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The Whetstone and the Alum Block:
Balanced Objective Bayesian Comparison
of Nested Models for Discrete Data
Guido Consonni, Jonathan J. Forster and Luca La Rocca

Abstract. When two nested models are compared, using a Bayes factor,
from an objective standpoint, two seemingly conflicting issues emerge at the
time of choosing parameter priors under the two models. On the one hand,
for moderate sample sizes, the evidence in favor of the smaller model can
be inflated by diffuseness of the prior under the larger model. On the other
hand, asymptotically, the evidence in favor of the smaller model typically ac-
cumulates at a slower rate. With reference to finitely discrete data models, we
show that these two issues can be dealt with jointly, by combining intrinsic
priors and nonlocal priors in a new unified class of priors. We illustrate our
ideas in a running Bernoulli example, then we apply them to test the equality
of two proportions, and finally we deal with the more general case of logistic
regression models.

Key words and phrases: Bayes factor, intrinsic prior, model choice, mo-
ment prior, nonlocal prior, Ockham’s razor, training sample size.

1. INTRODUCTION

Consider two parametric models, M0 (the null
model) nested in M1 (the alternative model), each
equipped with its own prior distribution, p0(·) and
p1(·). We plan to compare models using the Bayes
Factor (BF); see Kass and Raftery (1995) for a clas-
sic review. We denote by fi(·|θi) the sampling den-
sity of data y under Mi , i = 0,1. Then, the BF in
favor of M1, or against M0, is defined as BF10(y) =
m1(y)/m0(y), where mi(y) = ∫

fi(y|θi)pi(θi) dθi is
the marginal density of y under Mi , also called the
marginal likelihood of Mi .
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It is well known that special care must be exer-
cised in the specification of p0(·) and p1(·) when com-
puting the BF. One obvious condition is that neither
prior be improper, because the resulting BF would de-
pend on arbitrary constants. Even when proper priors
are used, however, difficulties may arise; in particu-
lar, this happens when p1(·) is not chosen in view of
the comparison with model M0, which is of course
the rule with conventional priors. In general, a conven-
tional p1(·) will be rather diffuse, and will thus give
little weight to sampling densities close to the sub-
space characterizing M0. Therefore, unless the data
are vastly against M0, which rarely happens for mod-
erate sample sizes, there will be an evidence bias in
favor of M0. Informally, this happens because p1(·)
“wastes” probability mass in parameter areas too re-
mote from the null. This fact had essentially been re-
alized as early as in Jeffreys (1961, Chapter 3) and
was already clear in Morris (1987), whose suggestion
was to “center” p1(·) around the null-subspace. In this
spirit, we will argue in favor of “transferring proba-
bility mass” toward the null subspace within a given
diffuse prior under M1.

Although we used no limiting argument above, there
is a connection with the Jeffreys–Lindley–Bartlett
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paradox; see O’Hagan and Forster (2004, Sec-
tion 3.33), Robert, Chopin and Rousseau (2009) and
Senn (2009). According to one version of the paradox,
if the sample size is fixed, but the variance of p1(·) is
free to increase without bound, the posterior probabil-
ity of the null model will go to one, irrespective of the
data. This is just an exacerbation of the phenomenon
described above, with p1(·) allocating probability mass
in unreasonable regions of the parameter space.

A word of caution is useful at this stage. From a
Bayesian perspective, a model is a pair, whose ele-
ments are the family of sampling distributions (sam-
pling model) and the prior. Nevertheless, we will fol-
low the prevailing practice of using the word “model”
to identify the sampling model, leaving to the prior the
role of specifying which Bayesian model is actually en-
tertained.

Adhering to an objective viewpoint, we assume that
default parameter priors pi(·), i = 1,2, are given, each
of them depending only on the corresponding model.
We also assume, for simplicity, that both priors are
proper. The action of reallocating mass within p1(·)
toward the null subspace has a negative side effect, at
least for moderate sample sizes: it will diminish evi-
dence in favor of M1 when the parameter values gen-
erating the data are truly away from the null. However,
this price is worth paying, to some extent, because of
two reasons: (i) the very fact that we are considering
M0 testifies that it has some a priori plausibility and,
thus, parameter values close to the null are more inter-
esting to monitor than those remote from it; (ii) if the
data manifestly support M1, we can surely afford the
luxury to somewhat diminish the strength of evidence
in its favor, because it will be already high enough for
most practical purposes. However, it is not at all ob-
vious how far this strategy should be pushed, and we
dedicate part of this paper to try and answer this ques-
tion.

