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Abstract

We construct a solitonic 3-brane solution in the 6-dimensional Einstein—Hilbert—-Gauss—Bonnet theory with a (negative)
cosmological term. This solitonic brane world dfunction-like. Near the brane the metric is that for a product of the 4-
dimensional flat Minkowski space with a 2-dimensional “wedge” with a deficit angle (which depends on the solitonic brane
tension). Far from the brane the metric approaches that for a product of the 5-dimensional AdS space and a circle. This solitonic
solution exists for a special value of the Gauss—Bonnet coupling (for which we also tafimetion-like codimension-1
solitonic solution), and the solitonic brane tension can take values in a continuous range. We discuss various properties of this
solitonic brane world, including coupling between gravity and matter localized on the hra2@01 Published by Elsevier
Science B.V.

1. Introduction

In the brane world scenario the Standard Model gauge and matter fields are assumed to be localized on brane
(or an intersection thereof), while gravity lives in a larger dimensional bulk of space—time [1-16]. There is a big
difference between the footings on which gauge plus matter fields and gravity come in this pidtous, for
instance, if gauge and matter fields are localized on D-branes [3], they propagate only in the directions along the
D-brane world-volume. Gravity, however, is generically not confined to the branes — even if we have a graviton
zero mode localized on the brane as in [14], where the volume of the extra dimension is finite, massive graviton
modes are still free to propagate in the bulk. On the other hand, as was discussed in [16], in the cases with infinite
volume extra dimensions, we can have almost completely localized gravity on higher codimésfsioction-like)
branes with the»?2 = 0 modes penetrating into the bulk.

Recently in [17] it was pointed out that we can hawepletelocalization of gravity on @-function-likesolitonic
codimension-1 brane world solution. That is, there are no propagating degrees of freedom in the bulk, while on the
brane we have 4-dimensional Einstein—Hilbert gravity (assuming that the solitonic brane is a 3-brane). In fact, in
this solution, even though the classical solitonic background is 5-dimensional, the quantum theory pertutbatively

E-mail addresses: olindo@insti.physics.sunysb.edu (O. Corradini), zurab@insti.physics.sunysb.edu (Z. Kakushadze).
1 This, at least in some sense, might not be an unwelcome feature — see, e.g., [4,7,12].
2 Non-perturbatively at the semi-classical level we can a priori have breakdown of causality via creation of “baby” branes.
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is actually 4-dimensional — there are no loop corrections in the bulk as we have no propagating bulk degrees of
freedom.

The setup of [17] is the 5-dimensional Einstein—Hilbert theory with a (negative) cosmological term augmented
with a Gauss—Bonnet term. The solitonic brane world solution arises in this theory for a special value of the Gauss—
Bonnet coupling. The fact that there are no propagating degrees of freedom in the bulk is then due to a perfect
cancellation between the corresponding contributions coming from the Einstein—Hilbert and Gauss—Bonnet terms,
which occurs precisely for this value of the Gauss—Bonnet coupling. Since the bulk theory does not receive loop
corrections, the classical choice of parameters such as the special value of the Gauss—Bonnet coupling (or the
Gauss—Bonnet combination itself) daows require perturbative order-by-order fine-tuning. Also, the entire setup
can be supersymmetrized, and then the aforementioned solitonic solution becomes a BPS state, which preserve
1/2 of the original supersymmetries.

In this Letter we would like to address the question whether there are higher codimension solitonic brane world
solutions in (the appropriate higher dimensional versions of) the setup of [17]. In fact, we do find codimension-2
solitonic® solutions, which are 3-branes if the bulk is 6-dimensional. Thus, we héwfarection-like codimension-

2 solitonic solution. This solution, where the solitonic brane world-volume is flat, exists for a continuous range of
values of the solitonic brane tension. However, as we explain in the following, this is not a “self-tuning” solution
for two reasons. First, it turns out that to have a consistent tree-level coupling between gravity and brane matter
the latter must be conformal. Second, the aforementioned special choice of the Gauss—Bonnet coupling (unlike
in the codimension-1 solution of [17]) is sensitive to quantum corrections in the bulk. This is because in this
codimension-2 solution we do have propagating degrees of freedom in the bulk.

