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UMR CNRS 6086 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2
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Abstract. This paper deals with the longtime behavior of the Caginalp phase-
field system with coupled dynamic boundary conditions on both state variables.
We prove that the system generates a dissipative semigroup in a suitable phase-
space and possesses the finite-dimensional smooth global attractor and an ex-

ponential attractor.

1. Introduction. The Caginalp system is a well-known model in phase transition,
introduced in [1] to describe, in particular, melting-solidification phenomena in
certain classes of materials: the state variables are the order parameter u and the
relative temperature ϑ. If the system undergoing the phase-change is confined in a
container, it is natural to take into account the interactions with the walls: this gives
rise to the so-called dynamic boundary conditions (introduced for the first time in
the context of the Cahn-Hilliard system, see [3, 4, 5]), that is, to evolution equations
on the boundary of the vessel, resulting from suitable free energy/enthalpy balances.
In most papers dealing with the Caginalp model, such boundary conditions only
concern the order parameter (see, e.g., [6, 8]), but, in the abscence of specific physical
justifications (e.g., a thermally isolated system, [6]), it is reasonable to impose the
same type of conditions on the temperature, or, actually, on the enthalpy H(t) =
ϑ(t) + u(t): a derivation can be obtained along the lines of [7].
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More precisely, given a bounded and smooth domain Ω ⊂ R3 with boundary
Γ := ∂Ω, we will study the following system:

∂tu−∆u+ f(u) = ϑ in Ω

∂tψ −∆Γψ + g(ψ) + ∂nu = ζ on Γ

∂t(ϑ+ u)−∆ϑ = 0 in Ω

∂t(ζ + ψ)−∆Γζ + ∂nϑ = 0 on Γ

u|Γ = ψ, ϑ|Γ = ζ

u(0) = u0, ϑ(0) = ϑ0 in Ω

ψ(0) = ψ0, ζ(0) = ζ0 on Γ,

(1.1)

where ∆Γ is the Laplace-Beltrami operator, ∂n is the outward normal derivative
and all physical constants have been set equal to one. Here, the nonlinear functions
f and g represent the derivative of a typically nonconvex configuration potential
and of a boundary potential, respectively.

Such models have been studied in [7, 9], for smooth nonlinearities in [7] and
for both smooth and singular nonlinearities in [9]. Note however that, in [7], one
assumes that there is no diffusion for the temperature on the boundary, i.e., the
Laplace-Beltrami operator does not appear in the (dynamic) boundary condition
for the temperature, whereas, in [9], there is an additional dissipativity term in this
boundary condition, so that the enthalpy is not conserved (see below).

In this paper, we consider smooth nonlinearities f, g of class C2. We are inter-
ested in the existence of strong (i.e., H2) solutions. Our first task is thus to study
the well-posedness, namely, the existence of a unique strong solution and a suitable
Lipschitz continuous dependence on the initial data. Due to the nontrivial coupling
between the interior and the boundary, the existence is proved in several steps,
based on the Leray-Schauder principle. Note that, in [7], the existence of solutions
is proved via a standard (contracting) fixed point theorem. Here, the presence of
the diffusion on both dynamic boundary conditions allow to interpret these as per-
turbations of the classical heat equation on the boundary, which makes the use of
the Leray-Schauder principle natural. This also has an interest on its own, as it
allows to prove additional regularity on the solutions.

It follows from the well-posedness result that the system generates a strongly
continuous semigroup in a suitable phase-space and we can address the existence of
a global attractor with finite dimension. Indeed, such a result, which entails that the
essential asymptotic dynamics can be described by a finite number of parameters,
is obtained as a byproduct of the existence of an exponential attractor whose basin
of attraction can be extended to the whole phase-space, thanks to the transitivity
of the exponential attraction (see [2]).

1.1. Assumptions. We make the following assumptions on the nonlinear functions
f and g. As far as the bulk nonlinearity f is concerned, we impose the standard
dissipativity hypothesis,

f ∈ C2(R) with lim inf
|u|→∞

f ′(u) > 0, (1.2)

whereas, for physical reasons (cf. [13]), we assume that the surface nonlinearity g
satisfies

g(u) = u+ g0(u), where g0 ∈ C2(R) with ∥g0∥C2(R) = c0 <∞. (1.3)
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Notice that we do not impose any growth condition on f . In light of (1.2), it follows
that there exist constants cf , µ > 0 and µ′ ≥ 0 such that

f ′(s) ≥ −cf , and f(s)s ≥ µs2 − µ′, ∀s ∈ R, (1.4)

and, setting F (s) :=
∫ s

0
f(ξ) dξ, there exists Cf > 0 such that

⟨F (u)− f(u)u, 1⟩Ω ≤ Cf∥u∥2Ω, ∀u ∈ L2(Ω), (1.5)

where ∥·∥Ω and ⟨·, ·⟩Ω denote either the L2(Ω) or the [L2(Ω)]3-norm/scalar product,
depending on the context. Besides, it is not difficult to prove that

2F (s) ≥ µs2 − µ′, ∀s ∈ R. (1.6)

Preliminaries. Having equipped L2(Γ) and [L2(Γ)]3 with their usual scalar prod-
ucts and norms, both denoted by ⟨·, ·⟩Γ and ∥ · ∥Γ, we introduce the space L2(Ω) :=
L2(Ω)× L2(Γ) endowed with the scalar product

(U,W ) := ⟨u,w⟩Ω + ⟨ψ, v⟩Γ, ∀U = (u, ψ),W = (w, v) ∈ L2(Ω),

and the corresponding norm

∥U∥2 := ∥u∥2Ω + ∥ψ∥2Γ.

For U = (u, ψ) ∈ L2(Ω), we also set

m(U) :=
1

|Ω|+ |Γ|

(∫
Ω

udx+

∫
Γ

ψdΣ
)

and ⟨U⟩ := (m(U),m(U)).

It is easy to check that the following inequalities hold:

0 ≤ ∥V − ⟨V ⟩∥2 = ∥V ∥2 − (|Ω|+ |Γ|)m(V )2, ∀V ∈ L2(Ω). (1.7)

For further convenience, given two normed function spaces X in Ω and Y on Γ, we
set, whenever this makes sense,

X ⊗ Y := {u ∈ X : u|Γ ∈ Y }
and we endow this space with the norm

∥u∥2X⊗Y = ∥u∥2X + ∥u|Γ∥2Y .
In particular, we set

Hk(Ω) := Hk(Ω)⊗Hk(Γ), k = 1, 2, 3.

Then, introducing the dual space [Hk(Ω)]∗ of Hk(Ω), we denote by ⟨·, ·⟩Hk(Ω)
∗
,Hk(Ω)

the corresponding duality pairings. This allows to define the spaces

Vo := {U ∈ H1(Ω) : m(U) = 0} ⊂ H1(Ω)

Vo′ := {φ ∈ H1(Ω)
∗
: ⟨φ, 1⟩H1(Ω)

∗
,H1(Ω) = 0} ⊂ H1(Ω)

∗

and the operator A : Vo → Vo′, defined as

⟨AU,W ⟩H1(Ω)
∗
,H1(Ω) := ⟨∇u,∇w⟩Ω + ⟨∇Γψ,∇Γv⟩Γ,

for any U = (u, ψ), W = (w, v) ∈ Vo, is invertible. Notice that the third and fourth
equation of (1.1) can be rewritten as

A−1∂t(Θ + U) + Θ− ⟨Θ⟩ = 0 in Vo. (1.8)

Beside, the bilinear form

((U,W )) := ⟨∇u,∇w⟩Ω + ⟨∇Γψ,∇Γv⟩Γ, ∀U = (u, ψ),W = (w, v) ∈ H1(Ω)
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is a scalar product on Vo and we set

|U |2 := ((U,U)), ∀U ∈ H1(Ω).