In light of the above discussion, two general issues
are to be addressed in the setting under consideration:

(1) given model M0 nested in M1, and the cor-
responding default priors p0(·) and p1(·), how can
we build an M0-focused prior under M1, transferring
probability mass within p1(·) toward the null subspace
characterizing M0?

(2) how do we settle the evidence trade-off : rein-
forcing the evidence in favor of M1 for parameter val-
ues around the null subspace, while weakening it when
the parameter lies in regions away from the null?

A possible objection is that point (1) could be by-
passed: once we have understood the features of a
“good” parameter prior under M1, why should we
bother with the default prior anyway? We accept this
criticism and do not object to a subjective specifica-
tion carefully taking into account the desiderata we
set out. We remark, however, that this task may be
far from simple, requires substantive knowledge not
always available, and could become daunting when
many pairwise comparisons are entertained (like in
variable selection). This is the reason why we privi-
lege an objective approach, which takes as input only
the default priors.

A natural answer to point (1) is provided by the
intrinsic priors, whose scope is indeed not restricted
to nested models. Intrinsic priors are now recognized
as an important tool for objective Bayesian hypoth-
esis testing and model comparison. Numerous appli-
cations witness their usefulness, ranging from vari-
able selection (Casella and Moreno, 2006; Casella
et al., 2009; Moreno, Girón and Casella, 2010; Leon-
Novelo, Moreno and Casella, 2012) to contingency ta-
bles (Casella and Moreno 2005, 2009; Consonni and
La Rocca, 2008; Consonni, Moreno and Venturini,
2011) to change point problems (Moreno, Casella
and Garcia-Ferrer, 2005; Girón, Moreno and Casella,
2007). When the two models are nested, the end result
of the intrinsic prior procedure is to modify p1(·) so
that the resulting intrinsic prior accumulates more mass
around the null subspace. This is achieved by mix-
ing over a training sample, whose size t regulates the
amount of concentration of the intrinsic prior, which
we denote by pI

1(·|t), around the null subspace.
If p1(·) is improper, it is tempting to set t in the in-

trinsic prior pI
1(·|t) equal to the minimal training sam-

ple size, which is the smallest sample size for which
the default posterior is proper on all data. However, no
formal justification is available for this choice, which
clearly bypasses point (2) on grounds of simplicity. On
the other hand, when the default prior is proper, as hap-
pens in some discrete data problems, there is no general
guideline for fixing t , and usually a robustness analysis
is performed by letting t vary between 1 and n, where
n is the actual sample size; see, for instance, Casella
and Moreno (2009). Point (2) is here bypassed in favor
of a sensitivity analysis.

Intrinsic priors for the comparison of nested models
can be viewed as expected posterior priors (Pérez and
Berger, 2002) with baseline mixing distribution equal
to the marginal data distribution under M0. Another
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related approach is due to Neal (2001): since subjec-
tive prior elicitation of the parameter prior should be
more precise, and possibly easier, under the smaller
model than under the larger model, information should
be transferred from the former to the latter by means of
a training sample, whose sample size t will determine
how similar or compatible the two models turn out to
be. Neal offers no guidance on fixing t ; interestingly,
however, in his approach t can grow to infinity.

An alternative to the intrinsic (or expected posterior)
prior approach to derive the BF in the presence of im-
proper priors is the Fractional Bayes Factor (FBF); see
O’Hagan (1995). Here a fraction b of the likelihood is
used to obtain a fractional posterior distribution, which
in turn is used as a (data-dependent) prior to construct a
fractional marginal likelihood based on the likelihood
raised to the complementary fraction (1 − b). This cal-
culation is repeated under both models. The end result
is to shift the prior under each of the two models to-
ward a region supported by the likelihood. Clearly, if
the data are in reasonable accord with M0, which we
have identified as the most critical situation for nested
model comparison, the prior under M1 will tend to
concentrate around the null subspace, like in the intrin-
sic prior approach. In this sense, the fraction b plays a
role akin to that of the training sample size t , although
it should be stressed that the implied prior in the FBF is
data dependent, while this is not the case for the intrin-
sic prior. A conventional choice is b = n0/n, where n0
is the smallest integer that makes the fractional poste-
riors proper. O’Hagan (1995, Section 6) also suggests
two alternative choices for cases when robustness is
a major concern, but Moreno (1997) has an argument
against these choices. Data-centered priors for each of
the two models can also be constructed using the ex-
pected posterior priors of Pérez and Berger (2002), set-
ting the baseline mixing distribution equal to the em-
pirical distribution.

