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Abstract

We construct a solitonic 3-brane solution in the 6-dimensional Einstein–Hilbert–Gauss–Bonnet theory with a (negative)
cosmological term. This solitonic brane world isδ-function-like. Near the brane the metric is that for a product of the 4-
dimensional flat Minkowski space with a 2-dimensional “wedge” with a deficit angle (which depends on the solitonic brane
tension). Far from the brane the metric approaches that for a product of the 5-dimensional AdS space and a circle. This solitonic
solution exists for a special value of the Gauss–Bonnet coupling (for which we also have aδ-function-like codimension-1
solitonic solution), and the solitonic brane tension can take values in a continuous range. We discuss various properties of this
solitonic brane world, including coupling between gravity and matter localized on the brane. 2001 Published by Elsevier
Science B.V.

1. Introduction

In the brane world scenario the Standard Model gauge and matter fields are assumed to be localized on branes
(or an intersection thereof), while gravity lives in a larger dimensional bulk of space–time [1–16]. There is a big
difference between the footings on which gauge plus matter fields and gravity come in this picture.1 Thus, for
instance, if gauge and matter fields are localized on D-branes [3], they propagate only in the directions along the
D-brane world-volume. Gravity, however, is generically not confined to the branes — even if we have a graviton
zero mode localized on the brane as in [14], where the volume of the extra dimension is finite, massive graviton
modes are still free to propagate in the bulk. On the other hand, as was discussed in [16], in the cases with infinite
volume extra dimensions, we can have almost completely localized gravity on higher codimension (δ-function-like)
branes with thep2 = 0 modes penetrating into the bulk.

Recently in [17] it was pointed out that we can havecomplete localization of gravity on aδ-function-likesolitonic
codimension-1 brane world solution. That is, there are no propagating degrees of freedom in the bulk, while on the
brane we have 4-dimensional Einstein–Hilbert gravity (assuming that the solitonic brane is a 3-brane). In fact, in
this solution, even though the classical solitonic background is 5-dimensional, the quantum theory perturbatively2

E-mail addresses: olindo@insti.physics.sunysb.edu (O. Corradini), zurab@insti.physics.sunysb.edu (Z. Kakushadze).
1 This, at least in some sense, might not be an unwelcome feature — see, e.g., [4,7,12].
2 Non-perturbatively at the semi-classical level we can a priori have breakdown of causality via creation of “baby” branes.
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is actually 4-dimensional — there are no loop corrections in the bulk as we have no propagating bulk degrees of
freedom.

The setup of [17] is the 5-dimensional Einstein–Hilbert theory with a (negative) cosmological term augmented
with a Gauss–Bonnet term. The solitonic brane world solution arises in this theory for a special value of the Gauss–
Bonnet coupling. The fact that there are no propagating degrees of freedom in the bulk is then due to a perfect
cancellation between the corresponding contributions coming from the Einstein–Hilbert and Gauss–Bonnet terms,
which occurs precisely for this value of the Gauss–Bonnet coupling. Since the bulk theory does not receive loop
corrections, the classical choice of parameters such as the special value of the Gauss–Bonnet coupling (or the
Gauss–Bonnet combination itself) doesnot require perturbative order-by-order fine-tuning. Also, the entire setup
can be supersymmetrized, and then the aforementioned solitonic solution becomes a BPS state, which preserves
1/2 of the original supersymmetries.

In this Letter we would like to address the question whether there are higher codimension solitonic brane world
solutions in (the appropriate higher dimensional versions of) the setup of [17]. In fact, we do find codimension-2
solitonic 3 solutions, which are 3-branes if the bulk is 6-dimensional. Thus, we have aδ-function-like codimension-
2 solitonic solution. This solution, where the solitonic brane world-volume is flat, exists for a continuous range of
values of the solitonic brane tension. However, as we explain in the following, this is not a “self-tuning” solution
for two reasons. First, it turns out that to have a consistent tree-level coupling between gravity and brane matter
the latter must be conformal. Second, the aforementioned special choice of the Gauss–Bonnet coupling (unlike
in the codimension-1 solution of [17]) is sensitive to quantum corrections in the bulk. This is because in this
codimension-2 solution we do have propagating degrees of freedom in the bulk.

The remainder of this Letter is organized as follows. In Section 2 we discuss our setup. In Section 3 we find
the aforementioned solitonic codimension-2 brane world solutions and discuss their properties. In Section 4 we
discuss the coupling between gravity and brane matter. Section 5 contains various remarks.