We will repeatedly exploit the equivalence between the standard H1(Ω)-norm and
another norm appearing naturally in the estimates. More precisely, there exists a
constant γ > 1 such that

1

γ
∥U∥2

H1(Ω)
≤ |U |2 + ∥ψ∥2Γ ≤ γ∥U∥2

H1(Ω)
, ∀U = (u, ψ) ∈ H1(Ω). (1.9)

Finally, we set

H = [L2(Ω)]2 and Hk = [Hk(Ω)]2, for k = 1, 2, 3,

and, given any M > 0, we introduce the phase space

H2
M = {(U,Θ) ∈ H2 : |m(Θ + U)| ≤M}

endowed with the H2−topology. Notice that

H3
M =: H2

M ∩H3 b H2
M .

Enthalpy conservation. Denoting any solution to (1.1) by (U(t),Θ(t)), where
U(t) = (u(t), ψ(t)) and Θ(t) = (ϑ(t), ζ(t)), the problem is characterized by the
conservation of the enthalpy, defined as H(t) = Θ(t) + U(t). Indeed, the third and
fourth equations in (1.1) immediately provide

d

dt
⟨H(t)⟩ = 0, (1.10)

that is,

m(H(t)) = m(Θ(t) + U(t)) = m(Θ0 + U0), (1.11)

for all t ≥ 0.

Notation. Throughout the paper, c > 0 stands for a constant allowed to vary
within a same line and only influenced by the structural data of the problem; further
dependencies will be specified on occurrence.

2. Existence and uniqueness. This section is devoted to the proof of existence
and uniqueness of global solutions to problem (1.1).

Definition 2.1. For any fixed M > 0 and T > 0, given an arbitrary initial datum
z0 = (U0,Θ0) = (u0, ψ0, ϑ0, ζ0) ∈ H2

M , a solution to our system is a quadruplet
z(t) = (U(t),Θ(t)) = (u(t), ψ(t), ϑ(t), ζ(t)) ∈ C([0, T ];H2

M ) satisfying (1.1) in the
sense of distributions.

Our first result is the following:

Theorem 2.2. For any T > 0, system (1.1) admits a unique solution z(t) =
(U(t),Θ(t)) defined on the whole time interval [0, T ] departing from an arbitrary
initial datum in H2.

To prove this theorem, we argue as in [12, Theorem 2.1]. The idea is to interpret
problem (1.1) as a nonlinear compact perturbation of its linearized version (see (2.8)
below) and relies on the application of the Leray-Schauder principle. To accomplish
this program, some Lp-regularity estimates are needed.
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Lp-regularity estimates. We will use the anisotropic Sobolev spaces W 1,2
p (ΩT )

and W 1,2
p (∂ΩT ), where ΩT = [0, T ] × Ω and ∂ΩT = [0, T ] × ∂Ω, consisting of

functions which, together with their first time derivative and first and second space
derivatives, belong to Lp(ΩT ) and L

p(∂ΩT ), respectively (see, e.g., [10]).
In what follows, we will need the embeddings W 1,2

p (ΩT ) b C(ΩT ) and H
2(Ω) ⊂

W
2−2/p
p (Ω). The former compact inclusion follows from the classical Aubin-Simon

theorem, provided that W 2
p (Ω) b C(Ω), that is, when 2 − 3/p > 0. The second

embedding is satisfied when 2 ≤ p ≤ 10/3. This leads us to confine p to the interval
[2, 10/3].

We first consider the linear nonhomogeneous problem with homogeneous Dirich-
let boundary conditions,

∂tu−∆u− ϑ = h1 in Ω

u|Γ = 0 on Γ

∂t(ϑ+ u)−∆ϑ = h2 in Ω

ϑ|Γ = 0 on Γ

u(0) = u0, ϑ(0) = ϑ0 in Ω.

(2.1)

Lemma 2.3. If u0, ϑ0 ∈ W
2(1− 1

p )
p (Ω) and h1, h2 ∈ Lp(ΩT ), then there exists C =

C(T ) > 0 and a unique solution (u, ϑ) ∈W 1,2
p (ΩT )×W 1,2

p (ΩT ) to (2.1) such that

∥u∥W 1,2
p (ΩT ) + ∥ϑ∥W 1,2

p (ΩT )

≤ C
(
∥u0∥

W
2(1− 1

p
)

p (Ω)
+ ∥ϑ0∥

W
2(1− 1

p
)

p (Ω)
+ ∥h1∥Lp(ΩT ) + ∥h2∥Lp(ΩT )

)
.

Proof. We first obtain an estimate needed in the subsequent argument. Multiplying
the first equation by ∂tu and the third one by ϑ in L2(Ω), we obtain, on account of
the Poincaré inequality,

1

2

d

dt
[∥ϑ∥2Ω + ∥∇u∥2Ω] = −∥∇ϑ∥2Ω − ∥∂tu∥2Ω + ⟨h1, ∂tu⟩Ω + ⟨h2, ϑ⟩Ω

≤ −1

2
∥∇ϑ∥2Ω − 1

2
∥∂tu∥2Ω + c(∥h1∥2Ω + ∥h2∥2Ω),

leading to

d

dt
[∥ϑ∥2Ω + ∥∇u∥2Ω] + ∥∇ϑ∥2Ω + ∥∂tu∥2Ω ≤ c(∥h1∥2Ω + ∥h2∥2Ω)

and, integrating over [0, T ], to

∥ϑ∥L∞(0,T ;L2(Ω)) + ∥ϑ∥L2(0,T ;H1(Ω)) (2.2)

≤ c(∥ϑ0∥Ω + ∥u0∥H1(Ω) + ∥h1∥L2(ΩT ) + ∥h2∥L2(ΩT ))

≤ c(∥ϑ0∥
W

2(1− 1
p
)

p (Ω)
+ ∥u0∥

W
2(1− 1

p
)

p (Ω)
+ ∥h1∥Lp(ΩT ) + ∥h2∥Lp(ΩT )),

where here and below in this proof, c = c(T ). We can now apply the classical
Lp-theory to the system 

∂tu−∆u = h1 + ϑ in Ω

u|Γ = 0 on Γ

u(0) = u0 in Ω
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to conclude that

∥u∥W 1,2
p (ΩT ) ≤ c(∥u0∥

W
2(1− 1

p
)

p (Ω)
+ ∥h1∥Lp(ΩT ) + ∥ϑ∥Lp(ΩT )).

Here, the last term can be controlled by proper interpolation inequalities (see, e.g.,
[10, Chapter II, (3.2)] with q = r = p) and by (2.2), that is,

∥ϑ∥Lp(ΩT ) ≤ c∥ϑ∥1−
2
p

L∞(0,T ;L2(Ω))∥ϑ∥
2
p

L2(0,T ;H1(Ω))

≤ c(∥ϑ0∥
W

2(1− 1
p
)

p (Ω)
+ ∥u0∥

W
2(1− 1

p
)

p (Ω)
+ ∥h1∥Lp(ΩT ) + ∥h2∥Lp(ΩT )),

giving the bound

∥u∥W 1,2
p (ΩT ) ≤ c(∥u0∥

W
2(1− 1

p
)

p (Ω)
+∥ϑ0∥

W
2(1− 1

p
)

p (Ω)
+∥h1∥Lp(ΩT )+∥h2∥Lp(ΩT )). (2.3)

We apply the same theory to the system for ϑ, where ∂tu is read from the above
equation, namely, 

∂tϑ−∆ϑ+ ϑ = h2 − h1 −∆u in Ω

ϑ|Γ = 0 on Γ

ϑ(0) = ϑ0 in Ω,

obtaining, by (2.3),

∥ϑ∥W 1,2
p (ΩT ) ≤ c(∥ϑ0∥

W
2(1− 1

p
)

p (Ω)
+ ∥h1∥Lp(ΩT ) + ∥h2∥Lp(ΩT ) + ∥u∥W 1,2

p (ΩT )) (2.4)

≤ c(∥ϑ0∥
W

2(1− 1
p
)

p (Ω)
+ ∥u0∥

W
2(1− 1

p
)

p (Ω)
+ ∥h1∥Lp(ΩT ) + ∥h2∥Lp(ΩT )),

which finishes the proof.