The FBF is typically easier to implement than the in-
trinsic approach. However, the fact that it uses a data
dependent prior is clearly a drawback. Accordingly,
since implementation issues turn out to be less com-
pelling for discrete data problems, in this paper we ad-
dress point (1) through intrinsic priors. As for the issue
raised in point (2), which to the best of our knowledge
has never been tackled so far, we propose a solution
in Section 3.1 based on the notion of total weight of
evidence. We do not claim that our solution is univer-
sal, but we found it useful in some examples, and we
believe that it sheds light on the evidence trade-off.

We now turn to a related aspect, which has been rel-
atively neglected in the literature on priors for model
comparison: the asymmetry in the learning rate of the
BF between two nested models M0 and M1. A typi-
cal prior p1(·), whether subjective or objective, is con-
tinuous and strictly positive on the null subspace. The
second condition (given the first one) makes it a lo-
cal prior. A serious deficiency of local priors relates to
their asymptotic learning rate. Specifically, the BF in
favor of M1, when M1 holds, diverges in probabil-
ity exponentially fast, as the sample size grows; on the
other hand, when M0 holds, the same BF converges
to zero in probability at a polynomial rate only. Al-
though this fact is well established, it did not receive
very much attention until Johnson and Rossell (2010)
brought it to the fore. Robert, Chopin and Rousseau
(2009, Section 7) report evidence that Jeffreys was
aware of the asymmetry, but that later studies neglected
it. In practice, the problem is that the imbalance is al-
ready quite dramatic for moderate sample sizes. How-
ever, as suggested by Johnson and Rossell (2010), this
unsatisfactory feature can be corrected by using nonlo-
cal priors. As the name suggests, these priors are built
in opposition to local priors, and their distinguishing
feature, assuming continuity, is to be identically zero
on the null subspace.

We find the idea of nonlocal priors appealing, not
only because they ameliorate the learning rate of the
BF, but also because they force the user to think more
carefully about the notion of model separation. This
is a difficult issue, of course, which only occasionally
can be answered employing subject-matter knowledge;
a notable example, reported in Cohen (1992), is that
standardized effect sizes of less than 0.2, in absolute
value, are often not considered substantively important
in the social sciences. However, we hasten to say that
nonlocal priors have been disapproved by some au-
thors; see, for instance, the discussions of Consonni
and La Rocca (2011) by J. Q. Smith and J. Rousseau
with C. P. Robert.

Intrinsic priors and nonlocal priors play complemen-
tary roles in the comparison of nested models. If the
BF is seen as an implementation of Ockham’s razor,
the principle that an explanation (model) should not
be more complicated than necessary (pluralitas non
est ponenda sine necessitate), as suggested by Jaynes
(1979), Smith and Spiegelhalter (1980), and Jefferys
and Berger (1992), then Bayesian barbers should worry
both about the sharpness of their tool, on the one hand,
and the risk of cutting the throat of the larger model,
on the other hand. Intrinsic priors protect the larger
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model from being treated unfairly, and thus play the
role of an alum block, whereas nonlocal priors can
greatly sharpen the blade of the razor, and thus play
the role of a whetstone. A skilled combination of the
two tools helps the Bayesian barber to achieve a bal-
anced comparison of the two models. In fact, we show
in this paper that a suitably defined family of nonlocal
intrinsic priors produces a BF with finite sample prop-
erties comparable to those of ordinary (local) intrinsic
priors, and with the improved learning rate (when the
null model holds) characterizing nonlocal priors.

