astronomy such as single image deconvolution, multiple image deconvolution, and boundary effect correction.
Methods. Deconvolution methods are proposed by applying the scaled gradient projection method to the minimization of the
Kullback-Leibler divergence for the imaging problems mentioned above and the corresponding algorithms are derived and imple-
mented in interactive data language. For all the algorithms, several stopping rules are introduced, including one based on a recently
proposed discrepancy principle for Poisson data. To attempt to achieve a further increase in efficiency, we also consider an implemen-
tation on graphic processing units.
Results. The proposed algorithms are tested on simulated images. The acceleration of scaled gradient projection methods achieved
with respect to the corresponding Richardson-Lucy methods strongly depends on both the problem and the specific object to be re-
constructed, and in our simulations the improvement achieved ranges from about a factor of 4 to more than 30. Moreover, significant
accelerations of up to two orders of magnitude have been observed between the serial and parallel implementations of the algorithms.
The codes are available upon request.
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1. Introduction

The Richardson-Lucy (RL) algorithm (Richardson 1972; Lucy
1974) is a renowned iterative method for image deconvolution
in astronomy and other sciences. Here, we define g to be the
detected image and A the imaging matrix given by A f = K ∗
f , where K is the point spread function (PSF) and ∗ denotes a
convolution. If the PSF is then normalized to unit volume, the
iteration, as modified by Snyder (Snyder 1990), is

f (k+1) = f (k) ◦ AT g

A f (k) + b
, (1)

where AT is the transposed matrix, b is a known array represent-
ing background emission, x◦y denotes the pixel by pixel product
of two equally-sized arrays x, y, and x/y their quotient.

It is well-known that the method has several interesting fea-
tures. The result of each iteration is non-negative and robust
against small errors in the PSF, and that flux is conserved both
globally and locally if b = 0.

In such a case, it has also been proven by several authors
(see, for instance, Natterer & Wübbeling 2001) that the iterations

converge to either a maximum likelihood solution for Poisson
data (Shepp & Vardi 1982) or, equivalently, to a minimizer of
the Kullback-Leibler (KL) divergence, which is also known as
the Csiszár I-divergence (Csiszár 1991), given by

J0( f ; g) =
∑
m∈S

{
g(m)ln

g(m)
(A f )(m) + b(m)

(2)

+(A f )(m) + b(m) − g(m)

}
,

where S is the set of values of the multi-index m labeling the
image pixels.

As shown in Barrett & Meyers (2003), the non-negative min-
imizers of J0( f ; g) are sparse objects, i.e. they consist of bright
spots over a black background. Therefore, in the case of simple
astronomical objects, such as binaries or open star clusters, the
algorithm can be pushed to convergence (examples are given in
Sect. 4), while, in the case of more complex objects, an early
stopping of the iterations, providing a “regularization effect”, is
required. The problem of introducing suitable stopping rules is
briefly discussed in Sect. 3.
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The main disadvantage of the RL algorithm is that it is not
very efficient: it may require hundreds or thousands of iterations
for images with a large number of counts (low Poisson noise). In
the case of large-scale images or multiple images of the same tar-
get, the computational cost can become prohibitive. For this rea-
son, several acceleration schemes have been proposed, of which
we mention a few.

The first is the “multiplicative relaxation” proposed by
Llacer & Núñez (1990), which consists in replacing the iteration
of Eq. (1) by

f (k+1) = f (k) ◦
(
AT g

A f (k) + b

)α
(3)

with α > 1. Convergence is proved in Iusem (1991) for α <
2. As demonstrated in Lantéri et al (2001), this approach can
provide a reduction in the number of iterations by a factor of α,
with essentially the same cost per iteration. For low numbers of
counts numerical convergence has been found also for α > 2
(Anconelli et al. 2005). A “linear relaxation” is investigated in
Adorf et al. (1992). It can be written in the form

f (k+1) = f (k) − λk f (k) ◦
(
1 − AT g

A f (k) + b

)
, (4)

where λk > 1 (for λk = 1 the RL algorithm is re-obtained) and
1 is the array with all entries equal to 1. Since the quantity in
brackets is the gradient of J0( f ; g), we note that RL is a scaled
gradient method with a scaling given by f (k) at iteration k, and
that the relaxation method is essentially a line search along this
descent direction, which can be performed by minimizing the
objective function J0( f ; g) (Adorf et al. 1992) or applying the
Armijo rule (Lantéri et al. 2001). A moderate increase in effi-
ciency is then observed by these authors. The values reached
after convergence of the algorithms can be inferred from gen-
eral results of optimization theory (Bertsekas 2003). Finally, a
greater increase in efficiency on the order of ten, is observed
using an acceleration method proposed by Biggs & Andrews
(1997), which exploits a suitable extrapolation along the trajec-
tory of the iterates, and is implemented in the deconvlucy func-
tion of the Image Processing MATLAB toolbox. The problem
with this method is that no convergence proof is available and,
in our experience, a deviation from the trajectory of RL iterations
is sometimes observed, providing unreliable results.

Bonettini et al. (2009) developed an optimization method,
which they called scaled gradient projection (SGP) method, to
constrain the minimization of a convex function, and proved that
its convergence occurs under mild conditions. This method can
be quite naturally applied to the non-negative minimization of
the KL divergence, using the scaling of the gradient suggested
by RL, hence this application of SGP can also be considered as a
more efficient version of RL. In Bonettini et al. (2009), the per-
formance of the new method is compared with that of RL and
the Biggs & Andrews method, as implemented in MATLAB,
providing an improvement in efficiency comparable to that of
the latter method, but sometimes better and without its draw-
backs. Further applications of SGP in image restoration prob-
lems can be found e.g. in Benvenuto et al. (2010), Bonettini &
Prato (2010), and Zanella et al. (2009).

The purpose of this paper is not only to illustrate the fea-
tures of SGP to the astronomical community, but also to ex-
tend its application to the problems of multiple image decon-
volution and boundary effect correction. The first problem is
fundamental, for instance, to the reconstruction of the images

of the future interferometer of the Large Binocular Telescope
(LBT), denoted LINC-NIRVANA (Herbst et al. 2003), while the
second problem is important in both single and multiple image
deconvolution. All the algorithms are implemented in interac-
tive data language (IDL) and the codes will be freely distributed.
Moreover, we present an implementation for graphic processor
unit (GPU) is also provided. In this paper, we consider only the
constraint of non-negativity. Bonettini et al. (2009) investigated
both non-negativity and flux conservation and provided an ef-
ficient algorithm, for computing the projection on the convex
set defined by the constraints. However, their numerical exper-
iments seem to demonstrate that the additional flux constraint
does not significantly improve the reconstructions.