As a second step, we consider the linear homogeneous problem with nonhomo-
geneous Dirichlet boundary conditions and null initial data,

∂tu−∆u− ϑ = 0 in Ω

u|Γ = ψ on Γ

∂t(ϑ+ u)−∆ϑ = 0 in Ω

ϑ|Γ = ζ on Γ

u(0) = 0, ϑ(0) = 0 in Ω.

(2.5)

Lemma 2.4. If ψ, ζ ∈ W
1− 1

2p ,2−
1
p

p (∂ΩT ), then there exists a unique solution
(u, ϑ) ∈W 1,2

p (ΩT )×W 1,2
p (ΩT ) to (2.5) such that

∥u∥W 1,2
p (ΩT ) + ∥ϑ∥W 1,2

p (ΩT ) ≤ C(∥ψ∥
W

1− 1
2p

,2− 1
p

p (∂ΩT )
+ ∥ζ∥

W
1− 1

2p
,2− 1

p
p (∂ΩT )

), (2.6)

for some positive constant C depending on T , but independent of ψ and ζ. Besides,∫ t

0

(⟨∂nu(s), ∂tψ(s)⟩Γ + ⟨∂nϑ(s), ζ(s)⟩Γ)ds ≥ 0. (2.7)

Proof. Following [12, Corollary 2.1], we consider the linear and continuous extension
operator

Tp :W
1− 1

2p ,2−
1
p

p (∂ΩT ) →W 1,2
p (ΩT ) defined as (Tpψ)|∂ΩT = ψ.
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Performing the change of variables w = u − Tpψ and ξ = ϑ − Tpζ, we obtain by
straightforward computations that (w, ξ) solves (2.1) with

h1 := −[∂t(Tpψ)−∆(Tpψ)− Tpζ],

h2 := −[∂t(Tpζ)−∆(Tpζ) + ∂t(Tpψ)]

and null initial data. By Lemma 2.3, we have the existence and uniqueness of the
solution, together with estimate (2.6). In order to prove (2.7), it suffices to sum the
first equation times ∂tu and the equation for ϑ times ϑ: an integration in space and
time in light of the null initial conditions provides the required inequality.

We are now ready to study the linearized version of our problem,

∂tu−∆u− ϑ = h1 in Ω

∂tψ −∆Γψ + ψ + ∂nu− ζ = h2 on Γ

∂t(ϑ+ u)−∆ϑ = h3 in Ω

∂t(ζ + ψ)−∆Γζ + ∂nϑ = h4 on Γ

u|Γ = ψ, ϑ|Γ = ζ

u(0) = u0, ϑ(0) = ϑ0 in Ω

ψ(0) = ψ0, ζ(0) = ζ0 on Γ.

(2.8)

Lemma 2.5. If h1, h3 ∈ Lp(ΩT ), h2, h4 ∈ Lp(∂ΩT ), u0, ϑ0 ∈ W
2(1− 1

p )
p (Ω) and

ψ0, ζ0 ∈ W
2(1− 1

p )
p (∂Ω), then (2.8) possesses a unique solution (u(t), ψ(t), ϑ(t), ζ(t))

such that

∥u∥W 1,2
p (ΩT ) + ∥ϑ∥W 1,2

p (ΩT ) + ∥ψ∥W 1,2
p (∂ΩT ) + ∥ζ∥W 1,2

p (∂ΩT )

≤ c(∥u0∥
W

2(1− 1
p
)

p (Ω)
+ ∥ϑ0∥

W
2(1− 1

p
)

p (Ω)
+ ∥ψ0∥

W
2(1− 1

p
)

p (∂Ω)
+ ∥ζ0∥

W
2(1− 1

p
)

p (∂Ω)

+ ∥h1∥Lp(ΩT ) + ∥h2∥Lp(∂ΩT ) + ∥h3∥Lp(ΩT ) + ∥h4∥Lp(∂ΩT )),

for some constant c > 0 depending on T , but independent of the solution (u, ψ, ϑ, ζ)
and the data (h1, h2, h3, h4).

Proof. The proof is similar to that of [12, Lemma 2.2], but we report it for the
reader’s convenience: the constant c is allowed to depend on T .

Let T : [W
1− 1

2p ,2−
1
p

p (∂ΩT )]
2 → [W 1,2

p (ΩT )]
2, defined as

T(ψ, ζ) = (T1(ψ, ζ),T2(ψ, ζ)) = (ū, ϑ̄),

be the solution operator to the following problem:

∂tū−∆ū− ϑ̄ = 0 in Ω

ū|Γ = ψ on Γ

∂t(ϑ̄+ ū)−∆ϑ̄ = 0 in Ω

ϑ̄|Γ = ζ on Γ

ū(0) = 0, ϑ̄(0) = 0 in Ω.

(2.9)

Such an operator is well defined thanks to Lemma 2.4. Besides, a suitable trace
theorem, together with interpolation (cf. [12, (67) and (69)]), provides

∥∂n(Ti(ψ, ζ))∥Lp(∂ΩT ) ≤ c(∥ψ∥
W

1− 1
2p

,2− 1
p

p (∂ΩT )
+ ∥ζ∥

W
1− 1

2p
,2− 1

p
p (∂ΩT )

) (2.10)

≤ ν(∥ψ∥W 1,2
p (∂ΩT ) + ∥ζ∥W 1,2

p (∂ΩT )) + cν(∥ψ∥L2(∂ΩT ) + ∥ζ∥L2(∂ΩT ))
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for i = 1, 2. Setting υ(t) = u(t)− ū(t) and θ(t) = ϑ(t)− ϑ̄(t), we obtain, in view of
(2.8), 

∂tυ −∆υ − θ = h1 in Ω

υ|Γ = 0 on Γ

∂t(θ + υ)−∆θ = h3 in Ω

θ|Γ = 0 on Γ

υ(0) = u0, θ(0) = ϑ0 in Ω.

(2.11)

Since Lemma 2.3 applies to (2.11), we have

∥υ∥W 1,2
p (ΩT ) + ∥θ∥W 1,2

p (ΩT ) (2.12)

≤ c
[
∥u0∥

W
2(1− 1

p
)

p (Ω)
+ ∥ϑ0∥

W
2(1− 1

p
)

p (Ω)
+ ∥h1∥Lp(ΩT ) + ∥h3∥Lp(ΩT )

]
.

Next, (ψ, ζ) solves
∂tψ −∆Γψ + ψ + ∂n(T1(ψ, ζ))− ζ = h2 − ∂nυ on Γ

∂t(ζ + ψ)−∆Γζ + ∂n(T2(ψ, ζ)) = h4 − ∂nθ on Γ

ψ|t=0 = ψ0, ζ(0) = ζ0,

(2.13)

where, due to (2.12), h2 − ∂nυ, h4 − ∂nθ ∈ Lp(∂ΩT ). Hence, (2.13) is a compact
perturbation of the heat equation on the boundary and the existence and uniqueness
of solutions can be verified in a standard way. To prove the required Lp-estimates,
we first apply the classical Lp-theory to the system{

∂tψ −∆Γψ + ψ = h̃2 + ζ on Γ

ψ|t=0 = ψ0,
(2.14)

where

h̃2 := h2 − ∂nυ − ∂n(T1(ψ, ζ)),

obtaining

∥ψ∥W 1,2
p (∂ΩT ) ≤ c(∥ψ0∥

W
2− 2

p
p (∂Ω)

+ ∥ζ∥Lp(∂ΩT ) + ∥h̃2∥Lp(∂ΩT )), (2.15)

where

∥h̃2∥Lp(∂ΩT ) ≤ c(∥h2∥Lp(∂ΩT ) + ∥∂nυ∥Lp(∂ΩT ) + ∥∂n(T1(ψ, ζ))∥Lp(∂ΩT )). (2.16)

We now turn our attention to the ζ-system, where ∂tψ has been replaced by the
corresponding terms read from (2.14),{

∂tζ −∆Γζ + ζ = h̃4 on Γ

ζ(0) = ζ0,
(2.17)

with

h̃4 := h4 − ∂nθ − ∂n(T2(ψ, ζ))−∆Γψ + ψ − h̃2.