The rest of the paper is organized as follows. Sec-
tion 2 provides background material on intrinsic pri-
ors and on a particular class of nonlocal priors, mo-
ment priors, using as illustration the problem of test-
ing a sharp null hypothesis on a Bernoulli proportion.
Section 3 presents the class of intrinsic moment priors,
for the comparison of two nested models, which is im-
plemented in Section 4 for testing the equality of two
proportions and in Section 5 for variable selection in
logistic regression models. Section 6 applies the sug-
gested testing procedures to a collection of randomized
binary trials of a new surgical treatment for stomach
ulcers, also discussed from a meta-analysis perspective
by Efron (1996), and to a medical data set already ana-
lyzed by Dellaportas, Forster and Ntzoufras (2002) us-
ing logistic regression models. Finally, Section 7 offers
some concluding remarks and investigates a few issues
worth further consideration. A technical Appendix on
the asymptotic learning rate of BFs completes the pa-
per.

2. PRIORS FOR THE COMPARISON OF NESTED
MODELS

We review in this section two methodologies for con-
structing priors when two nested models are compared:
intrinsic priors and a specific class of nonlocal priors,
called moment priors.

Consider two sampling models for the same discrete
vector of observables y:

M0 = {
f0(·|ξ0), ξ0 ∈ �0

}
vs.

(1)
M1 = {

f1(·|ξ1), ξ1 ∈ �1
}
,

where M0 is nested in M1, that is, for all ξ0 ∈ �0,
f0(·|ξ0) = f1(·|ξ1), for some ξ1 ∈ �̃0 ⊂ �1, where
�̃0 is isomorphic to �0 and of lower dimensional-
ity than �1. Let p0(·) be a given prior under M0
and similarly for p1(·) under M1, both of them being
proper; this assumption simplifies the exposition and

is not particularly restrictive because we deal with dis-
crete data models. Typically both p0(·) and p1(·) will
be default, inference-based, priors. We also assume,
again for simplicity, equal prior probabilities for M0
and M1, so that the posterior probability of M1 is a
function of the BF only: P(M1|y) = (1 + BF01(y))−1,
where BF01(y) = 1/BF10(y) is the BF in favor of M0.

2.1 Intrinsic Priors

Intrinsic priors were introduced in objective hypoth-
esis testing to deal meaningfully with improper de-
fault priors when constructing BFs; see Berger and Per-
icchi (1996), Moreno (1997), Moreno, Bertolino and
Racugno (1998). However, this view of the intrinsic
prior approach is unduly restrictive and actually hin-
ders its inherent nature, as it is apparent for discrete
data models: in this case default priors are usually
proper, but the intrinsic approach can still be very use-
ful.

As recalled in the Introduction, a default prior p1(·)
is typically inappropriate for testing purposes, because
it assigns little mass around the null subspace �̃0. Mix-
ing over the training sample x = (x1, . . . , xt ), the in-
trinsic prior on ξ1 can be written as

pI
1(ξ1|t) = ∑

x

p1(ξ1|x)m0(x), ξ1 ∈ �1,(2)

where p1(ξ1|x) is the posterior density of ξ1 un-
der M1, given x, and m0(x) = ∫

f0(x|ξ0)p0(ξ0) dξ0
is the marginal density of x under M0; it is natural to
let t = 0 in pI

1(·|t) return the default prior p1(·).
We remark that (2) is not the original definition of

intrinsic prior, but rather its formulation as an expected
posterior prior (Pérez and Berger, 2002). We find for-
mula (2) especially appealing, because it makes clear
that an intrinsic prior is a mixture of “posterior” dis-
tributions. As we will illustrate shortly, if the train-
ing sample size t grows, the intrinsic prior increases
its concentration on the subspace �̃0. This is appar-
ent from (2), because the weights m0(x) in the mix-
ture will be higher for realizations x more likely un-
der M0, and these realizations x will drive the poste-
rior p1(·|x) toward parameter values more supported
under M0. Notice that, if t grows to infinity, the
two Bayesian models ({f0(·|ξ0), ξ0 ∈ �0},p0(·)) and
({f1(·|ξ1), ξ1 ∈ �1},p1(·)) will coincide, making the
comparison problem trivial. Section 3.1 will discuss in
greater detail the nature of t and will present a method
to choose its value.

The BF based on the intrinsic prior is a weighted av-
erage of conditional BFs based on the default prior:

BFI
10(y|t) = ∑

x

BF10(y|x)m0(x),(3)
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where BF10(y|x) is the BF obtained using p1(·|x) as
prior under model M1; see, for example, Consonni and
La Rocca (2008), Proposition 3.4. Hence, at least for
small t and conjugate p1(·), computing BFI

10(y|t) is
not much more demanding than computing BF10(y).