2. The setup

In this section we discuss the setup within which we will construct the aforementioned codimension-2 solitonic
brane world solutions. The action for this model is given by (for calculational convenience we will keep the number
of space–time dimensionsD unspecified, but we are mostly interested in theD = 6 case):

(1)S =MD−2
P

∫
dDx

√−G{
R + λ

[
R2 − 4R2

MN +R2
MNST

] −Λ
}
,

whereMP is theD-dimensional (reduced) Planck scale, and the Gauss–Bonnet couplingλ has dimension(length)2.
Finally, the bulk vacuum energy densityΛ is a constant.

The equations of motion following form the action (1) read:

RMN − 1

2
GMNR − 1

2
λGMN

(
R2 − 4RMNRMN +RMNRSRMNRS

)
(2)+ 2λ

(
RRMN − 2RMSR

S
N +RMRSTRN

RST − 2RRSRMRNS
) + 1

2
GMNΛ= 0.

Note that this equation does not contain terms with third and fourth derivatives of the metric, which is a special
property of the Gauss–Bonnet combination [20,21].

3 Codimension-2 solutions in the 6-dimensional Einstein–Hilbert gravity in the presence of source (that is, non-solitonic) branes were
discussed in [18,19].
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2.1. Codimension-1 solitonic brane-world

In [17] it was shown that, for a special combination of the Gauss–Bonnet couplingλ and the vacuum energy
densityΛ, this theory possesses a codimension-1solitonic brane-world solution. Since this solution will be relevant
for our subsequent discussions, let us briefly review it here. Thus, let us focus on solutions to the above equations
of motion with the warped [22] metric of the form

(3)ds2
D = exp(2A)ηMN dx

M dxN,

whereηMN is the flatD-dimensional Minkowski metric, and the warp factorA, which is a function ofz ≡ xD , is
independent of the other(D − 1) coordinatesxµ. With this ansatz, we have the following equations of motion for
A (prime denotes derivative w.r.t.z):

(4)(D − 1)(D− 2)
(
A′)2[

1− (D − 3)(D− 4)λ
(
A′)2

exp(−2A)
] +Λexp(2A)= 0,

(5)(D − 2)
[
A′′ − (

A′)2][1− 2(D − 3)(D− 4)λ
(
A′)2 exp(−2A)

] = 0.

This system of equations has a set of solutions where theD-dimensional space is an AdS space for a continuous
range of parametersΛ andλ. The volume of thez direction for this set of solutions is infinite.

There, however, also exists a solution where the volume of thez direction is finite if we “fine-tune” the Gauss–
Bonnet couplingλ and the bulk vacuum energy densityΛ as follows:4

(6)Λ= − (D− 1)(D− 2)

(D− 3)(D− 4)

1

4λ
,

whereλ > 0, andΛ< 0. This solution is given by (we have chosen the integration constant such thatA(0)= 0):

(7)A(z)= − ln

[ |z|
∆

+ 1

]
,

where∆ is given by

(8)∆2 = 2(D− 3)(D − 4)λ.

Note that∆ can be positive or negative. In the former case the volume of thez direction is finite:v = 2∆/(D− 1).
On the other hand, in the latter case it is infinite.

Note thatA′ is discontinuous atz= 0, andA′′ has aδ-function-like behavior atz= 0. Note, however, that (5) is
still satisfied as in this solution

(9)1− 2(D− 3)(D− 4)λ
(
A′)2 exp(−2A)= 0.

Thus, this solution describes a codimension-1soliton. The tension of this soliton, which is given by

(10)fD−1 = 4(D− 2)

∆
MD−2

P ,

is positive for∆> 0, and it is negative for∆< 0. As was shown in [17], in the latter case the theory is non-unitary
(which is attributed to the negativity of the brane tension). The solution with positive brane tension, on the other
hand, is consistent. Here we are referring to thez= 0 hypersurface as the brane.

It was further shown in [17] that the graviton propagator in the above solitonic solution vanishes in the bulk,
while on the brane we havecompletely localized gravity. In particular, (at least perturbatively5) gravity on the
brane is purely(D − 1)-dimensional.

4 This special value of the Gauss–Bonnet coupling has appeared in a somewhat different context in [23]. In fact, it was argued in [23] that
for other values of these parameters the Einstein–Hilbert–Gauss–Bonnet theory is non-unitary.