Standard Lp-estimates give

∥ζ∥W 1,2
p (∂ΩT ) ≤ c(∥ζ0∥

W
2− 2

p
p (∂Ω)

+ ∥h̃4∥Lp(∂ΩT ))

≤ c(∥ζ0∥
W

2− 2
p

p (∂Ω)
+ ∥h4∥Lp(∂ΩT )+ ∥∂nθ∥Lp(∂ΩT )+ ∥∂n(T2(ψ, ζ))∥Lp(∂ΩT )

+ ∥ψ∥W 1,2
p (∂ΩT )+ ∥ψ∥Lp(∂ΩT ) + ∥h̃2∥Lp(∂ΩT )),
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which, by (2.15) and (2.16), leads to

∥ψ∥W 1,2
p (∂ΩT ) + ∥ζ∥W 1,2

p (∂ΩT )

≤ c(∥ψ0∥
W

2− 2
p

p (∂Ω)
+ ∥ζ0∥

W
2− 2

p
p (∂Ω)

+ ∥h2∥Lp(∂ΩT ) + ∥h4∥Lp(∂ΩT )

+ ∥ψ∥Lp(∂ΩT ) + ∥ζ∥Lp(∂ΩT ) + ∥∂nυ∥Lp(∂ΩT ) + ∥∂nθ∥Lp(∂ΩT )

+ ∥∂n(T1(ψ, ζ))∥Lp(∂ΩT ) + ∥∂n(T2(ψ, ζ))∥Lp(∂ΩT )).

In light of (2.10) and (2.12), fixing ν small enough, we have

∥ψ∥W 1,2
p (∂ΩT ) + ∥ζ∥W 1,2

p (∂ΩT ) (2.18)

≤ c[∥u0∥
W

2(1− 1
p
)

p (Ω)
+ ∥ψ0∥

W
2− 2

p
p (∂Ω)

+ ∥ϑ0∥
W

2(1− 1
p
)

p (Ω)
+ ∥ζ0∥

W
2− 2

p
p (∂Ω)

+ ∥h1∥Lp(ΩT ) + ∥h3∥Lp(ΩT ) + ∥h2∥Lp(∂ΩT ) + ∥h4∥Lp(∂ΩT )

+ ∥ψ∥Lp(∂ΩT ) + ∥ζ∥Lp(∂ΩT ) + ∥ψ∥L2(∂ΩT ) + ∥ζ∥L2(∂ΩT )].

Since the first two terms in the last line can be handled by the inequality

∥ · ∥Lp(∂ΩT ) ≤ c∥ · ∥1−
2
p

L∞(0,T ;L2(Γ))∥ · ∥
2
p

L2(0,T ;H1(Γ)), (2.19)

we are left to control the L2(Γ)-norms of ψ and ζ. To this aim, we multiply the
first equation in (2.13) by ∂tψ,

1

2

d

dt
∥ψ∥2H1(Γ) + ∥∂tψ∥2Γ = ⟨h2 − ∂nυ, ∂tψ⟩Γ − ⟨∂n(T1(ψ, ζ)), ∂tψ⟩Γ + ⟨ζ, ∂tψ⟩Γ,

and the second one by ζ,

1

2

d

dt
∥ζ∥2Γ + ∥∇Γζ∥2Γ + ⟨ζ, ∂tψ⟩Γ = ⟨h4 − ∂nθ, ζ⟩Γ − ⟨∂n(T2(ψ, ζ)), ζ⟩Γ.

Summing up, we obtain

1

2

d

dt
(∥ψ∥2H1(Γ) + ∥ζ∥2Γ) + ∥∂tψ∥2Γ + ∥∇Γζ∥2Γ = ⟨h2 − ∂nυ, ∂tψ⟩Γ

+ ⟨h4 − ∂nθ, ζ⟩Γ − ⟨∂n(T2(ψ, ζ)), ζ⟩Γ − ⟨∂n(T1(ψ, ζ)), ∂tψ⟩Γ,

which leads to the differential inequality

1

2

d

dt
(∥ψ∥2H1(Γ) + ∥ζ∥2Γ) +

1

2
∥∂tψ∥2Γ + ∥ζ∥2H1(Γ)

≤ ∥h2∥2Γ + ∥h4∥2Γ + ∥∂nυ∥2Γ + ∥∂nθ∥2Γ + 2∥ζ∥2Γ
− ⟨∂n(T2(ψ, ζ)), ζ⟩Γ − ⟨∂n(T1(ψ, ζ)), ∂tψ⟩Γ,

having added ∥ζ∥2Γ to both sides.
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An application of the Gronwall’s lemma, taking into account (2.7) and (2.12),
provides

∥ψ(t)∥2H1(Γ) + ∥ζ(t)∥2Γ +

∫ t

0

[∥∂tψ(s)∥2Γ + ∥ζ(s)∥2H1(Γ)]ds

≤ e4T (∥ψ0∥2H1(Γ) + ∥ζ0∥2Γ)

+ 2

∫ t

0

e4(t−s)[∥h2(s)∥2Γ + ∥h4(s)∥2Γ + ∥∂nυ(s)∥2Γ + ∥∂nθ(s)∥2Γ]ds

≤ c[∥ψ0∥2H1(Γ) + ∥ζ0∥2Γ + ∥h2∥2L2(∂ΩT ) + ∥h4∥2L2(∂ΩT )

+ ∥∂nυ∥2L2(∂ΩT ) + ∥∂nθ∥2L2(∂ΩT )]

≤ c[∥u0∥2H1(Ω) + ∥ψ0∥2H1(Γ) + ∥ϑ0∥2H1(Ω) + ∥ζ0∥2Γ
+ ∥h1∥2L2(ΩT ) + ∥h3∥2L2(ΩT ) + ∥h2∥2L2(∂ΩT ) + ∥h4∥2L2(∂ΩT )],

that is,

∥ψ∥L∞(0,T ;H1(Γ)) + ∥ζ∥L∞(0,T ;L2(Γ)) + ∥ζ∥L2(0,T ;H1(Γ)) + ∥∂tψ∥L2(∂ΩT ) (2.20)

≤ c(∥z0∥H1 + ∥h1∥L2(ΩT ) + ∥h3∥L2(ΩT ) + ∥h2∥L2(∂ΩT ) + ∥h4∥L2(∂ΩT )),

where c depends exponentially on T . Injecting this relation into (2.18), we have, in
light of (2.19), the required control of the norms ∥ψ∥W 1,2

p (∂ΩT ) and ∥ζ∥W 1,2
p (∂ΩT ),

which concludes the proof.

Proof of existence. Given z0 = (u0, ψ0, ϑ0, ζ0) ∈ H2
M , we consider the following

homotopy of problem (1.1):

∂tu−∆u− ϑ = −sf(u) in Ω

∂tψ −∆Γψ + ψ + ∂nu− ζ = −sg0(ψ) on Γ

∂tϑ−∆ϑ+ ∂tu = 0 in Ω

∂tζ −∆Γζ + ∂nϑ+ ∂tψ = 0 on Γ

u|Γ = ψ, ϑ|Γ = ζ

u(0) = u0, ϑ(0) = ϑ0 in Ω

ψ(0) = ψ0, ζ(0) = ζ0 on Γ.

For any s ∈ [0, 1], this problem is equivalent to the following:
u
ψ
ϑ
ζ

 = M0


u0
ψ0

ϑ0
ζ0

+ sMh


−f(u)
−g0(ψ)

0
0


where M0 : z0 = (u0, ψ0, ϑ0, ζ0) 7→ z(t) = (u, ψ, ϑ, ζ) is the solving operator to (2.8)
with h = 04 and Mh : h 7→ z is the solving operator to (2.8) with null initial data.
We now introduce the space

Φ := [W 1,2
p (ΩT )×W 1,2

p (∂ΩT ))]
2

which is compactly embedded into [C(ΩT )×C(∂ΩT )]
2. In light of Lemma 2.5, the

operator (u, ψ, ϑ, ζ) 7→ Mh

(
− f(u),−g0(ψ), 0, 0

)
is (continuous and) compact in Φ.