EXAMPLE 2.1 (Bernoulli). Consider the testing
problem M0 :f0(y|θ0) = Bin(y|n, θ0) versus M1 :
f1(y|θ) = Bin(y|n, θ), where θ0 is a fixed value, while
θ varies in (0,1). Let the default prior be p1(θ |b) =
Beta(θ |b, b) for some b > 0. We take a symmetric prior
because default objective priors typically satisfy this
property. In particular, letting b = 1/2, we obtain Jef-
freys’s prior, whereas b = 1 gives us the uniform prior.
The intrinsic prior in this example is given by

pI
1(θ |b, t)

(4)

=
t∑

x=0

Beta(θ |b + x, b + t − x)Bin(x|t, θ0).

The solid curves in Figure 1(a), that is, those specified
by h = 0, illustrate the shape of the intrinsic priors with
training sample size t = 0 (default prior), t = 1 and
t = 8, when θ0 = 0.25 and b = 1. The dashed curves
(h = 1) should be disregarded for the time being. The
effect of the intrinsic procedure is very clear: already
with t = 1 the density has become a straight line with
negative slope, so as to start privileging low values of θ ,
such as θ0 = 0.25, and with a training sample size t = 8
the effect is much more dramatic, with the density now
having a mode somewhere around 0.25 and then de-
clining quickly.

Figure 1(b) shows (again focus on solid lines only)
the effect of the above-described probability mass
transfer on the comparison between M0 and M1: for
a small sample situation (n = 12) the posterior proba-
bility of M1, computed from

BFI
10(y|b, t)

=
t∑

x=0

B(b + x + y, b + t − x + n − y)

B(b + x, b + t − x)θ
y
0 (1 − θ0)n−y

(5)

· Bin(x|t, θ0),

where B(·, ·) denotes the Beta function, is represented
as a function of the observed frequency ȳ (evidence
curve) both for the default prior and for the intrinsic
prior with t = 1. The evidence curve reaches a mini-
mum at ȳ = 0.25 (data perfectly supporting the null)
and is somewhat higher for the intrinsic prior than
for the default prior when 0 < ȳ < 0.5, because with
the intrinsic prior M1 becomes a stronger competitor
when the data moderately support M0.

Results similar to those given by the intrinsic prior
can be obtained, in the above example, by using a suit-
able Beta prior centered at θ0. However, the probability
mass transfer toward θ0 takes place more smoothly un-
der the intrinsic prior than under a Beta prior with in-
creasing precision, because the intrinsic prior is a mix-
ture of Beta distributions. Moreover, this kind of alter-
native approach is only available because we are testing
a sharp hypothesis. When testing a composite hypothe-
sis, it is not at all obvious that a suitable conjugate prior
can be found (after a reparametrization of the model to
identify a parameter of interest and a nuisance param-
eter). On the other hand, as we will see in Section 4 for
the comparison of two proportions, the intrinsic prior
produces the desired outcome in a natural and auto-
matic way.

2.2 Moment Priors

Consider the testing problem (1). We say that the
smaller model holds if the sampling distribution of the
data belongs to M0; we say that the larger model holds
if it belongs to M1 but not to M0. The following result
shows an imbalance in the learning rate of the BF for
commonly used priors.

RESULT 2.1. In the testing problem (1) assume
that p0(·) and p1(·) are continuous and strictly positive
on �0 and �1, respectively, such that some regular-
ity conditions are satisfied by the two models and that
the data y(n) = (y1, . . . , yn) arise under i.i.d. sampling.
If M0 holds, then BF10(y

(n)) = n−(d1−d0)/2eOp(1),
as n → ∞, where dj is the dimension of �j , j =
1,2, with d1 > d0; if M1 holds, then BF01(y

(n)) =
e−Kn+Op(n1/2), as n → ∞, for some K > 0.

We refer to Dawid (2011) for a proof of this result. It
should be noted that a crucial role is played by the fact
that p1(ξ1) > 0 for all ξ1 ∈ �̃0; also recall that p1(·)
is continuous. Thus, the only way to speed up the de-
crease of BF10(y

(n)), when M0 holds, is to force the
prior density under M1 to vanish on �̃0.