The paper is organized as follows. In Sect. 2, after a brief
description of the general SGP algorithm in the case of non-
negativity constraint, we derive its application to the problems
of both single and multiple image deconvolution and boundary
effect correction. In Sect. 3, we describe the IDL and GPU codes
and in Sect. 4 we discuss our numerical experiments illustrating
the increase in efficiency achievable with the proposed methods.
In Sect. 5, we discuss possible implementation improvements
and extensions to regularized problems.

2. The deconvolution methods

We first describe the monotone SGP algorithm for minimizing a
convex and differentiable function on the non-negative orthant.
For the general version of the algorithm including a flux con-
straint, we refer to Bonettini et al. (2009). Next, we outline the
application of SGP to the three imaging problems mentioned in
the Introduction.

2.1. The scaled gradient projection (SGP) method

The SGP scheme is a gradient method for the solution of the
problem

min
f≥0

J0( f ; g), (5)

where J0( f ; g) is a convex and continuously differentiable func-
tion defined for each one of the problems considered in this
paper. Each SGP iteration is based on the descent direction
d(k) = y(k) − f (k), where

y(k) = P+( f (k) − αkDk∇J0( f (k); g)) (6)

is defined by combining a scaled steepest descent direction
with a projection on the non-negative orthant. The matrix Dk

in Eq. (6) is chosen in the set D of the n × n diagonal positive
definite matrices, whose diagonal elements have values between
L1 and L2 for given thresholds 0 < L1 < L2.

The main SGP steps are given in algorithm 1. The global
convergence of the algorithm is obtained by means of the stan-
dard monotone Armijo rule in the line-search procedure de-
scribed in step 5 (see Bonettini et al. 2009).

We emphasize that any choice of the steplength αk ∈
[αmin, αmax] and the scaling matrix Dk ∈ D are allowed; this
freedom of choice can then be fruitfully exploited for introduc-
ing performance improvements.

An effective selection strategy for the steplength parameter is
obtained by adapting to the context of the scaling gradient meth-
ods the Barzilai & Borwein (1988) rules (hereafter denoted BB),
which are widely used in standard nonscaled gradient methods.
When the scaled direction Dk∇J0( f (k); g) is exploited within a
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Algorithm 1 Scaled gradient projection (SGP) method
Choose the starting point f (0) ≥ 0 and set the parameters β, θ ∈ (0, 1),
0 < αmin < αmax.

For k = 0, 1, 2, ... do the following steps:

Step 1. Choose the parameter αk ∈ [αmin, αmax] and the scaling ma-
trix Dk ∈ D;

Step 2. Projection:

y(k) = P+( f (k) − αk Dk∇J0( f (k); g));

Step 3. Descent direction: d(k) = y(k) − f (k);
Step 4. Set λk = 1;
Step 5. Backtracking loop:

let Jnew = J0( f (k) + λk d(k); g);
If

Jnew ≤ J0( f (k); g) + βλk∇J0( f (k); g)T d(k)

then

go to step 6;
Else

set λk = θλk and go to step 5.
Endif

Step 6. Set f (k+1) = f (k) + λk d(k).

End

step of the form ( f (k)−αkDk∇J0( f (k); g)), the BB steplength rules
become

α(BB1)
k =

s(k−1)T
D−1

k D−1
k s(k−1)

s(k−1)T D−1
k z(k−1)

, (7)

α(BB2)
k =

s(k−1)T
Dk z(k−1)

z(k−1)T DkDk z(k−1)
, (8)

where s(k−1)= f (k)−f (k−1) and z(k−1)=∇J0( f (k); g)−∇J0( f (k−1); g).
In SGP, we constrain the values produced by these rules into the
interval [αmin, αmax] in the following way:

if s(k−1)T
D−1

k z(k−1) ≤ 0 then
α(1)

k = min {10 · αk−1, αmax};
else

α(1)
k = min

{
αmax, max

{
αmin, α

(BB1)
k

}}
;

endif

if s(k−1)T
Dk z(k−1) ≤ 0 then

α(2)
k = min {10 · αk−1, αmax};

else

α(2)
k = min

{
αmax, max

{
αmin, α

(BB2)
k

}}
;

endif

the recent literature on steplength selection in gradient methods
propose that steplength updating rules be designed by alternat-
ing the two BB formulae (Serafini et al. 2005; Zhou et al. 2006).
In the case of nonscaled gradient methods (i.e., Dk = I) where
the inequality α(BB2)

k ≤ α(BB1)
k holds (Serafini et al. 2005), re-

markable convergence rate improvements have been obtained
by alternation strategies that force the selection to be made in
a suitable order of both low and high BB values. In Frassoldati
et al. (2008), this aim is realized by an alternation criterion,
which compares well with other popular BB-like steplength
rules, namely

if α(2)
k /α

(1)
k ≤ τk then

αk = min
j=max{1,k+1−Mα},...,k

α(2)
j ; (9)

τk+1 = 0.9 · τk;
else

αk = α
(1)
k ; τk+1 = 1.1 · τk;

endif

where Mα is a prefixed positive integer and τ1 ∈ (0, 1). When
scaled versions of the BB rules given in Eqs. (7)–(8) are used,
the inequality α(BB2)

k ≤ α(BB1)
k is not always true. Nevertheless,

a wide computational study suggests that this alternation crite-
rion is more suitable in terms of convergence rate than the use
of a single BB rule (Bonettini et al. 2009; Favati et al. 2010;
Zanella et al. 2009). Furthermore, in our experience, the use of
the BB values provided by Eq. (9) in the first iterations slightly
improves the reconstruction accuracy and, consequently, in the
proposed SGP version we start the steplength alternation only
after the first 20 iterations.

When selecting the scaling matrix Dk, a suitable updating
rule generally depends on the special form of the objective func-
tion. In our case, we chose the scaling matrix suggested by the
RL algorithm, i.e.,

Dk = diag
(
min

[
L2, max

{
L1, f (k)

}])
, (10)

where L1, L2 are prefixed thresholds.

2.2. Single image deconvolution

The problem of single image deconvolution in the presence of
photon counting noise is the minimization of the KL divergence
defined in Eq. (2) and the solution is given by the iterative RL
algorithm of Eq. (1). When applying SGP, we only need the ex-
pression of the gradient of the KL divergence, which is given by
(when the normalization of the PSF to unit volume is used)

∇J0( f ; g) = 1 − AT g

A f + b
· (11)

The SGP behavior with respect to RL was previously investi-
gated in Bonettini et al. (2009).

2.3. Multiple image deconvolution

Successful multiple image deconvolution is fundamental to the
future Fizeau interferometer of LBT called LINC-NIRVANA
(Herbst et al. 2003) or to the “co-adding” method of images with
different PSFs proposed by Lucy & Hook (1992).