As in [12, Theorem 2.1], it is possible to verify that each solution (us, ψs, ϑs, ζs)
to the s-problem satisfies a priori estimates in the space Φ which are uniform with
respect to s ∈ [0, 1]. Indeed, this directly follows from an application of Lemma 2.5
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to (2.8) with external forcing (−sf(us),−sg0(ψs), 0, 0) for which we have uniform
L∞-estimates in light of Lemma 3.3 below.

Therefore we can apply the Leray-Schauder principle which ensures that the
homotopy system has a solution for every s ∈ [0, 1]. Letting s = 1, we obtain the
desired existence result for (1.1).

Proof of uniqueness. Uniqueness is an immediate consequence of the following
continuous dependence estimate with respect to the initial data.

Lemma 2.6. For any pair of initial data z1, z2 ∈ H2
M , there exist two positive

constants c and L, possibly depending on ∥zi∥H2 , such that, denoting by zi(t) a
solution originating from zi, there holds

∥z1(t)− z2(t)∥H2 + ∥∂tz1(t)− ∂tz
2(t)∥H ≤ ceLt∥z1 − z2∥H2 , t ≥ 0.

Proof. Having denoted by zi(t) = (ui(t), ψi(t), ϑi(t), ζi(t)), i = 1, 2, the solution
departing from zi, we also set, for further convenience,

ℓ1(t) =

∫ 1

0

f ′(su1(t) + (1− s)u2(t))ds

ℓ2(t) =

∫ 1

0

g′0(sψ
1(t) + (1− s)ψ2(t))ds,

(2.21)

noticing that, by the energy estimates in Lemma 3.3 below, we have

∥ℓ1(t)∥H2(Ω) + ∥∂tℓ1(t)∥Ω + ∥ℓ2(t)∥H2(Γ) + ∥∂tℓ2(t)∥Γ ≤ c, ∀t ≥ 0, (2.22)

where the constant c depends on the norms of the initial data. Now, we see that
z(t) = z1(t)− z2(t) = (U(t),Θ(t)) = (u(t), ψ(t), ϑ(t), ζ(t)) satisfies the problem

∂tu−∆u+ ℓ1u = ϑ in Ω

∂tψ −∆Γψ + ψ + ℓ2ψ + ∂nu = ζ on Γ

∂t(ϑ+ u)−∆ϑ = 0 in Ω

∂t(ζ + ψ)−∆Γζ + ∂nϑ = 0 on Γ

u|Γ = ψ, ϑ|Γ = ζ on Γ

U(0) = U0, Θ(0) = Θ0 in Ω,

(2.23)

where z0 = z1 − z2 = (U0,Θ0).
Multiplying the first equations by ∂tU in L2(Ω) and the third and fourth ones

by Θ in L2(Ω), we obtain

1

2

d

dt
(|U |2 + ∥ψ∥2Γ + ∥Θ∥2) + |Θ|2 + ∥∂tU∥2 = −⟨ℓ1u, ∂tu⟩Ω − ⟨ℓ2ψ, ∂tψ⟩Γ. (2.24)

We next consider the problem formally obtained by differentiating (2.23) with re-
spect to time,

∂ttu−∆∂tu+ ℓ1∂tu+ (∂tℓ1)u = ∂tϑ in Ω

∂ttψ −∆Γ∂tψ + ∂tψ + ℓ2∂tψ + (∂tℓ2)ψ + ∂n∂tu = ∂tζ on Γ

∂tt(ϑ+ u)−∆∂tϑ = 0 in Ω

∂tt(ζ + ψ)−∆Γ∂tζ + ∂n∂tϑ = 0 on Γ,

(2.25)
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and we multiply the first two equations by ∂tU in L2(Ω) and sum the resulting
equality to the product of the third and fourth equations of (2.23) by ∂tΘ in L2(Ω),

1

2

d

dt
(|Θ|2 + ∥∂tU∥2) + ∥∂tΘ∥2 + |∂tU |2 + ∥∂tψ∥2Γ (2.26)

= −⟨ℓ1∂tu, ∂tu⟩Ω − ⟨ℓ2∂tψ, ∂tψ⟩Γ − ⟨(∂tℓ1)u, ∂tu⟩Ω − ⟨(∂tℓ2)ψ, ∂tψ⟩Γ.

Finally, we rewrite the last two equations in (2.25) in the form

∂ttH +A(∂tH) = A(∂tU − ⟨∂tU⟩)

which we multiply by ∂tH to obtain

1

2

d

dt
∥∂tH∥2 + |∂tH|2 = −((∂tH, ∂tU)). (2.27)

Summing (2.24), (2.26) and (2.27), we see that the energy functional

E(t) = |U(t)|2 + ∥ψ(t)∥2Γ + ∥Θ(t)∥2
H1(Ω)

+ ∥∂tU(t)∥2 + ∥∂tH(t)∥2

satisfies

1

2

d

dt
E + |Θ|2 + ∥∂tU∥2 + ∥∂tΘ∥2 + |∂tU |2 + ∥∂tψ∥2Γ + |∂tH|2 =

= −⟨ℓ1∂tu, ∂tu⟩Ω − ⟨ℓ2∂tψ, ∂tψ⟩Γ − ⟨ℓ1u, ∂tu⟩Ω − ⟨ℓ2ψ, ∂tψ⟩Γ
− ⟨(∂tℓ1)u, ∂tu⟩Ω − ⟨(∂tℓ2)ψ, ∂tψ⟩Γ − ((∂tH, ∂tU)).

We then easily see that

−((∂tH, ∂tU)) ≤ 1

2
|∂tH|2 + 1

2
|∂tU |2.

Besides, on account of (2.22) and recalling that, by (1.3) and (1.4), we have −ℓ1 ≤
cf , whereas ∥ℓ2∥L∞(Γ) ≤ c0, the following inequalities hold:

− ⟨ℓ1∂tu, u+ ∂tu⟩Ω − ⟨ℓ2∂tψ,ψ + ∂tψ⟩Γ − ⟨(∂tℓ1)u, ∂tu⟩Ω − ⟨(∂tℓ2)ψ, ∂tψ⟩Γ
≤ (∥ℓ1∥H2(Ω) + c0)∥U∥∥∂tU∥+ (cf + c0)∥∂tU∥2

+ (∥∂tℓ1∥Ω + ∥∂tℓ2∥Γ)∥U∥L4(Ω)∥∂tU∥L4(Ω)

≤ c(∥U∥2
H1(Ω)

+ ∥∂tU∥2) + 1

2
∥∂tU∥2

H1(Ω)
,

where we have also exploited the continuous embedding H1(Ω) ⊂ L4(Ω). Collecting
the last two estimates, we deduce, in light of (1.9), that

d

dt
E ≤ cE,

which gives the desired estimate, since

1

γ + 2
(∥z(t)∥2H2 + ∥∂tz(t)∥2H) ≤ E(t) ≤ (2 + γ)(∥z(t)∥2H2 + ∥∂tz(t)∥2H).
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3. Dissipative semigroup. As a consequence of our existence result, we can state
the

Theorem 3.1. For any M > 0, the solution operator to (1.1) defined as

S(t)z := z(t) = (u(t), ψ(t), ϑ(t), ζ(t)) = (U(t),Θ(t)), t ≥ 0,

is a strongly continuous semigroup (S(t),H2
M ).

The main result of this section is that this semigroup is dissipative, namely, there
exists a bounded set which eventually captures all the trajectories S(t)z, uniformly
with respect to the norm of the initial data z in H2

M .

Theorem 3.2. For any M > 0, there exists a bounded set BM ⊂ H2
M such that

S(t)B ⊂ BM , t ≥ tB ≥ 0

for any B ⊂ H2
M bounded.