The remainder of this Letter is organized as follows. In Section 2 we discuss our setup. In Section 3 we find
the aforementioned solitonic codimension-2 brane world solutions and discuss their properties. In Section 4 we
discuss the coupling between gravity and brane matter. Section 5 contains various remarks.

2. Thesetup

In this section we discuss the setup within which we will construct the aforementioned codimension-2 solitonic
brane world solutions. The action for this model is given by (for calculational convenience we will keep the number
of space—time dimensiorn3 unspecified, but we are mostly interested in the- 6 case):

S:Mé,’—z/d’)x V=G {R +A[R? — 4R\ + Rénsr] — 4. (1)

whereMp is the D-dimensional (reduced) Planck scale, and the Gauss—Bonnet couplasgdimensiodength?.
Finally, the bulk vacuum energy densityis a constant.
The equations of motion following form the action (1) read:

1 1
Rvn = 5 GmNR — EAGMN(R2 — 4RMN Ry + RMNFE Ryigs)

1
+ 2).(RRuN — 2Rus RS v + Rwrst Ry — 2R™ Ryrns) + SGMNA = 0. (2

Note that this equation does not contain terms with third and fourth derivatives of the metric, which is a special
property of the Gauss—Bonnet combination [20,21].

3 Codimension-2 solutions in the 6-dimensional Einstein-Hilbert gravity in the presence of source (that is, non-solitonic) branes were
discussed in [18,19].
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2.1. Codimension-1 solitonic brane-world

In [17] it was shown that, for a special combination of the Gauss—Bonnet couplamgl the vacuum energy
densityA, this theory possesses a codimensiaotitonic brane-world solution. Since this solution will be relevant
for our subsequent discussions, let us briefly review it here. Thus, let us focus on solutions to the above equations
of motion with the warped [22] metric of the form

ds% =exp(2A)nvN dxM de, (3

wherenun is the flat D-dimensional Minkowski metric, and the warp factéy which is a function ot = x?, is
independent of the othéD — 1) coordinates:*. With this ansatz, we have the following equations of motion for
A (prime denotes derivative w.rg):

(D —1)(D —2)(A")?[1— (D —3)(D — AHr(A") > exp(—24) ]| + A exp24) =0, (4)
(D —2)[A” = (A)?][1—2(D — 3)(D — 4)(A")* exp—24)] =0. (5)
This system of equations has a set of solutions wherétiitmensional space is an AdS space for a continuous
range of parameterd andi. The volume of the direction for this set of solutions is infinite.
There, however, also exists a solution where the volume of thieection is finite if we “fine-tune” the Gauss—
Bonnet coupling. and the bulk vacuum energy densityas follows#
_ (D-HD-21 )
~ (D=3)(D—-4) 4\
whereA > 0, andA < 0. This solution is given by (we have chosen the integration constant such®at 0):

A(z)=—|n[%+1], (7)
whereA is given by
A%2=2(D —3)(D — d)Ar. (8)

Note thatA can be positive or negative. In the former case the volume of thieection is finitelv = 2A /(D — 1).
On the other hand, in the latter case it is infinite.

Note thatA’ is discontinuous ag = 0, andA” has as-function-like behavior at = 0. Note, however, that (5) is
still satisfied as in this solution

1-2(D —3)(D — 4)r(A')? exp(—24) =0. 9)
Thus, this solution describes a codimensiaspliton. The tension of this soliton, which is given by
A4AD-2) ,_
fp-1= TM'? 2, (10)

is positive forA > 0, and it is negative fon < 0. As was shown in [17], in the latter case the theory is non-unitary
(which is attributed to the negativity of the brane tension). The solution with positive brane tension, on the other
hand, is consistent. Here we are referring todke0 hypersurface as the brane.