We define p to be the number of detected images g j, ( j = 1,
..., p), with corresponding PSFs K j, all normalized to unit vol-
ume, and A j f = K j ∗ f . It is quite natural to assume that the
p images are statistically independent, such that the likelihood
of the problem is the product of the likelihoods of the different
images. If we assume again Poisson statistics, and we take the
negative logarithm of the likelihood, then the maximization of
the likelihood is equivalent to the minimization of a data-fidelity
function, which is the sum of KL divergences, one for each im-
age, i.e.

J0( f ; g) =
p∑

j=1

∑
m∈S

{
g j(m)ln

g j(m)

(A j f )(m) + b j(m)
(12)

+(A j f )(m) + b j(m) − g j(m)

}
.
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Algorithm 2 Ordered subset expectation maximization (OSEM)
method
Choose the starting point f (0) > 0.

For k = 0, 1, 2, ... do the following steps:

Step 1. Set h(0) = f (k);
Step 2. For j = 1, ..., p compute

h( j) = h( j−1) ◦
⎛⎜⎜⎜⎜⎝AT

j

g j

A j h
( j−1) + b j

⎞⎟⎟⎟⎟⎠ ; (15)

Step 3. Set f (k+1) = h(p).

End

If we apply the standard expectation maximization method
(Shepp & Vardi 1982) to this problem, we obtain the iterative
algorithm

f (k+1) =
1
p

f (k) ◦
p∑

j=1

AT
j

g j

A j f (k) + b j

, (13)

which we call the multiple image RL method (multiple RL, for
short). Since the gradient of (12) is given by

∇J0( f ; g) =
p∑

j=1

{
1 − AT

j

g j

A j f + b j

}
, (14)

we find that the algorithm presented in Eq. (13) is a scaled gra-
dient method, with a scaling given, at iteration k, by f (k)/p.
Therefore, the application of SGP to this problem is straight-
forward.

However, for the reconstruction of LINC-NIRVANA im-
ages, we must consider that an acceleration of the algorithm in
Eq. (13) is proposed in Bertero & Boccacci (2000) by exploiting
an analogy between the images of the interferometer and the pro-
jections in tomography. In this approach called OSEM (ordered
subset expectation maximization, Hudson & Larkin 1994), the
sum over the p images in Eq. (13) is replaced by a cycle over the
same images. To avoid oscillations of the reconstructions within
the cycle, a preliminary step is the normalization of the different
images to the same flux, if different integration times are used
in the acquisition process. The method OSEM is summarized in
algorithm 2.

As follows from practice and theoretical remarks, this ap-
proach reduces the number of iterations by a factor p. However,
the computational cost of one multiple RL iteration is lower than
that of one OSEM iteration: we need 3p+1 FFTs in the first case
and 4p FFTs in the second. In conclusion, the increase in effi-
ciency provided by OSEM is roughly given by (3p+1)/4. When
p = 3 (the number of images provided by the interferometer will
presumably be small), the efficiency is higher by a factor of 2.5,
and a factor of 4.7 when p = 6. These results must be taken into
account when considering the increase in the efficiency of SGP
with respect to multiple RL. We can add that the convergence of
SGP is proven while that of OSEM is not, even if it has always
been verified in our numerical experiments.

2.4. Boundary effect correction

If the target f is not completely contained in the image do-
main, then the previous deconvolution methods produce annoy-
ing boundary artifacts. It is not the purpose of this paper to dis-
cuss the different methods for solving this problem. We focus on

an approach proposed in Bertero & Boccacci (2005) for single
image deconvolution and in Anconelli et al. (2006) for multiple
image deconvolution. Here we present the equations in the case
of multiple images, where a single image corresponds to p = 1.

The idea is to reconstruct the object f over a domain broader
than that of the detected images and to merge, by zero padding,
the arrays of the images and the object into arrays of dimensions
that enable their Fourier transform to be computed by means of
FFT. We denote by S̄ the set of values of the multi-index labeling
the pixels of the broader arrays containing S and by R that of the
object array contributing to S , such that S ⊂ R ⊂ S̄ . It is also
obvious that also the PSFs must be defined over S̄ and that this
can be done in different ways, depending on the specific problem
one is considering. We point out that they must be normalized
to unit volume over S̄ . We also note that R corresponds to the
part of the object contributing to the detected images and that it
depends on the extent of the PSFs. It can be estimated from this
information as we indicate in the following (see Eq. (20)). The
reconstruction of f outside S , is unreliable in most cases, but its
reconstruction inside S is practically free of boundary artifacts,
as shown in the papers cited above and in the experiments of
Sect. 4.

If we denote by MR, MS the arrays, defined over S̄ , which
are 1 over R, S respectively and 0 outside, we define the matrices
A j and AT

j

(A j f )(m) = MS (m)
∑
n∈S̄

K j(m − n)MR(n) f (n), (16)

(AT
j g)(n) = MR(n)

∑
m∈S̄

K j(m − n)MS (m)g(m). (17)

In the second equation, g denotes a generic array defined over S̄ .
Both matrices can be easily computed by means of FFT. With
these definitions, the data fidelity function is then given again by
Eq. (12), with S replaced by S̄ , while its gradient is now given by

∇J0( f ; g) =
p∑

j=1

{
AT

j 1 − AT
j

g j

A j f + b j

}
, (18)

leading to the introduction of the functions

α j(n) =
∑
m∈S̄

K j(m − n)MS (m)g(m), (19)

α(n) =
p∑

j=1

α j(n), n ∈ S̄ .

These functions can be used to define the reconstruction domain
R, since they can be either very small or zero in pixels of S̄ ,
depending on the behavior of the PSFs. Given a thresholding
value σ, we use the definition

R = {n ∈ S̄ | α j(n) ≥ σ; j = 1, ..., p}. (20)

The RL algorithm, with boundary effect correction, is then
given by

f (k+1) =
MR

α
◦ f (k) ◦

p∑
j=1

AT
j

g j

A j f (k) + b j

, (21)

the quotient being zero in the pixels outside R. Similarly, the
OSEM algorithm, with a boundary effect correction is given by
algorithm 2 where Eq. (15) is replaced by

h( j) =
MR

α j
◦ h( j−1) ◦

⎛⎜⎜⎜⎜⎝AT
j

g j

A jh( j−1) + b j

⎞⎟⎟⎟⎟⎠ · (22)
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As far as the SGP algorithm concerns, the boundary effect cor-
rection is incorporated to the scaling matrix

Dk = diag

(
MR

α
◦min

[
L2, max

{
L1, f (k)

}])
, (23)

while all the other steps remain unchanged.