The dissipativity of the semigroup is an immediate consequence of the following
uniform estimate:

Lemma 3.3. Given any initial datum z ∈ H2
M , the solution S(t)z = z(t) =

(U(t),Θ(t)) to (1.1) satisfies

∥z(t)∥H2 + ∥∂tz(t)∥H ≤ Q(∥z∥H2)e−δt/2 + cM , ∀t ≥ 0,

where Q is an increasing nonnegative function, δ > 0 and cM > 0 is a constant
depending on M and on the structural parameters of the problem. Moreover,∫ t+1

t

∥∂tz(s)∥2H1ds ≤ Q(∥z∥H2), ∀t ≥ 0. (3.1)

Proof. We set I0 = m(Θ0 + U0), knowing that |I0| ≤ M and that m(H(t)) =
m(Θ(t) + U(t)) = I0 for all times, in light of (1.11).

First, we multiply the first and second equations in (1.1) by U in L2(Ω),

d

dt
∥U∥2 + 2|U |2 + 2∥ψ∥2Γ + 2⟨f(u), u⟩Ω = 2⟨Θ, U⟩ − 2⟨g0(ψ), ψ⟩Γ.

Multiplying then (1.8) by H − ⟨H⟩ gives
d

dt
∥H − ⟨H⟩∥2Vo′ + 2∥Θ− ⟨Θ⟩∥2 = −2⟨U − ⟨U⟩,Θ− ⟨Θ⟩⟩.

Here, on account of (1.11), the right-hand side reads

2⟨U − ⟨U⟩,Θ− ⟨Θ⟩⟩ = 2⟨U,Θ⟩ − 2(|Ω|+ |Γ|)m(U)m(Θ)

= 2⟨U,Θ⟩ − (|Ω|+ |Γ|)[I20 −m(Θ)2 −m(U)2].

Summing the three above equalities, we obtain

d

dt
(∥H − ⟨H⟩∥2Vo′ + ∥U∥2) (3.2)

+ 2|U |2 + 2∥ψ∥2Γ + ∥Θ∥2 + ∥Θ− ⟨Θ⟩∥2 + (|Ω|+ |Γ|)m(U)2 + 2⟨f(u), u⟩Ω
= (|Ω|+ |Γ|)I20 − 2⟨g0(ψ), ψ⟩Γ.

We now take the product in L2(Ω) of the first and second equations in (1.1) by
∂tU ,

d

dt
(|U |2 + ∥ψ∥2Γ + 2⟨F (u), 1⟩Ω) + 2∥∂tU∥2 = 2⟨Θ, ∂tU⟩ − 2⟨g0(ψ), ∂tψ⟩Γ. (3.3)
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Then, the product of the third and fourth equations in L2(Ω) by Θ gives

d

dt
∥Θ∥2 + 2|Θ|2 = −2⟨Θ, ∂tU⟩,

which, added to (3.3), leads to

d

dt
(∥Θ∥2+|U |2+∥ψ∥2Γ+2⟨F (u), 1⟩Ω)+ 2|Θ|2+2∥∂tU∥2=−2⟨g0(ψ), ∂tψ⟩Γ. (3.4)

Finally, we compute the product of the third and fourth equations by ∂tΘ,

d

dt
|Θ|2 + 2∥∂tΘ∥2 = −2⟨∂tΘ, ∂tU⟩. (3.5)

We now differentiate the whole system with respect to time,

∂ttu−∆∂tu+ f ′(u)∂tu = ∂tϑ in Ω

∂ttψ −∆Γ∂tψ + ∂tψ + g′0(ψ)∂tψ + ∂n∂tu = ∂tζ on Γ

∂tt(ϑ+ u)−∆∂tϑ = 0 in Ω

∂tt(ζ + ψ)−∆Γ∂tζ + ∂n∂tϑ = 0 on Γ

(3.6)

supplemented with the boundary conditions read from the system,

∂tU(0) = (∆u0 − f(u0) + ϑ0,∆Γψ0 − ψ0 − g0(ψ0)− ∂nu0 + ζ0)

∂t(Θ + U)(0) = (∆ϑ0,∆Γζ0 − ∂nϑ0).

We multiply the first and second equations in (3.6) by ∂tU in L2(Ω),

d

dt
∥∂tU∥2 + 2|∂tU |2 + 2∥∂tψ∥2Γ = −2⟨f ′(u)∂tu, ∂tu⟩Ω − 2⟨g′0(ψ)∂tψ, ∂tψ⟩Γ
+ 2⟨∂tΘ, ∂tU⟩

and the third and fourth ones by ∂tH,

d

dt
∥∂tH∥2 + 2|∂tH|2 = 2((∂tH, ∂tU))

so that, adding the results to (3.5), we have

d

dt
[∥∂tU∥2 + ∥∂tH∥2 + |Θ|2] + 2∥∂tΘ∥2 + 2|∂tU |2 + 2∥∂tψ∥2Γ + 2|∂tH|2

= −2⟨f ′(u)∂tu, ∂tu⟩Ω − 2⟨g′0(ψ)∂tψ, ∂tψ⟩Γ + 2((∂tH, ∂tU)).

Introducing the functional

E(t) = ∥Θ(t)∥2 + ν|Θ(t)|2 + ∥U(t)∥2
H1(Ω)

+ ∥ψ(t)∥2Γ + ∥H(t)− ⟨H(t)⟩∥2Vo′

+ 2⟨F (u(t)), 1⟩Ω + ν∥∂tU(t)∥2 + ν∥∂tH(t)∥2,

the product of the above equation by ν ∈ (0, 1), added to (3.2) and (3.4), leads to

d

dt
E + ∥Θ∥2 + ∥Θ− ⟨Θ⟩∥2 + 2|Θ|2 (3.7)

+ 2|U |2 + 2∥ψ∥2Γ + 2∥∂tU∥2 + (|Ω|+ |Γ|)m(U)2 + 2ν∥∂tΘ∥2

+ 2ν|∂tU |2 + 2ν∥∂tψ∥2Γ + 2ν|∂tH|2 + 2⟨f(u), u⟩Ω
= h,
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where

h := −2⟨g0(ψ), ∂tψ⟩Γ − 2⟨g0(ψ), ψ⟩Γ − 2ν⟨f ′(u)∂tu, ∂tu⟩Ω − 2ν⟨g′0(ψ)∂tψ, ∂tψ⟩Γ
+ 2ν((∂tH, ∂tU)) + (|Ω|+ |Γ|)I20

satisfies, in light of (1.3) and (1.4),

h ≤ c∥∂tψ∥Γ + c∥ψ∥Γ + νc∥∂tU∥2 + ν|∂tU |2 + ν|∂tH|2 + (|Ω|+ |Γ|)I20 .
After straightforward computations and provided that ν is small enough, we

obtain
d

dt
E + ∥Θ∥2 + ∥Θ− ⟨Θ⟩∥2 + 2|Θ|2 + 2|U |2 + ∥ψ∥2Γ + 2⟨f(u), u⟩Ω

+ (|Ω|+ |Γ|)m(U)2 + ∥∂tU∥2 + ν∥∂tΘ∥2 + ν|∂tU |2 + ν∥∂tψ∥2Γ + ν|∂tH|2 ≤ c.

By (1.4) and (1.5), choosing 0 < δ < µ/(2µ+ 2Cf ), we can now write

2⟨f(u), u⟩Ω = 2δ⟨f(u), u⟩Ω + 2(1− δ)⟨f(u), u⟩Ω
≥ 2δ⟨F (u), 1⟩Ω − 2δCf∥u∥2Ω + 2(1− δ)µ∥u∥2Ω − 2(1− δ)µ′|Ω|
≥ 2δ⟨F (u), 1⟩Ω + µ∥u∥2Ω − 2(1− δ)µ′|Ω|,

leading to

d

dt
E + ∥Θ∥2 + ∥Θ− ⟨Θ⟩∥2 + 2|Θ|2 + 2|U |2 + ∥ψ∥2Γ + 2δ⟨F (u), 1⟩Ω + µ∥u∥2Ω

+ (|Ω|+ |Γ|)m(U)2 + ∥∂tU∥2 + ν∥∂tΘ∥2 + ν|∂tU |2 + ν∥∂tψ∥2Γ + ν|∂tH|2 ≤ c.