5 As was pointed out in [17], a priori semi-classically there can be non-perturbative effects breaking causality via creation of “baby” branes,
so that gravity could in this way propagate into the bulk.
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3. Codimension-2 solitonic brane-world

In this section we would like to point out that in the above setup, precisely for the special combination of the
parameters (6), there also exists a codimension-2 solitonic brane world solution. Thus, consider the following
ansatz for the metric:

(11)ds2
D = exp(2A)

[
ηαβ dx

α dxβ + (dr)2 + exp(2B)r2 (dφ)2
]
,

whereηαβ is the flat(D − 2)-dimensional Minkowski metric corresponding to the first(D − 2) coordinatesxα ,
and the other two coordinates are chosen in the polar basis(r,φ); the warp factorsA andB, which are functions of
r, are assumed to be independent of(xα,φ) (that is, we are looking for axially symmetric solutions); the angular
coordinateφ takes values between 0 and 2π , while the radial coordinater takes values between 0 and∞.

With the above ansatz we have the following equations of motion forA andB (dot denotes derivative w.r.t.r):[
B̈ + 2

r
Ḃ + 1

r2 Ḃ
2 + (D − 2)

(
Ä− Ȧ2)][

1− 2(D− 3)(D− 4)λȦ2 exp(−2A)
]

(12)− 4(D − 3)(D− 4)λ
[
Ä− Ȧ2]Ȧ[

Ḃ + 1

r

]
exp(−2A)= 0,

(D − 1)(D− 2)Ȧ2[1− (D − 3)(D− 4)λȦ2 exp(−2A)
] +Λexp(2A)

(13)+ 2(D − 2)Ȧ

[
Ḃ + 1

r

][
1− 2(D − 3)(D − 4)λȦ2 exp(−2A)

] = 0,

(D − 1)(D− 2)Ȧ2[1− (D − 3)(D− 4)λȦ2 exp(−2A)
] +Λexp(2A)

(14)+ 2(D − 2)
[
Ä− Ȧ2][1− 2(D− 3)(D− 4)λȦ2 exp(−2A)

] = 0.

The first equation is a linear combination of the(αβ) and(rr) equations, the second equation is the(rr) equation,
and the third equation is the(φφ) equation. Only two of the above three equations are independent, which, as usual,
is a consequence of Bianchi identities.

3.1. δ-function-like solitonic brane-world

Here we would like to discuss a solution of the above equations of motion corresponding to aδ-function-like
codimension-2 solitonic brane world. This solution is given by:

(15)A(r)= − ln

(
r

∆
+ 1

)
, B(r)= −β,

whereβ is a constant, which we will assume to bepositive, while∆, which is also assumed to be positive, is related
to λ via (8). The metric is given by:

(16)ds2
D =

(
r

∆
+ 1

)−2[
ηαβ dx

α dxβ + (dr)2 + exp(−2β)r2 (dφ)2
]
.

Note that∆→ ∞ in this solution corresponds to the flat bulk limit. Also note that the presence of the Gauss–Bonnet
term (as well as the fact that the Gauss–Bonnet coupling takes a special value (6)) is crucial for the existence of the
solution (15) — indeed, (13) could not be satisfied without the Gauss–Bonnet term.

Near the originr → 0 the above metric takes the following form:

(17)ds2
D = ηαβ dx

α dxβ + (dr)2 + exp(−2β)r2 (dφ)2.
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This metric describes a product of the(D − 2)-dimensional flat Minkowski space with a 2-dimensional “wedge”
with the deficit angle

(18)θ = 2π
[
1− exp(−β)].

This wedge is locallyR2 except for the originr = 0, where we have aδ-function-like singularity. Thus, we have a
δ-function-like codimension-2solitonic brane located atr = 0.

The tension of this solitonic brane can be determined as follows. Consider the following action

(19)S1 =MD−2
P

∫
dDx

√−GR− fD−2

∫
Σ

dD−2x
√

−Ĝ,

whereΣ is a δ-function-like codimension-2source brane, which is the hypersurfacexi = 0 (xi , i = 1,2, are the
two coordinates transverse to the brane); the tensionfD−2 of this brane is assumed to be positive; finally,

(20)Ĝαβ ≡ δα
Mδβ

NGMN
∣∣
Σ
,

wherexα are the(D−2) coordinates along the brane (theD-dimensional coordinates are given byxM = (xα, xi)).
The equations of motion following from the action (19) are given by:

(21)RMN − 1

2
GMNR + 1

2

√
−Ĝ√−GδM

αδN
βĜαβf̃D−2δ

(2)(xi) = 0,

wheref̃D−2 ≡ fD−2/M
D−2
P .