3. Computational features
The description of the SGP algorithm provided in Sect. 2.1 in-
dicates several ingredients on which the success of the recipe
depends: the choice of the starting point, the selection of the pa-
rameters defining the method, and the stopping criterion. In the
following, we briefly describe which choices were made in our
numerical experimentation, and comment on the parallel imple-
mentation of the algorithm.

3.1. Initialization

As far as the SGP initial point f (0) concerns, any non-negative
image is allowed. The possible choices implemented in our code
are:

– the null image f (0) = 0;
– the noisy image g (or, in the case of multiple deconvolution,

the noisy image g1 corresponding to the first PSF K1);
– a constant image with pixel values equal to the background-

subtracted flux (or mean flux in the case of multiple deconvo-
lution) of the noisy data divided by the number of pixels. If
the boundary effect correction is considered, only the pixels
in the object array R become equal to this constant, while the
remaining values of S̄ are set to zero. In future extensions
of our codes, the constant image will be convolved with a
Gaussian to avoid the presence of sharp edges;

– any input image provided by the user.

The constant image f (0) was chosen for our numerical experi-
ments, which is also the initial point used for RL.

3.2. SGP parameter setting

Even if the number of SGP parameters is certainly higher than
those of the RL and OSEM approaches, the huge amount of tests
carried out in several applications has led to an optimization
of these values, which allows the user to have at his disposal
a robust approach without the need for any problem-dependent
parameter tuning. In our present study, some of these values
were fixed according to the original paper of Bonettini et al.
(2009), as in the case of the line-search parameters β and θ,
which were set to 10−4 and 0.4, respectively. In addition, most
of the steplength parameters remained unchanged, as α0 = 1.3,
τ1 = 0.5, αmax = 105, and Mα = 3, while αmin was set to 10−5.

The main change concerned the choice of the bounds (L1, L2)
for the scaling matrices. While in the original paper, the choice
was a couple of fixed values (10−10, 1010), independent of the
data, we decided to automatically adapt these bounds to the in-
put image: we performed one step of the RL method and tuned
the parameters (L1, L2) according to the min/max positive values
ymin/ymax of the resulting image according to the rule

if ymax/ymin < 50 then
L1 = ymin/10;
L2 = ymax · 10;
else

L1 = ymin;
L2 = ymax;
endif

3.3. Stopping rules

As mentioned in the introduction, in many instances both RL and
SGP must not be pushed to convergence and an early stopping of
the iterations is required to achieve reasonable reconstructions.
In our code, we introduced different stopping criteria, which can
be adapted by the user according to his/her purposes:

– fixed number of iterations. The user can decide how many
iterations of SGP must be done;

– convergence of the algorithm. In such a case, a stopping cri-
terion based on the convergence of the data-fidelity function
to its minimum value is introduced. Iteration is stopped when

|J0( f (k+1); g) − J0( f (k); g)| ≤ tol J0( f (k); g), (24)

where tol is a parameter that can be selected by the user;
– minimization of the reconstruction error. This criterion can

be used in a simulation study. If one knows the object f̃ used
to generate the synthetic images, then one can stop the itera-
tions when the relative reconstruction error

ρ(k) =
| f (k) − f̃ |
|̃ f |

(25)

reaches a minimum value. A very frequently used measure
of error is given by the 	2 norm, i.e. | · | = ‖·‖2 and this is the
criterion implemented in our code;

– the use of a discrepancy criterion. In the case of real data,
one can use a given value of some measure of the “distance”
between the real data and the data computed by means of the
current iteration. A recently proposed criterion consists in
defining the “discrepancy function” for p images g j of size
N × N

D(k) =
2

p N2
J0( f (k); g), (26)

and stopping the iterations when D(k) = b, where b is a
given number close to 1. Work is in progress to validate this
discrepancy criterion with the purpose of obtaining rules of
thumb for estimating b in real applications.

The last stopping rule deserves a few comments. In Bertero et al.
(2010), it is shown that, for a single image, if f̃ is the object gen-
erating the noisy image g, then the expected value of J0( f̃ ; g) is
close to N2/2. This property is used to select a value of the reg-
ularization parameter when the image reconstruction problem is
formulated as the minimization of the KL divergence with the
addition of a suitable regularization term. This use is justified
by evidence that in some important cases it provides a unique
value of the regularization parameter. Moreover, it has also been
shown that the quantity D(k), defined in Eq. (26), decreases for
increasing k, starting from a value greater than 1. Therefore, it
can be used as a stopping criterion. Preliminary numerical exper-
iments described in that paper show that it can provide a sensible
stopping rule at least in simulation studies.

3.4. IDL and GPU implementation

Our implementation of the SGP algorithm was written in IDL,
a well-known and frequently used language in astronomical
environments. This data-analysis programming language is well-
suited to work with images, using optimized built-in vector op-
erations. Nevertheless, it is not intended that usability should be
compromised by performance.
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As already shown in Ruggiero et al (2010), the C++ imple-
mentation of the SGP algorithm is well-suited to paralleliza-
tion and good computational speedup is obtained exploiting the
CUDA technology. The CUDA is a framework developed by
NVIDIA that enables the use of GPU for programming. These
graphics cards are nowadays in many personal computers and
their core is highly parallel, consisting of several hundreds of
computational units. Many recent applications show that the in-
crease in efficiency achieved with this technology is significant
and its cost is much lower than that of a medium-sized cluster.
We note that memory management is crucial to ensure the op-
timal performance when using GPU. The transfer speed of data
from central memory to GPU is much slower than the GPU-to-
GPU transfer, hence to maximize the GPU benefits it is very
important to reduce the CPU-to-GPU memory communications
and retain all the problem data in the GPU memory.

The CUDA technology is available in IDL as part of GPUlib,
a software library that enables GPU-accelerated calculations,
developed by Tech-X Corporation. It has to be noted that the
FFT routine included in the current version of GPUlib (1.4.4) is
available only in single precision. Results from this function dif-
fer slightly from the ones obtained in double precision by IDL,
causing some numerical differences in our experiments.

4. Results

We now demonstrate, by means of a few numerical experi-
ments, the effectiveness of the SGP algorithm and its IDL-based
GPU implementation in the solution of the deblurring prob-
lems described in Sect. 2. Our test platform consists in a per-
sonal computer equipped with an AMD Athlon X2 Dual-Core
at 3.11 GHz, 3GB of RAM, and the graphics processing unit
NVIDIA GTX 280 with CUDA 3.2. We consider CPU imple-
mentations of RL, SGP, and OSEM in IDL 7.0; the GPU imple-
mentations are developed in mixed IDL and CUDA language by
means of the GPUlib 1.4.4.

The set of numerical experiments can be divided into
two groups: single image and multiple image deconvolution.
For each group, some tests on boundary effect correction are
included.