It was further shown in [17] that the graviton propagator in the above solitonic solution vanishes in the bulk,
while on the brane we haveompletely localized gravity. In particular, (at least perturbativ®lygravity on the
brane is purely(D — 1)-dimensional.

4 This special value of the Gauss—Bonnet coupling has appeared in a somewhat different context in [23]. In fact, it was argued in [23] that
for other values of these parameters the Einstein—Hilbert—-Gauss—Bonnet theory is non-unitary.

5 As was pointed out in [17], a priori semi-classically there can be non-perturbative effects breaking causality via creation of “baby” branes,
so that gravity could in this way propagate into the bulk.
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3. Codimension-2 solitonic brane-world

In this section we would like to point out that in the above setup, precisely for the special combination of the
parameters (6), there also exists a codimension-2 solitonic brane world solution. Thus, consider the following
ansatz for the metric:

ds? = exp2A) [np dx® dxP + (dr)? + exp2B)r? (d¢)?], (11)

wherernqg is the flat(D — 2)-dimensional Minkowski metric corresponding to the fi¢st — 2) coordinates:®,
and the other two coordinates are chosen in the polar bagis, the warp factorst andB, which are functions of
r, are assumed to be independentdf, ¢) (that is, we are looking for axially symmetric solutions); the angular
coordinatep takes values between 0 and ,2vhile the radial coordinatetakes values between 0 and.
With the above ansatz we have the following equations of motior fand B (dot denotes derivative w.ri):

[1’3‘ + %B + %BZ +(D-2)(A- AZ)][l —2(D - 3)(D — HrA%exp(—24)]

—4(D - 3)(D — Hr[A - A?]A [B + ;1] exp(—2A4) =0, (12)
(D —1)(D —2)A’[1— (D — 3)(D — HrA2exp(—24)] + A exp24)
+2(D— 2)A[B + ﬂ [1-2(D —3)(D — HrA%exp(—24)] =0, (13)

(D —1)(D — 2)A’[1— (D — 3)(D — HrA2exp(—24)] + A exp24)
+2(D —2)[A — A?][1-2(D — 3)(D — HrA?exp(—2A)] = 0. (14)

The first equation is a linear combination of tfg8) and(rr) equations, the second equation is the) equation,
and the third equation is the¢) equation. Only two of the above three equations are independent, which, as usual,
is a consequence of Bianchi identities.

3.1. §-function-like solitonic brane-world

Here we would like to discuss a solution of the above equations of motion correspondideftmetion-like
codimension-2 solitonic brane world. This solution is given by:

A(r):—ln(% +1>, B(r) = —8, (15)
whereg is a constant, which we will assume tobsitive, while A, which is also assumed to be positive, is related
to A via (8). The metric is given by:

-2
ds? = (% + 1> [np dx® dxP + (dr)? + exp(—2B)r? (d$)?]. (16)

Note thatA — oo in this solution corresponds to the flat bulk limit. Also note that the presence of the Gauss—Bonnet
term (as well as the fact that the Gauss—Bonnet coupling takes a special value (6)) is crucial for the existence of the
solution (15) — indeed, (13) could not be satisfied without the Gauss—Bonnet term.

Near the originr — 0 the above metric takes the following form:

ds? = ngp dx® dxP + (dr)? + exp(—28)r? (d¢)>. 17)
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This metric describes a product of thB — 2)-dimensional flat Minkowski space with a 2-dimensional “wedge”
with the deficit angle
6 =27[1—exp(—B)]. (18)

This wedge is locallyR? except for the origin = 0, where we have &function-like singularity. Thus, we have a
§-function-like codimension-&olitonic brane located at = 0.
The tension of this solitonic brane can be determined as follows. Consider the following action