Here, recovering the lacking norm ∥H − ⟨H⟩∥2Vo′ by the continuous embedding

L2(Ω) ⊂ Vo′ and (1.7),

0 ≤ ∥H − ⟨H⟩∥2Vo′ ≤ c∥H − ⟨H⟩∥2 ≤ c(∥Θ∥2 + ∥U∥2), (3.8)

we obtain, thanks also to (1.9),

d

dt
E + δE + δ∥∂tz∥2H1 ≤ c, (3.9)

for some δ > 0. Next, exploiting (1.6), (1.9) and (3.8), we deduce that
ν

γ + 3
[∥z(t)∥2H1 +∥∂tz(t)∥2H]−µ′ ≤ E(t) ≤ c[∥z(t)∥2H1 +∥∂tz(t)∥2H]+2⟨F (u(t)), 1⟩Ω.

Now, an application of the Gronwall lemma entails
ν

γ + 3
[∥z(t)∥2H1 + ∥∂tz(t)∥2H]− µ′ ≤ E(t) ≤ e−δtE(0) + c

≤ [c∥z(0)∥2H1 + c∥∂tz(0)∥2H + 2⟨F (u0), 1⟩Ω]e−δt + c,

so that, on account of the initial conditions in (1.1) and (3.6), we finally have

∥z(t)∥2H1 + ∥∂tz(t)∥2H ≤ Q(∥z∥2H2)e−δt + c, (3.10)

for some nonnegative increasing monotone function Q. To prove the integral in-
equality (3.1), it is now sufficient to integrate (3.9) over the interval [t, t+ 1].

In order to complete the proof, we are left to control the H2-norm of the solution.
This follows by an application of [12, Appendix, Lemma A.2] to the nonlinear elliptic
problem {

−∆u+ f(u) = h1 := ϑ− ∂tu in Ω

−∆Γψ + ψ + ∂nu = h2 := ζ − ∂tψ − g0(ψ) on Γ,



16 MONICA CONTI, STEFANIA GATTI AND ALAIN MIRANVILLE

which, together with (3.10), furnishes the bound

∥U(t)∥L∞(Ω) ≤ c(1 + ∥h1(t)∥Ω + ∥h2(t)∥Γ) ≤ Q(∥z∥H2)e−δt/2 + c.

Notice that this, in turn, yields L∞-estimates for f(u). Hence, interpreting the
nonlinearities as external sources in the elliptic system, we can apply [12, Appendix,
Lemma A.1] to derive

∥U(t)∥H2(Ω) ≤ Q(∥z∥H2)e−δt/2 + c.

Now, we exploit [12, Appendix, Lemma A.1] again for the elliptic problem{
−∆ϑ = h3 := −∂t(ϑ+ u) in Ω

−∆Γζ + ζ + ∂nϑ = h4 := −∂t(ζ + ψ) + ζ on Γ,

which provides the same bound for Θ and concludes the proof of the required energy
estimate.

4. Global attractors.

Theorem 4.1. For any M > 0, the semigroup (S(t),H2
M ) possesses the global

attractor AM ⊂ H3
M .

Proof. We prove the existence of the global attractor by relying on a standard
technique, consisting of the decomposition of the solution operator as the sum of
a “contracting map” and a “smoothing” map (see, e.g., [14]), namely, we write
z(t) = zd(t) + zc(t), where zd(t) = (Ud(t),Θd(t)) = (ud(t), ψd(t), ϑd(t), ζd(t)) solves

∂tud −∆ud = ϑd in Ω

∂tψd −∆Γψd + ψd + ∂nud = ζd on Γ

∂t(ϑd + ud)−∆ϑd = 0 in Ω

∂t(ζd + ψd)−∆Γζd + ∂nϑd = 0 on Γ

Ud(0) = U0 − ⟨U0⟩, Θd(0) = Θ0 − ⟨Θ0⟩ in Ω

(4.1)

and zc(t) = (Uc(t),Θc(t)) = (uc(t), ψc(t), ϑc(t), ζc(t)) is the solution to

∂tuc −∆uc + f(u) = ϑc in Ω

∂tψc −∆Γψc + ψc + g0(ψ) + ∂nuc = ζc on Γ

∂t(ϑc + uc)−∆ϑc = 0 in Ω

∂t(ζc + ψc)−∆Γζc + ∂nϑc = 0 on Γ

Uc(0) = ⟨U0⟩, Θc(0) = ⟨Θ0⟩ in Ω.

(4.2)

Here and below, the initial datum (U0,Θ0) belongs to the absorbing set BM provided
by Theorem 3.2 and c may depend on the size of BM .

Step I. We first prove that, for any t ≥ 0, there holds

∥zd(t)∥2H2 + ∥∂tzd(t)∥2H ≤ ce−νt (4.3)

for some ν > 0 and ∫ t+1

t

∥∂tzd(s)∥2H1ds ≤ c. (4.4)

We argue exactly as in the proof of Lemma 3.3 in order to get the differential
equality (3.7) for (Ud,Θd) in place of (U,Θ). Taking into account that now Hd(t) :=
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Θd(t) + Ud(t) satisfies m(Hd(t)) = 0 for any t ≥ 0, so that m(Ud(t)) = −m(Θd(t)),
which, by (1.7), entails

∥Θd − ⟨Θd⟩∥2 + (|Ω|+ |Γ|)m2(Ud) = ∥Θd∥2 − (|Ω|+ |Γ|)m2(Θd)

+ (|Ω|+ |Γ|)m2(Ud) = ∥Θd∥2,

we see that the differential equation (3.7) (with ν = 1 and canceling the nonlinear-
ities as in (4.1)) now reads

d

dt
Ed+ 2|Ud|2+ 2∥ψd∥2Γ+ 2∥Θd∥2H1(Ω)

+ 2∥∂tUd∥2H1(Ω)
+ 2∥∂tΘd∥2+ 2∥∂tψd∥2Γ

+ 2|∂tHd|2 = 2((∂tHd, ∂tUd)) ≤ |∂tUd|2 + |∂tHd|2,

where

Ed(t) = ∥Ud(t)∥2H1(Ω)
+ ∥Θd(t)∥2H1(Ω)

+ ∥ψd(t)∥2Γ + ∥Hd(t)∥2Vo′

+ ∥∂tUd(t)∥2 + ∥∂tHd(t)∥2.

Owing to (1.9), it is straightforward to see that Ed satisfies

1

2
(∥zd(t)∥2H1 + ∥∂tzd(t)∥2H) ≤ Ed(t) ≤ c(∥zd(t)∥2H1 + ∥∂tzd(t)∥2H),

together with the differential inequality

d

dt
Ed + δ∥zd∥2H1 + δ∥∂tzd∥2H1 ≤ 0

for some δ > 0. Hence, the Gronwall lemma gives the decay

∥zd(t)∥2H1 + ∥∂tzd(t)∥2H ≤ c∥z0∥2H2e−δt

and a subsequent integration over (t, t + 1) proves (4.4). The final decay estimate
in H2 is read from the elliptic problem included in the system, arguing as in the
final part of Lemma 3.3.

We now turn our attention to the smoothing part zc. We preliminarily observe
that, by Lemma 3.3 and Step I, we have, in particular,

∥zc(t)∥2H1 + ∥∂tzc(t)∥2H +

∫ t+1

t

∥∂tzc(s)∥2H1ds ≤ c. (4.5)

Step II. We are going to prove that

∥zc(t)∥H3 ≤ c.

To this aim, due to (4.5), it is enough to prove uniform estimates for |∆uc| and
|∆Θc|, which will follow by controlling the H1-norm of ∂tz

c.
We differentiate (4.2) with respect to time,

∂ttuc −∆∂tuc + f ′(u)∂tu = ∂tϑc in Ω

∂ttψc −∆Γ∂tψc + ∂tψc + g′0(ψ)∂tψ + ∂n∂tuc = ∂tζc on Γ

∂tt(ϑc + uc)−∆∂tϑc = 0 in Ω

∂tt(ζc + ψc)−∆Γ∂tζc + ∂n∂tϑc = 0 on Γ.