4.1. Single image deconvolution

The first experiments are based on 256 × 256 HST images of
the planetary nebula NGC 7027, the galaxy NGC 6946 and the
Crab nebula NGC 19521. We use three different integrated mag-
nitudes (m) of 10, 12, and 15, not corresponding to the effective
magnitudes of these objects but introduced for obtaining sim-
ulated images with different noise levels. In Fig. 1 we show the
three objects in the left panels. In the following, they are denoted
nebula, galaxy and Crab.

These objects are convolved with an AO-corrected PSF1

shown in Fig. 2 without zoom, and frequently used in numeri-
cal experiments. The parameters of this PSF (pixel size, diame-
ter of the telescope, etc.) are not provided. However, it has ap-
proximately the same width as the ideal PSF used in the third
experiment reported below and simulated assuming a telescope
of 8.25 m, a wavelength of 2.2 μm, and a pixel size of 5 mas.

A background of about 13.5 mag arcsec−2, corresponding to
observations in K-band, is added to the blurred images and the
results are perturbed with Poisson noise and additive Gaussian

1 Downloaded from http://www.mathcs.emory.edu/∼nagy/
RestoreTools/index.html

Fig. 1. The three objects, represented with reverse gray scale (left pan-
els; from up to down nebula, galaxy and Crab), and the reconstructions
with minimum relative rms error (m = 15; right panels).
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Fig. 2. The PSF used in the experiments of single image deconvolution
(left panel), represented with reverse gray scale, and the corresponding
MTF (right panel).

noise with σ = 10 e−/px. According to the approach proposed
in Snyder et al. (1994), compensation for readout noise is ob-
tained in the deconvolution algorithms by adding the constant
σ2 = 100 to the images and the background. In Table 1, the
performances of RL and SGP are reported, in terms of itera-
tion numbers needed to obtain the minimum relative rms error,
CPU times, and speedups provided by the two GPU versions
with respect to the serial ones. The reconstructions correspond-
ing to the minimum relative rms error, in the case m = 15, are
shown in the right panels of Fig. 1.

In the second experiment, we use the same datasets created
in the previous one to test the effectiveness of the procedure de-
scribed in Sect. 2.4 for the reduction of boundary effects. To this
aim, the 256 × 256 blurred and noisy images are partitioned
into four partially overlapping 160 × 160 subdomains. Each
one of the four partial images is merged, by zero-padding, in
a 256 × 256 array that is used, together with the original 256 ×
256 PSF, for the reconstruction of the four parts of the object
by means of the RL and SGP algorithms with boundary effect
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Table 1. Iteration numbers, relative rms errors, computational times, and speedups of RL and SGP, provided by the corresponding GPU imple-
mentations, for the three 256 × 256 objects nebula, galaxy and Crab.

Nebula (m = 10) Galaxy (m = 10) Crab (m = 10)
Algorithm It Err Sec SpUp It Err Sec SpUp It Err Sec SpUp
RL 528 0.021 41.28 – 10 000∗ 0.140 795.3 – 5353 0.128 419.8 –
RL_CUDA 528 0.021 2.079 19.9 10 000∗ 0.140 35.09 22.7 5353 0.128 19.45 21.6
SGP 50 0.021 4.719 – 406 0.141 38.61 – 151 0.129 14.28 –
SGP_CUDA 50 0.021 0.344 13.7 406 0.142 3.313 11.7 151 0.129 1.219 11.7

Nebula (m = 12) Galaxy (m = 12) Crab (m = 12)
Algorithm It Err Sec SpUp It Err Sec SpUp It Err Sec SpUp
RL 124 0.026 9.797 – 3887 0.157 304.6 – 954 0.136 74.83 –
RL_CUDA 124 0.026 0.516 19.0 3887 0.157 14.50 21.0 954 0.136 3.516 21.3
SGP 24 0.026 2.344 – 153 0.159 14.42 – 52 0.137 4.984 –
SGP_CUDA 24 0.026 0.203 11.5 153 0.159 1.266 11.4 52 0.137 0.406 12.3

Nebula (m = 15) Galaxy (m = 15) Crab (m = 15)
Algorithm It Err Sec SpUp It Err Sec SpUp It Err Sec SpUp
RL 124 0.063 9.766 – 448 0.234 35.14 – 128 0.172 10.09 –
RL_CUDA 124 0.063 0.469 20.8 448 0.234 1.594 22.0 128 0.172 0.483 20.9
SGP 12 0.060 1.250 – 21 0.234 2.094 – 10 0.172 1.093 –
SGP_CUDA 12 0.060 0.109 11.5 21 0.234 0.156 13.4 10 0.172 0.093 11.8

Notes. Iterations are stopped at a minimum relative rms error in the serial algorithms (the asterisks denote the maximum number of iterations
allowed).

Table 2. Reconstruction of nebula, galaxy, and Crab as a mosaic of the reconstructions of four subimages with boundary effect correction.

Nebula (m = 10) Galaxy (m = 10) Crab (m = 10)
Algorithm It Err Sec SpUp It Err Sec SpUp It Err Sec SpUp
RL 818 0.021 243.8 – 10 000∗ 0.144 2813 – 4070 0.129 1146 –
RL_CUDA 818 0.021 12.16 20.0 10 000∗ 0.144 141.5 19.9 4070 0.129 61.55 18.6
SGP 96 0.022 35.16 – 435 0.144 171.6 – 129 0.129 46.42 –
SGP_CUDA 96 0.022 3.406 10.3 435 0.148 14.41 11.9 129 0.133 4.342 10.7

Nebula (m = 12) Galaxy (m = 12) Crab (m = 12)
Algorithm It Err Sec SpUp It Err Sec SpUp It Err Sec SpUp
RL 127 0.026 38.42 – 2347 0.160 696.9 – 696 0.137 196.5 –
RL_CUDA 127 0.026 2.108 18.2 2347 0.160 35.13 19.8 696 0.137 10.99 17.9
SGP 21 0.026 9.563 – 126 0.161 51.11 – 53 0.137 19.41 –
SGP_CUDA 21 0.026 0.874 10.9 126 0.161 4.438 11.5 53 0.137 1.922 10.1

Nebula (m = 15) Galaxy (m = 15) Crab (m = 15)
Algorithm It Err Sec SpUp It Err Sec SpUp It Err Sec SpUp
RL 96 0.064 27.58 – 297 0.234 89.22 – 99 0.172 28.08 –
RL_CUDA 96 0.064 1.703 16.2 297 0.234 4.547 19.6 99 0.172 1.704 16.5
SGP 10 0.061 4.234 – 17 0.236 7.375 – 9 0.172 3.859 –
SGP_CUDA 10 0.061 0.407 10.4 17 0.236 0.657 11.2 9 0.172 0.360 10.7

Notes. The number of iterations is the one required for reconstructing each subdomain, while the reported computational time is the total time
required for the 4 reconstructions.

correction. From the four reconstructions 128×128, nonoverlap-
ping images are extracted and the complete reconstructed image
is formed as a mosaic of them. An example of the result is shown
in Fig. 3. By comparing with the reconstruction of the full im-
age, it is clear that the mosaic of the four reconstructions does
not exhibit visible boundary effects.