Let gh(·) be a smooth function from �1 to �+ van-
ishing on �̃0, together with its first 2h − 1 derivatives,
while g

(2h)
h (ξ) is different from zero for all ξ ∈ �̃0; as-

sume that
∫
�1

gh(ξ1)p1(ξ1) dξ1 is finite and nonzero.
Starting from a given local prior p1(·), we define the
generalized moment prior with moment function gh(·)
as

pM
1 (ξ1|h) ∝ gh(ξ1)p1(ξ1), ξ1 ∈ �1.(6)

We impose that g0(ξ1) ≡ 1, so that setting h = 0 in
pM

1 (·|h) returns the local prior p1(·). For instance, if
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FIG. 1. Prior densities (a) and small sample evidence (b) for the Bernoulli example. Horizontal gray lines in (b) denote possible decision
thresholds at 1%, 5%, 25%, 50%, 75%, 95% and 99% on the posterior probability scale.

�1 ⊆ � and �̃0 = �0 = {ξ0}, with ξ0 a fixed value,
we may take gh(ξ1) = (ξ1 − ξ0)

2h; this defines the mo-
ment prior introduced by Johnson and Rossell (2010)
for testing a sharp hypothesis on a scalar parameter.
We refer to h as the order of the (generalized) moment
prior.

The BF against M0 based on prior (6) can be com-
puted as

BFM
10

(
y(n)|h)

(7)

=
∫
�1

gh(ξ1)p1(ξ1|y(n)) dξ1∫
�1

gh(ξ1)p1(ξ1) dξ1
BF10

(
y(n)),

so that the extra effort required by using this prior
amounts to computing some (generalized) moments
of the local prior and posterior. This effort is re-
warded by a reduction in the learning rate imbalance:
BFM

10(y
(n)|h) = n−h−(d1−d0)/2eOp(1), when M0 holds,

while we still have BFM
01(y

(n)|h) = e−Kn+Op(n1/2),
when M1 holds; see the Appendix for a justification
of this result, which generalizes the rates found by
Johnson and Rossell (2010) for their specific moment
priors.

EXAMPLE 2.2 (Bernoulli c.t.d.). Starting from the
local prior Beta(θ |a1, a2), we define the moment prior
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of order h as

pM
1 (θ |a1, a2, h)

(8)

= (θ − θ0)
2h

K(a1, a2, h, θ0)
Beta(θ |a1, a2),

where

K(a1, a2, h, θ0)
(9)

= θ2h
0

B(a1, a2)

2h∑
j=0

(
2h

j

)
(−1)j θ

−j
0 B(a1 + j, a2),

and obtain

BFM
10(y|a1, a2, h)

= K(a1 + y, a2 + n − y,h, θ0)

K(a1, a2, h, θ0)
(10)

· B(a1 + y, a2 + n − y)

B(a1, a2)θ
y
0 (1 − θ0)n−y

.

In particular, we are interested in the default choice
a1 = a2 = b (with b = 1/2 or b = 1). The moment
prior pM

1 (θ |b,h) is represented in Figure 1(a), for
b = 1 and θ0 = 0.25, by the thin dashed curve specified
by h = 1 and t = 0. The other two dashed curves, spec-
ified by h = 1 and t = 1 (intermediate curve) or t = 8
(thick curve), should be ignored for the time being. The
shape of pM

1 (θ |b,h) can be described as follows: it is
zero at the null value θ0 = 0.25, as required, it increases
rapidly as θ goes to 1, while it goes up more gently as
θ goes to zero. It is clear that this moment prior will
not be suitable for testing purposes, because it puts too
much mass away from θ0. This is confirmed by the thin
dashed line in Figure 1(b): the null model is unduly fa-
vored. The thin dotted line in the same plot shows that
things get even worse for h = 2 and t = 0; again, for
now, please disregard the curves with t = 8 and t = 13.
On the other hand, the moment prior has an improved
learning rate as the sample size grows: we postpone the
illustration of this feature to the next section, after the
moment prior has been made suitable for testing pur-
poses by means of a probability mass transfer toward
the null value θ0.