(4.6)
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A multiplication of the first two equations by ∂ttUc and the third and fourth ones
by ∂tΘc + ∂ttΘc leads to

d

dt
[|∂tUc|2 + ∥∂tψc∥2Γ + ∥∂tΘc∥2H1(Ω)

] + 2∥∂ttUc∥2 + 2∥∂ttΘc∥2 + 2|∂tΘc|2

= −2⟨f ′(u)∂tu, ∂ttuc⟩Ω − 2⟨g′0(ψ)∂tψ, ∂ttψc⟩Γ − 2⟨∂ttUc, ∂ttΘc⟩

≤ 2(∥∂ttUc∥2 + ∥∂ttΘc∥2) + ∥f ′(u)∂tu∥2Ω + ∥g′0(ψ)∂tψ∥2Γ

≤ 2(∥∂ttUc∥2 + ∥∂ttΘc∥2) + c,

thanks to the uniform estimate (3.10) provided by Lemma 3.3. Notice that, by
(4.5), we can complete the norms of (∂tUc, ∂tΘc) in order to have

d

dt
[|∂tUc|2 + ∥∂tψc∥2Γ + ∥∂tΘc∥2H1(Ω)

] + ∥∂tzc∥2H1 ≤ h,

where h(t) := c + ∥∂tUc(t)∥2H1(Ω)
+ ∥∂tΘc(t)∥2 satisfies

∫ t+1

t

h(y)dy ≤ c. Besides,

there hold

∂tUc(0) = −∂tΘc(0) = (−f(u0) +m(Θ0),−m(U0)− g0(ψ0) +m(Θ0))

and, abusing the notation,

∇∂tUc(0) = −∇∂tΘc(0) = (−f ′(u0)∇u0,−g′0(ψ0)∇Γψ0).

Hence, ∥∂tzc(0)∥2H1 ≤ c, which, together with (1.9) and the uniform Gronwall lemma
(see, e.g., [14]), entails

∥∂tzc(t)∥2H1 ≤ c, t ≥ 0.

This concludes the proof.

5. Exponential attractors. We have the following exponential attractor’s exis-
tence result (see [2]).

Theorem 5.1. For any M > 0, let BM be the absorbing ball given by Theorem 3.2
and let t⋆ > 0 be such that S(t)BM ⊂ BM , for any t ≥ t⋆. Assume that the following
conditions hold.

(H1) Setting S(t⋆) = S, the map S satisfies, for every z1, z2 ∈ BM ,

Sz1 − Sz2 = L(z1, z2) +K(z1, z2),

where

∥L(z1, z2)∥H2 ≤ κ∥z1 − z2∥H2 , and ∥K(z1, z2)∥H3 ≤ Λ∥z1 − z2∥H2 ,

for some κ ∈ (0, 1/2) and some Λ > 0.
(H2) The map

z 7→ S(t)z : BM → BM

is Lipschitz continuous on BM , with a Lipschitz constant independent of t ∈
[t⋆, 2t⋆]. Besides, the map

(t, z) 7→ S(t)z : [t⋆, 2t⋆]× BM → BM

is Hölder continuous.

Then, there exists an exponential attractor E on B̃M = BH3

M which attracts B̃M

exponentially fast.
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Our aim is to prove that, suitably fixing t⋆ > 0, the difference of solutions,
departing from any pair of initial data zi0 ∈ BM , can be seen as a sum of a contraction
and a smoothing map. For this purpose, we set

z0 = z10 − z20 = (U0,Θ0),

and we denote by

z(t) = z1(t)− z2(t) = (U(t),Θ(t)) = (u(t), ψ(t), θ(t), ζ(t))

the difference of the corresponding solutions: this can be decomposed as z(t) =
ẑd(t) + ẑc(t), where ẑd(t) solves (4.1) and ẑc(t) satisfies (4.2) with f(u) and g0(ψ)
replaced, respectively, by ℓ1u and ℓ2ψ, the ℓi being given by (2.21). Arguing as in
Lemma 3.3, we see that

∥ẑd(t)∥H2 ≤ ce−γt∥z0∥H2 .

We thus accomplish our purpose if we show that

∥ẑc(t)∥H3 ≤ c∥z0∥H2 , ∀t ∈ [t⋆, 2t⋆].

This can be seen as in Step II of Theorem 4.1, by using Lemma 2.6 instead of
Lemma 3.3. Finally, taking t = t⋆ large enough, the maps L(z1, z2) = ẑd(t⋆) and
K(z1, z2) = ẑc(t⋆) satisfy (H1).

Verification of (H2). Notice that, thanks to Lemma 2.6, the Lipschitz continuity
with respect to the initial data at any fixed time in [t⋆, 2t⋆] (actually, on any bounded
time interval) is known. Thus, we are left to show the Hölder continuity with respect
to time in the H2-norm. Indeed, Lemma 3.3 only implies

∥z(t2)− z(t1)∥2H ≤ (t2 − t1)

∫ 2t⋆

0

∥∂tz(s)∥2Hds ≤ c(t2 − t1),

but, by interpolation, we have,

∥z(t2)− z(t1)∥H2 ≤ ∥z(t2)− z(t1)∥2/3H3 ∥z(t2)− z(t1)∥1/3H , 2t⋆ ≥ t2 > t1 ≥ t⋆.

Therefore, S(·)z is Hölder continuous with exponent 1/3, provided that

sup
z∈BM

∥S(t)z∥H3 ≤ c, ∀t ∈ [t⋆, 2t⋆],

which will follow by controlling the H1-norm of ∂tz.
This can be proved by multiplying the first two equations in (3.6) by ∂ttU and

the last two ones by ∂ttΘ and by summing the resulting equalities,

1

2

d

dt
(|∂tU |2 + ∥∂tψ∥2Γ + |∂tΘ|2) + ∥∂ttU∥2 + ∥∂ttΘ∥2

= ⟨∂tΘ, ∂ttU⟩ − ⟨∂ttΘ, ∂ttU⟩ − ⟨f ′(u)∂tu, ∂ttu⟩Ω − ⟨g′0(ψ)∂tψ, ∂ttψ⟩Γ.

Multiplying the above equation by t, we have

1

2

d

dt
[t(|∂tU |2 + ∥∂tψ∥2Γ + |∂tΘ|2)] + t∥∂ttU∥2 + t∥∂ttΘ∥2

= t⟨∂tΘ, ∂ttU⟩ − t⟨∂ttΘ, ∂ttU⟩ − t⟨f ′(u)∂tu, ∂ttu⟩Ω − t⟨g′0(ψ)∂tψ, ∂ttψ⟩Γ

+
1

2
(|∂tU |2 + ∥∂tψ∥2Γ + |∂tΘ|2)

≤ t∥∂ttU∥2 + t∥∂ttΘ∥2 + 1

2
(|∂tU |2 + ∥∂tψ∥2Γ + |∂tΘ|2) + ct(∥∂tΘ∥2 + ∥∂tU∥2),
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that is,
1

2

d

dt
[t(|∂tU |2 + ∥∂tψ∥2Γ + |∂tΘ|2)] ≤ c(1 + t)∥∂tz(s)∥2H1 .

Integrating over (0, t) for any t ∈ [t⋆, 2t⋆], it follows, in view of (1.9) and of Lemma
3.3, that

t⋆∥∂tz(t)∥2H1 ≤ c(1 + t⋆)

∫ 2t⋆

0

∥∂tz(s)∥2H1ds ≤ ct⋆2 sup
t∈[0,2t⋆]

∫ t+1

t

∥∂tz(s)∥2H1ds ≤ c,

which concludes the proof.

Remark 1. In particular, BM can be made positively invariant, closed in H3 and
absorbing in H2

M , by taking the set

∪t≥t⋆S(t)BM
H3

,

which we still call BM . Thus, the transitivity of the exponential attraction [2],
thanks to Lemma 2.6 and the exponential attraction exerted by EM and BM , allows
to extend the basin of attraction of EM to the whole space H2

M . Therefore, since
the global attractor is the minimal (for the inclusion) compact attracting set, we
obtain AM ⊂ EM , which ensures the boundedness of the fractal dimension of the
global attractor.
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