The results of this experiment for the three objects are re-
ported in Table 2. The reconstruction error is the relative rms
error between the mosaic and the original object. By compar-
ing with the results of Table 1, we find that the procedure does
not significantly increase the reconstruction error. We also point
out that we choose the number of iterations corresponding to
the global minimum, i.e. that providing the best performance on
the mosaic of the four reconstructions obtained in the four sub-
domains. The computational time is the total time of the four
reconstructions.

The third experiment intends to investigate the speedups
achievable by SGP when varying the size of the images. We

adopt the same procedure used in Ruggiero et al. (2010). The
original 256 × 256 objects are convolved with an ideal PSF (de-
scribed in the second paragraph of Sect. 4.1) and perturbed with
background and Poisson noise. Next, images with a larger size
are obtained by a Fourier-based re-binning, i.e. the FFT of the
original image is expanded by zero padding to a double-sized
array and the zero frequency component is multiplied by four. In
this way, the background and the noise level are approximately
unchanged and no new content is introduced at high frequencies.
In particular, no out-of-band noise is introduced and therefore
the number of iterations needed to converge to the best solu-
tion is probably underestimated, since we use, for any size, the
number derived in the case 256 × 256. In this experiment, we
consider only the nebula and the galaxy with two magnitudes
10 and 15. The original images are expanded up to a size of
2048 × 2048. The results are reported in Tables 3 and 4, where
we highlighted both the speedup observed between GPU and se-
rial implementations (labeled “Par”) and the one provided by the
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Fig. 3. Upper-left panel: the original nebula; upper-right panel: its
blurred and noisy image in the case m = 10; lower left panel: recon-
struction of the global image; lower-left panel: reconstruction as a mo-
saic of four reconstructions of partially overlapping subdomains, using
the algorithms with boundary effect correction.

use of SGP instead of RL (labeled “Alg”). We note that the com-
putational gain achieved by the parallel architecture increases in
proportion to the size of the image. As far as the speedup of
SGP with respect to RL is concerned, strong problem-dependent
differences in the number of iterations required to reach the min-
imum errors do not lead to a similarly regular behavior.

4.2. Multiple images

We test the efficiency of three algorithms for multiple image de-
convolution, i.e. multiple RL, OSEM, and SGP (applied to mul-
tiple RL), by means of simulated images of the Fizeau inter-
ferometer LINC-NIRVANA (LN, for short; Herbst et al. 2003)
of the LBT. The LN is in an advanced realization phase by a
consortium of German and Italian institutions, led by the Max
Planck Institute for Astronomy in Heidelberg. It is a true imager
with a maximum baseline of 22.8 m, thus producing images with
anisotropic resolution: that of a 22.8 m telescope in the direction
of the baseline and that of a 8.4 m (the diameter of LBT mirrors)
in the orthogonal direction. By acquiring images with different
orientations of the baseline and applying suitable deconvolution
methods, it is possible, in principle, to achieve the resolution of
a 22.8 m telescope in all directions. The LN will be equipped
with a detector consisting of 2048×2048 pixels with a pixel size
of about 5 mas, corresponding to a F0V of 10′′ × 10′′ for each
orientation of the baseline. Since in K-band the resolution of a
22.8 m mirror is about 20 mas, the detector provides an over-
sampling of a factor four.

In our simulations, we use PSFs generated with the code
LOST (Arcidiacono et al. 2004); one of them, with SR = 70%
and horizontal baseline, is shown in Fig. 4 together with the cor-
responding MTF. Moreover, we consider two test objects: one is
again the nebula NGC 7027, with two magnitudes, 10 and 15,
and size 512 × 512 (therefore, the images are noisier than those
of the 256 × 256 version with the same integrated magnitude);
the other is a model of an open star cluster based on an im-
age of the Pleiades (star cluster, for short), consisting of 9 stars
with magnitudes ranging from 12.86 to 15.64. These objects are
convolved with three PSFs corresponding to three equispaced

Table 3. Reconstruction of the nebula NGC 7027 with different image
sizes.

m = 10

Algorithm Size Err Sec SpUp SpUp
(Par) (Alg)

2562 0.051 783.9 – –
RL 5122 0.051 4527 – –
It = 10 000∗ 10242 0.051 17610 – –

20482 0.051 80026 – –

2562 0.051 35.63 22.0 –
RL_CUDA 5122 0.051 69.77 64.9 –
It = 10 000∗ 10242 0.051 149.5 118 –

20482 0.051 469.1 171 –

2562 0.052 26.14 – 30.0
SGP 5122 0.051 143.6 – 31.5
It = 272 10242 0.051 554.0 – 31.8

20482 0.051 2493 – 32.1

2562 0.052 1.797 14.5 19.8
SGP_CUDA 5122 0.052 3.469 41.4 20.1
It = 272 10242 0.052 8.016 69.1 18.7

20482 0.052 25.66 97.2 18.3
m = 15

Algorithm Size Err Sec SpUp SpUp
(Par) (Alg)

2562 0.068 48.27 – –
RL 5122 0.064 278.7 – –
It = 612 10242 0.062 1068 – –

20482 0.062 4897 – –

2562 0.068 2.219 21.8 –
RL_CUDA 5122 0.064 4.109 67.8 –
It = 612 10242 0.062 9.250 115 –

20482 0.062 29.13 168 –

2562 0.068 3.016 – 16.0
SGP 5122 0.064 16.95 – 16.4
It = 31 10242 0.062 65.22 – 16.4

20482 0.061 290.8 – 16.8

2562 0.068 0.218 13.8 10.2
SGP_CUDA 5122 0.064 0.421 40.3 9.76
It = 31 10242 0.062 1.063 61.4 8.70

20482 0.061 3.406 85.4 8.55

Fig. 4. Simulated PSF of LINC-NIRVANA with SR = 70% (left panel)
and the corresponding MTF (right panel). The PSF is monochromatic
in K-band and is the PSF of a 8.4 m mirror (the diameter of the two
mirrors of LBT) modulated by the interferometric fringes. Accordingly,
in the MTF the central disk corresponds to the band of a 8.4 m mirror
while the two side disks are replicas due to interferometry.