Sy = MPD_Z/de v=GR- fD,Z/dezx -G, (19)
X
where X is as-function-like codimension-2ource brane, which is the hypersurfagé= 0 (x’, i = 1, 2, are the
two coordinates transverse to the brane); the tengion of this brane is assumed to be positive; finally,
@aﬁ ESQM5;3NGMN|E, (20)

wherex® are the(D — 2) coordinates along the brane (thedimensional coordinates are giventlf = (x%, x%)).
The equations of motion following from the action (19) are given by:
1 1v-G ~ o~ .
RN — GMNR + = ~—=381*6nP Gup fp—28@ (x') =0, 21
MN — 5 GNN +2mMN op fD—28 (x") (21)
wherefp_o = fp_o2/ME~2.
Next, consider the following ansatz for the metric:

ds? =y dx* dx’ + exp2w)s;j dx' dx/, (22)
wherew is a function ofx’ but is independent of*. With this ansatz we have
~ 1 ~
Ryp=0,  Rij=Ry=3GiR, (23)
VG R= o282 (x'), (24)

whereR andﬁ,-j are the 2-dimensional Ricci scalar, respectively, Ricci tensor constructed from the 2-dimensional
metric

Gij = exp2w)s;;. (25)

Since this metric is conformally flat, we hav@ﬁ = —23'9;w (where the indices are lowered and raised using
8ij ands¥, respectively), so that

. 1~ .
33w = —EfD,Z(s(Z)(xl). (26)
The solution to this equation is given by
1~ x2
=——fp2In| = 27
w Sn‘fD 2n<a2>, (27)

wherex? = §;;x'x/, anda is an integration constant.
Let us go to the polar coordinatés, ¢): x1 = p cog¢), x% = psin(¢) (p takes values from 0 too, while ¢
takes values from 0 tos?). In these coordinates the two-dimensional metric is given by

2\ V
453 = (%) [do)? + 07 (d$)?]. (28)
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where
1~
=—fp_o. 29
v=—fp-2 (29)
Let us change the coordinates(iog), where
r= 1 avplfv’ (30)
1—v
where we are assuming thatk 1. Then we have
d53 = (dr)? + exp(—2B)r2 (d¢)?, (31)
where
exp—B)=1—v. (32)
Thus, we see that the brane tensjon_; is related to the deficit angte(given by (18)) via
fp—2=2ME~20. (33)

In particular, this expression gives the tension of&Hanction-like codimension-2 solitonic brane locatea at O
in the solution described by the metric (16).
Before we end this section let us note that for larde > A) the metric (16) approaches thatAdSp 1 x St

AZ
s = =5 [nup dx” P + (@r)?] + 2 (d)?. (34)

where the radius a* is given byr, = A exp(—f).

4. Coupling to brane matter

In this section we would like to discuss how gravity couples to matter localized on the &Howetion-
like codimension-2 solitonic brane. Since this brane is solitonic, it bréakiimensional diffeomorphisms only
spontaneously. This has certain implications to which we now turn.

Thus, let us consider small fluctuations around the solution (16):

G = exp2A)[ Gun + ], (35)

where Gy is the background metric up to the warp factor @) (that is, Geg = nep, Grr = 1, Gpp =
exp(—2B)r2, Gor = Gup = G,4 = 0), and for convenience reasons instead of the metric fluctuatigRs=
exp(2A)hpn We choose to work withw .

In terms ofipy the D-dimensional diffeomorphisms (correspondingth — x™ — M) read:

Sﬁaﬂ = 304?;3 + 3/3?0, + 27](:(/3 Agr, (36)

SEOH’ = ac(gr + gav (37)

550((]5 = aag(p + a(bgav (38)

STy, = 2%, + 24E ., (39)
_ kS 2_ _

5hr¢ :";:qb - ;%¢+a¢‘§r7 (40)

Shop = 204E 5 + 2 eXp—2)r? [A + %]a, (41)
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whereg ,, = exp(—2A)&y. Note that using these diffeomorphisms we can set two of the graviscalar components
(hy» andh,4) as well as one of the graviphotonis,() to zero. We are then left with th@ — 2)-dimensional
graviton (144), @ graviphoton,,), and a graviscalaf,).