Next, consider the following ansatz for the metric:

(22)ds2
D = ηµν dx

µ dxν + exp(2ω)δij dxi dxj ,

whereω is a function ofxi but is independent ofxα . With this ansatz we have

(23)Rαβ = 0, Rij = R̃ij = 1

2
G̃ij R̃,

(24)
√
G̃ R̃ = f̃D−2δ

(2)(xi),
whereR̃ andR̃ij are the 2-dimensional Ricci scalar, respectively, Ricci tensor constructed from the 2-dimensional
metric

(25)G̃ij ≡ exp(2ω)δij .

Since this metric is conformally flat, we have
√
G̃ R̃ = −2∂i∂iω (where the indices are lowered and raised using

δij andδij , respectively), so that

(26)∂i∂iω= −1

2
f̃D−2δ

(2)(xi).
The solution to this equation is given by

(27)ω = − 1

8π
f̃D−2 ln

(
x2

a2

)
,

wherex2 ≡ δij x
ixj , anda is an integration constant.

Let us go to the polar coordinates(ρ,φ): x1 = ρ cos(φ), x2 = ρ sin(φ) (ρ takes values from 0 to∞, while φ
takes values from 0 to 2π ). In these coordinates the two-dimensional metric is given by

(28)ds̃ 2
2 =

(
a2

ρ2

)ν[
(dρ)2 + ρ2 (dφ)2

]
,
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where

(29)ν ≡ 1

4π
f̃D−2.

Let us change the coordinates to(r,φ), where

(30)r ≡ 1

1− ν
aνρ1−ν,

where we are assuming thatν < 1. Then we have

(31)ds̃ 2
2 = (dr)2 + exp(−2β)r2 (dφ)2,

where

(32)exp(−β)≡ 1− ν.

Thus, we see that the brane tensionfD−2 is related to the deficit angleθ (given by (18)) via

(33)fD−2 = 2MD−2
P θ.

In particular, this expression gives the tension of theδ-function-like codimension-2 solitonic brane located atr = 0
in the solution described by the metric (16).

Before we end this section let us note that for larger (r �∆) the metric (16) approaches that ofAdSD−1 × S1

(34)ds2
D = ∆2

r2

[
ηαβ dx

α dxβ + (dr)2
] + r2∗ (dφ)2,

where the radius ofS1 is given byr∗ ≡∆exp(−β).

4. Coupling to brane matter

In this section we would like to discuss how gravity couples to matter localized on the aboveδ-function-
like codimension-2 solitonic brane. Since this brane is solitonic, it breaksD-dimensional diffeomorphisms only
spontaneously. This has certain implications to which we now turn.

Thus, let us consider small fluctuations around the solution (16):

(35)GMN = exp(2A)
[
GMN + hMN

]
,

whereGMN is the background metric up to the warp factor exp(2A) (that is,Gαβ = ηαβ , Grr = 1, Gφφ =
exp(−2β)r2, Gαr = Gαφ = Grφ = 0), and for convenience reasons instead of the metric fluctuationshMN ≡
exp(2A)hMN we choose to work withhMN .

In terms ofhMN theD-dimensional diffeomorphisms (corresponding toxM → xM − ξM ) read:

(36)δhαβ = ∂αξβ + ∂βξα + 2ηαβȦξr ,

(37)δhαr = ∂αξr + ξ̇ α,

(38)δhαφ = ∂αξφ + ∂φξα,

(39)δhrr = 2ξ̇ r + 2Ȧξ r ,

(40)δhrφ = ξ̇ φ − 2

r
ξφ + ∂φξr ,

(41)δhφφ = 2∂φξφ + 2 exp(−2β)r2
[
Ȧ+ 1

r

]
ξ r ,
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whereξM ≡ exp(−2A)ξM . Note that using these diffeomorphisms we can set two of the graviscalar components
(hrr andhrφ) as well as one of the graviphotons (hαr ) to zero. We are then left with the(D − 2)-dimensional
graviton (hαβ ), a graviphoton (hαφ ), and a graviscalar (hφφ ).