orientations of the baseline, 0◦, 60◦, and 120◦. In the u, v plane
they provide a satisfactory coverage of the band of a 22.8 m
telescope (see, for instance, Bertero et al. 2011, a review pa-
per where the generation of the images used in this paper is
described in greater detail). The results are perturbed with a
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Table 4. Reconstruction of the galaxy NGC 6946 with different image
sizes.

m = 10

Algorithm Size Err Sec SpUp SpUp
(Par) (Alg)

2562 0.293 786.0 – –
RL 5122 0.293 4545 – –
It = 10 000∗ 10242 0.293 17402 – –

20482 0.293 80022 – –

2562 0.293 36.64 21.5 –
RL_CUDA 5122 0.293 67.94 66.9 –
It = 10 000∗ 10242 0.293 146.7 119 –

20482 0.293 463.9 172 –

2562 0.292 88.72 – 8.86
SGP 5122 0.291 484.3 – 9.38
It = 928 10242 0.291 1854 – 9.19

20482 0.291 8386 – 9.54

2562 0.293 7.219 12.3 5.08
SGP_CUDA 5122 0.293 11.14 43.5 6.10
It = 928 10242 0.293 25.86 71.7 5.67

20482 0.293 81.02 104 5.73
m = 15

Algorithm Size Err Sec SpUp SpUp
(Par) (Alg)

2562 0.311 114.9 – –
RL 5122 0.307 644.3 – –
It = 1461 10242 0.306 2574 – –

20482 0.306 11689 – –

2562 0.311 5.375 21.4 –
RL_CUDA 5122 0.307 9.656 66.7 –
It = 1461 10242 0.306 22.41 115 –

20482 0.306 68.44 171 –

2562 0.311 3.672 – 31.3
SGP 5122 0.308 20.36 – 31.6
It = 38 10242 0.307 78.20 – 32.9

20482 0.306 354.0 – 33.0

2562 0.311 0.266 13.8 20.2
SGP_CUDA 5122 0.307 0.531 38.3 18.2
It = 38 10242 0.307 1.344 58.2 16.7

20482 0.306 4.188 84.5 16.3

Fig. 5. Interferometric images (horizontal baseline) of the 512 ×
512 Nebula with m = 15 (left panel) and of the star cluster (right panel).

background of about 13.5 mag arcsec−2, corresponding to ob-
servations in K-band, and with both Poisson and Gaussian noises
(σ = 10 e−/px). In Fig. 5, we show one interferometric image of
the nebula, with magnitude 15, and one interferometric image of
the star cluster, both with a horizontal baseline.

Table 5. Reconstruction of the nebula using three equispaced 512 ×
512 images.

m = 10
Algorithm It Err Sec SpUp
RL 3401 0.032 4364 –
RL_CUDA 3401 0.032 48.00 90.9
OSEM 1133 0.032 1602 –
OSEM_CUDA 1133 0.032 18.59 86.2
SGP 144 0.033 220.7 –
SGP_CUDA 144 0.033 3.563 61.9

m = 15
Algorithm It Err Sec SpUp
RL 353 0.091 441.5 –
RL_CUDA 353 0.091 4.937 89.4
OSEM 117 0.091 165.7 –
OSEM_CUDA 117 0.091 2.062 80.4
SGP 16 0.087 26.14 –
SGP_CUDA 16 0.087 0.546 47.9

4.2.1. Diffuse objects

We now provide the results obtained in the case of the nebula
with two magnitudes, 10 and 15. The stopping rule is given again
by the minimum rms error. We first consider deconvolution with-
out correction for edge artifacts because the object is within the
image domain. The results are reported in Table 5. If we com-
pare the behaviors of single image and multiple image RL, we
find that in the second case a larger number of iterations is re-
quired, owing to the difficulty in combining the resolutions of the
different images to get a unique high-resolution reconstruction.
Moreover, the greater cost per iteration has two causes: the first
is that the size is 256 × 256 in the single case and 512 × 512 in
the multiple image case; the second is that one single image iter-
ation requires 4 FFTs, while one multiple image iteration, with
three images, requires 10 FFTs.

The results confirm that the speedup provided by OSEM
with respect to multiple RL is about 2.5 with a reduction by a
factor 3 in the number of iterations (see Sect. 2.3), although the
speedup provided by SGP with respect to OSEM of a factor be-
tween 6 and 7 is interesting. This speedup presumably decreases
as the number of images increases, but a speedup of about 20 is
provided by OSEM in the case of 26 images, a number that pre-
sumably will never be achieved in the case of LN. Therefore, one
can conclude that SGP can be recommended for the deconvolu-
tion of LN images. Our CUDA implementations provide an addi-
tional speedup of about 80/90 for RL and OSEM, while smaller
factors are observed for SGP.

When testing the accuracy of the deconvolution methods
with boundary effect correction, we follow the same procedure
used in the single image case, i.e. the images are partitioned into
four partially overlapping subimages, the methods with bound-
ary effect correction are applied and the final reconstruction is
obtained as a mosaic of the four partial reconstructions. The re-
sults are reported in Table 6 and confirm the results obtained in
the single image case.

4.2.2. Point-wise objects

In this case, iterations are pushed to convergence and therefore
the stopping rule is given by the condition in Eq. (24); we use
different values of tol, specifically 10−3, 10−5, and 10−7. In order
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Table 6. Reconstruction of the nebula as a mosaic of four reconstructed
subimages with boundary effect correction, also in the case of three
equispaced images.

m = 10
Algorithm It Err Sec SpUp
RL 2899 0.034 13978 –
RL_CUDA 2899 0.034 174.2 80.2
OSEM 950 0.034 5447 –
OSEM_CUDA 950 0.034 64.03 85.1
SGP 160 0.034 873.3 –
SGP_CUDA 160 0.034 15.45 56.5

m = 15
Algorithm It Err Sec SpUp
RL 243 0.094 1174 –
RL_CUDA 243 0.094 15.28 76.8
OSEM 81 0.094 479.1 –
OSEM_CUDA 81 0.094 5.939 80.7
SGP 11 0.087 69.88 –
SGP_CUDA 11 0.086 1.532 45.6

to measure the quality of the reconstruction, we introduce an
average relative error of the magnitudes defined by

av_rel_er =
1
q

q∑
j=1

|m j − m̃ j|
m̃ j

, (27)

where q is the number of stars (in our case q = 9) and m̃ j and m j

are respectively the true and the reconstructed magnitudes. The
results are reported in Table 7.

We first point out that, as in the previous cases, we con-
strain the parallel codes to perform the same number of itera-
tions as the serial ones. This constraint is introduced because
the FFT does not have the same precision in the two cases, as
already discussed. As a result, the two implementations of the
same algorithm do not provide the same error for the same num-
ber of iterations. This effect presumably will be removed when
a double-precision FFT becomes available for GPU.