Next, let us assume that we have matter localized odflumction-like codimension-2 solitonic brane. LBz
be the corresponding conserved energy momentum tensor:

3%Tup =0. (42)
The coupling of gravity to the brane matter is described by the following term in the action:

1 —
E/deszOlﬁhaﬁ, (43)
X

where X' is the r = 0 hypersurface corresponding to the brane (note thatUags and hap coincide as
A(r=0)=0). SinceA(r =0) = —1/A # 0, this coupling is invariant under the aforementioned diffeomorphisms
if and only if

T=T%=0, (44)

that is, if and only if the brane mattergésnformal.

So, at the tree level, to have a consistent coupling between gravity and the brane matter we must assume that th
latter is conformaf Note, however, that the conformal property cannot generically persist beyond the tree-level.
Indeed, the volume of the extra two dimensions in the above solution is finite:

o0 2
— A2
vo=[dr | dpv—-G DA)=2 —B)————. 45
to= [ dr [ dpvGexpna) =2rexn Ty (45)
0 0
This implies that the D — 2)-dimensional Planck scale on the brane is finite:
[ee) 2
MP~4=mD=2 f dr / d¢~—Gex(D — 2A] = dmrexp—p)MP 2. (46)
0 0

That is, we have a quadratically normalizabd® — 2)-dimensional graviton zero mode. The conformal invariance

of the matter localized on the brane is then generically expected to be broken by loop corrections involving gravity.
Thus, in the above brane world solution we have a quantum inconsistency discussed in [25] in other setups.

Note that such an inconsistency does not arise in the setup of [17]. The key reason is that in the codimension-1

solution of [17] (which we reviewed in Section 2) there are no propagating degrees of freedom in the bulk. In the

above codimension-2 solution, however, we do have such degrees of freedom, in particular, the aforementionec

graviscalar degree of freedolg, propagates in the bulk. A simple way to see this is to recall that, as we pointed

out at the end of the previous section, at largae metric in this solution approaches thatalSy 1 x S*, so we

do have a propagating degree of freedom corresponding to the reducti&n Bhis then implies that (unlike in

the codimension-1 solution) here we do have loop corrections in the bulk, and the corresponding higher curvature

terms will generically delocalize gravity [25].

6 This is similar to what happens in the setup of [24].



174 O. Corradini, Z. Kakushadze / Physics Letters B 506 (2001) 167-176
5. Comments

We would like to end our discussion with a few remarks. First, note that the above codimension-2 solution, where
the brane world-volume is flat, exists for a continuous range of values of the solitonic brane tehiiorver,
this is not a “self-tuning” solution for two reasons. First, to have a consistent tree-level coupling between gravity
and brane matter the latter must be conformal. Second, the aforementioned special choice of the Gauss—Bonne
coupling (unlike in the codimension-1 solution of [17]) is sensitive to quantum corrections in the bulk.

Note that the issues (which are expected to arise at the quantum level as we discussed at the end of the previou
section) with the coupling between the brane matter and gravity as well as with delocalization of gravity by
higher curvature terms in the bulk need not arise in scenarios with infinite volume extra dimensions [26—30],
at least in higher codimension cases. Here the four-dimensional gravity on the brane is obtained via the Einstein-
Hilbert term on the brane, which is generically expected to be generated by quantum effects on the brane as
long as the brane world-volume theory is not conformal [15,16]. As was pointed out in [17], this is expected
to be the case in the string theory context as well. Thus, in the orbifold examples of [$1w83jlways have
non-conformalU (1) factors. Also, in other examples such as conifolds [37,38] already the non-Abelian gauge
subgroups are non-conformal in the ultra-violet (albeit they are conformal in the infra-red). As was argued in [17],
in the aforementioned examples (which are conformal in the infra-red, but are non-conformal in the ultra-violet) in
the context of AA$CFT correspondence [39-41] on the type IIB side various higher curvature terms intrinsically
due to the compactificatichbecome important. Finally, recently non-conformal theories (that is, theories that are
not conformal even in the infra-red) were discussed in [45] within a modification of the setup of [33]. Some of these
theories can be discussed in the context of a certain brane—bulk duality [45], which might provide a framework for
computing gravitational corrections (such as the Einstein—Hilbert term) on D-branes.
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