Next, let us assume that we have matter localized on theδ-function-like codimension-2 solitonic brane. LetTαβ
be the corresponding conserved energy momentum tensor:

(42)∂αTαβ = 0.

The coupling of gravity to the brane matter is described by the following term in the action:

(43)
1

2

∫
Σ

dD−2xT αβhαβ,

where Σ is the r = 0 hypersurface corresponding to the brane (note that onΣhαβ and hαβ coincide as
A(r = 0)= 0). SinceȦ(r = 0)= −1/∆ �= 0, this coupling is invariant under the aforementioned diffeomorphisms
if and only if

(44)T ≡ T α
α = 0,

that is, if and only if the brane matter isconformal.
So, at the tree level, to have a consistent coupling between gravity and the brane matter we must assume that the

latter is conformal.6 Note, however, that the conformal property cannot generically persist beyond the tree-level.
Indeed, the volume of the extra two dimensions in the above solution is finite:

(45)ṽ2 =
∞∫

0

dr

2π∫
0

dφ
√

−Gexp(DA)= 2π exp(−β) ∆2

(D− 1)(D− 2)
.

This implies that the(D − 2)-dimensional Planck scale on the brane is finite:

(46)M̂D−4
P =MD−2

P

∞∫
0

dr

2π∫
0

dφ
√

−Gexp
[
(D − 2)A

] = 4πλexp(−β)MD−2
P .

That is, we have a quadratically normalizable(D− 2)-dimensional graviton zero mode. The conformal invariance
of the matter localized on the brane is then generically expected to be broken by loop corrections involving gravity.

Thus, in the above brane world solution we have a quantum inconsistency discussed in [25] in other setups.
Note that such an inconsistency does not arise in the setup of [17]. The key reason is that in the codimension-1
solution of [17] (which we reviewed in Section 2) there are no propagating degrees of freedom in the bulk. In the
above codimension-2 solution, however, we do have such degrees of freedom, in particular, the aforementioned
graviscalar degree of freedomhφφ propagates in the bulk. A simple way to see this is to recall that, as we pointed
out at the end of the previous section, at larger the metric in this solution approaches that ofAdSD−1 × S1, so we
do have a propagating degree of freedom corresponding to the reduction onS1. This then implies that (unlike in
the codimension-1 solution) here we do have loop corrections in the bulk, and the corresponding higher curvature
terms will generically delocalize gravity [25].

6 This is similar to what happens in the setup of [24].
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5. Comments

We would like to end our discussion with a few remarks. First, note that the above codimension-2 solution, where
the brane world-volume is flat, exists for a continuous range of values of the solitonic brane tension.7 However,
this is not a “self-tuning” solution for two reasons. First, to have a consistent tree-level coupling between gravity
and brane matter the latter must be conformal. Second, the aforementioned special choice of the Gauss–Bonnet
coupling (unlike in the codimension-1 solution of [17]) is sensitive to quantum corrections in the bulk.

Note that the issues (which are expected to arise at the quantum level as we discussed at the end of the previous
section) with the coupling between the brane matter and gravity as well as with delocalization of gravity by
higher curvature terms in the bulk need not arise in scenarios with infinite volume extra dimensions [26–30],
at least in higher codimension cases. Here the four-dimensional gravity on the brane is obtained via the Einstein–
Hilbert term on the brane, which is generically expected to be generated by quantum effects on the brane as
long as the brane world-volume theory is not conformal [15,16]. As was pointed out in [17], this is expected
to be the case in the string theory context as well. Thus, in the orbifold examples of [31–33]8 we always have
non-conformalU(1) factors. Also, in other examples such as conifolds [37,38] already the non-Abelian gauge
subgroups are non-conformal in the ultra-violet (albeit they are conformal in the infra-red). As was argued in [17],
in the aforementioned examples (which are conformal in the infra-red, but are non-conformal in the ultra-violet) in
the context of AdS/CFT correspondence [39–41] on the type IIB side various higher curvature terms intrinsically
due to the compactification9 become important. Finally, recently non-conformal theories (that is, theories that are
not conformal even in the infra-red) were discussed in [45] within a modification of the setup of [33]. Some of these
theories can be discussed in the context of a certain brane–bulk duality [45], which might provide a framework for
computing gravitational corrections (such as the Einstein–Hilbert term) on D-branes.
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[4] P. Hŏrava, E. Witten, Nucl. Phys. B 460 (1996) 506;
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