Next, we find, as expected, that the number of iterations in-
creases with decreasing values of tol. However, the increase in
computation time is not compensated by a significant decrease
in the accuracy of the reconstructed magnitudes. For tol = 10−3,
the accuracy of the estimated magnitudes might already be sat-
isfactory. We observe, however, that with this milder tolerance
the accuracy provided by the three algorithms is not the same.
Multiple RL and OSEM seem to be slightly more accurate. The
accuracy of all algorithms is essentially the same for the smaller
tolerances.

As a final experiment, we consider the reconstruction of a
binary with high dynamic range (Bertero et al. 2011). It consists
of a primary with m1 = 10 (denoted as S 1) and a secondary with
m2 = 20 (denoted as S 2). The distance between the two stars
is 45 mas (i.e. 9 pixels for the LINC-NIRVANA detector) and
the axis of the binary forms an angle of 23◦ with the direction
of the baseline of the first image. Three equispaced images are
generated as in the case of the star cluster, using the same PSFs
and the same background.

In this experiment, we need a very small tolerance, i.e.
tol = 10−7, in order to allow SGP to detect the faint secondary.
The reason is presumably that SGP requires a projection onto
the non-negative orthant, and the existence of this projection can
make degrade the appearance of the secondary. In all cases, the
results reported in Table 8 are interesting and demonstrate that
the magnitude of the secondary can also be estimated with a suf-
ficient accuracy in a reasonable computation time.

Table 7. Reconstruction of the star cluster with three 512 × 512 equis-
paced images.

tol = 1e-3
Algorithm It Err Sec SpUp
RL 319 2.39e-4 393.4 –
RL_CUDA 319 2.38e-4 4.641 84.8
OSEM 151 1.63e-4 220.8 –
OSEM_CUDA 151 1.62e-4 2.421 91.2
SGP 71 1.35e-3 97.80 –
SGP_CUDA 71 1.29e-3 1.641 59.6

tol = 1e-5
Algorithm It Err Sec SpUp
RL 1385 6.65e-5 1703 –
RL_CUDA 1385 6.64e-5 19.38 87.9
OSEM 675 5.64e-5 980.6 –
OSEM_CUDA 675 5.64e-5 10.75 91.2
SGP 337 5.89e-4 455.2 –
SGP_CUDA 337 1.79e-4 7.187 63.3

tol = 1e-7
Algorithm It Err Sec SpUp
RL 7472 5.64e-5 9180 –
RL_CUDA 7472 5.98e-5 104.8 87.6
OSEM 3750 6.13e-5 5442 –
OSEM_CUDA 3750 5.98e-5 59.52 91.4
SGP 572 7.37e-5 772.6 –
SGP_CUDA 572 7.05e-5 12.20 63.3

Notes. The error is the average relative error in the magnitudes defined
in Eq. (27).

Table 8. Reconstruction of the binary with high dynamic range (image
size: 256 × 256).

tol = 1e-7
Algorithm It Sec SpUp

RL 30 765 6108 –
RL_CUDA 30 765 292.9 20.9

OSEM 14 291 3216 –
OSEM_CUDA 14 291 156.0 20.6

SGP 2073 482.8 –
SGP_CUDA 2073 28.59 16.9

Magnitude
Algorithm Star Real Reconstructed

RL
S1 10 10.0001
S2 20 20.1841

OSEM S1 10 10.0001
S2 20 20.0919

SGP S1 10 10.0001
S2 20 20.2683

5. Discussion

The codes of the algorithms presented and discussed in this pa-
per can be freely downloaded2. A MATLAB code of SGP for
single image deconvolution is also available at the same URL,
which enables one to compare the IDL and MATLAB imple-
mentations on one’s own computer.

The paper is based on the RL algorithm and its general-
izations to boundary effect correction and multiple image de-
convolution being scaled gradient methods, where the scaling
is provided by the current iterate. Therefore, it is possible to
attempt to improve the efficiency of these algorithms in the
framework of the SGP approach proposed in Bonettini et al.
(2009). As already shown in that paper, the SGP version of
RL provides a considerable increase in efficiency.

2 At the URL http://www.unife/prin/software
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The results given in the previous section demonstrate that
SGP allows a significant speedup of all the RL-type algorithms
considered in this paper, even if the speedup depends consider-
ably on the specific object to be reconstructed and, for a given
object, on the noise level; it ranges from about 4 in the case of
multiple images of the star cluster (Table 7), to more than 30,
in the case of a single image of the galaxy (Table 4). A more
accurate investigation of the speedup achievable would require
application to a broader data set of astronomical objects as well
as to images with different noise levels and noise realizations. In
all cases, we believe that the results presented in this paper are
sufficient to demonstrate that SGP is a valuable acceleration of
RL-like algorithms and that in several cases it allows a consider-
able reduction in computational time.

The speedup provided by GPU implementation is consistent
with the results reported in Ruggiero et al. (2010). The speedup
of RL-algorithms is greater than that of SGP-algorithms because
the main computational kernel of RL is FFT, while SGP is also
based on the computation of steplengths, etc. Nevertheless, the
gain with respect to RL is very significant, in some cases, al-
lowing us to deconvolve a 2048 × 2048 image in a few seconds.
We analyzed the use of a multi-thread FFTW in our C imple-
mentation of the SGP algorithm, obtaining an improvement in
the performance with respect to the corresponding serial code,
which is however definitely lower than that achieved with the
CUDA version.

We conclude by emphasizing that in this paper we have con-
sidered a maximum likelihood approach for the image deblur-
ring problems and used an early stopping of the iterative proce-
dures to mimic a regularization effect. However, the SGP method
can also be applied to regularized deconvolution in the frame-
work of a Bayesian approach. The main problem would then
be to decide on a rule to determine a suitable scaling for a
given regularization function, since the scaling should depend on
this function. Such a rule can be provided by the split-gradient
method (SGM) proposed by Lantéri et al. (2001, 2002), which
can be considered an improvement of the one-step late (OSL)
method proposed by Green (1990): the OSL scaling does not
always yield positive values, while the SGM scaling does.

The scaling of SGM combined with SGP has been already
tested in the case of Poisson denoising (Zanella et al. 2009) and
Poisson deblurring (Staglianò et al. 2011), which are both based
on edge-preserving regularization. In both cases, this combina-
tion leads to very efficient algorithms. The SGM scalings can
also be designed for other kinds of regularization, and for a dis-
cussion of the case for Poisson data we refer to Bertero et al.
(2009, 2011).

Work is in progress to develop a library of SGP algorithms
for Poisson data deconvolution with a number of different kinds
of regularization.
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