Rousseau and Robert, in discussing Consonni and
La Rocca (2011), raise an interesting point in rela-
tion to moment priors. They cast the problem in a
decision-theoretic setup and use the well-known du-
ality between prior and loss function (Rubin, 1987;
Robert, 2001) to suggest that nonlocal priors should
be replaced by the use of suitable loss functions, which

take into account the distance from the null. This per-
spective was actually pursued in Robert and Casella
(1994); see also Goutis and Robert (1998). Indeed, it
can be checked that the optimal Bayesian decision, un-
der a {0,1}-loss function and a moment prior of the
form pM

1 (ξ1) ∝ (ξ1 −ξ0)
2hp1(ξ1), where p1(ξ1) is a lo-

cal prior and ξ0 a null parameter value, coincides with
that arising from the local prior p1(ξ1) and a “distance
weighted” loss function of the form

L(a, ξ) =
⎧⎨
⎩

K1, if a = 1 and ξ = ξ0,
(ξ − ξ0)

2h, if a = 0 and ξ 
= ξ0,
0, otherwise,

where a is the action, taking value 0 or 1 if the cho-
sen model is M0 or M1, respectively, while K1 =
E1[(ξ1 − ξ0)

2h] is the expected loss, under the local
prior p1(ξ1), when M0 is wrongly chosen. This in-
terpretation of moment priors is interesting and, from
our viewpoint, it reinforces their usefulness, because it
shows that a moment prior can be justified using deci-
sion theory.

3. INTRINSIC MOMENT PRIORS

Example 2.2 shows that the moment prior obtained
from a default local prior, call it the default moment
prior, does not accumulate enough mass around the
null value (more generally around the subspace spec-
ified by the null model). This suggests applying the in-
trinsic procedure to the default moment prior, obtaining
in this way a new class of priors for testing nested hy-
potheses, which we name intrinsic moment priors. The
improved learning rate extends to the latter priors, be-
cause each of them is a mixture (through the intrinsic
procedure) of nonlocal priors.

Our strategy for a balanced objective Bayesian com-
parison of two nested models thus starts with a default
prior under each of the two models and then envisages
two steps: (i) construct the default moment prior of or-
der h under the larger model; (ii) for a given training
sample size t , generate the corresponding intrinsic mo-
ment prior. We recommend using the resulting prior
to compute the BF: step (i) improves the learning rate
(when the null model holds), while step (ii) makes sure
that the testing procedure exhibits a good small sample
behavior in terms of the evidence curve. We first illus-
trate intrinsic moment priors in our running example,
then we discuss the choice of t . In Section 4 the pro-
cedure will be implemented to test the equality of two
proportions, while in Section 5 it will be developed for
the family of logistic regression models.
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EXAMPLE 3.1 (Bernoulli c.t.d.). Recall that the in-
trinsic prior is an average of “posterior” distributions.
Since in our case we start from the moment prior (8)
with default choice a1 = a2 = b, the intrinsic moment
prior for θ with training sample size t will be given by

pIM
1 (θ |b,h, t)

=
t∑

x=0

(θ − θ0)
2h Beta(θ |b + x, b + t − x)

K(b + x, b + t − x,h, θ0)
(11)

· Bin(x|t, θ0),

where K(·, ·, h, θ0) is defined in (9), and we exploited
conjugacy. Notice that (11) describes a family of
prior distributions including the standard intrinsic prior
(h = 0) and the default prior (h = 0, t = 0) as special
cases. Similarly, from (3) we find

BFIM
10 (y|b,h, t)

=
t∑

x=0

BFM
10(y|b + x, b + t − x,h)(12)

· Bin(x|t, θ0),

where BFM
10(y|·, ·, h) is defined in (10).

Figure 1(a) shows (letting b = 1) the effect of ap-
plying the intrinsic procedure to the default moment
prior of order h = 1 (dashed curves): as t grows, the
overall shape of the prior density changes considerably,
because more and more probability mass in the ex-
tremes is displaced toward θ0, giving rise to two modes,
while the nonlocal nature of the prior is preserved, be-
cause the density remains zero at θ0 = 0.25. In this
way, as shown in Figure 1(b), the evidence against the
null for small samples is brought back to more reason-
able values (with respect to the default moment prior).
More specifically, Figure 1(b) shows that the intrin-
sic moment prior with h = 1 and t = 8 (a choice ex-
plained later in Section 3.1) performs comparably to
the uniform prior (and to the standard intrinsic prior
with unit training sample) over a broad range of val-
ues for the observed sampling fraction ȳ; this intrinsic
moment prior results in a smaller amount of evidence
(against M0) for values of ȳ close to 0.25 = θ0, which
is to be expected for continuity, but induces a steeper
evidence gradient as ȳ moves away from the null point
in either direction, which makes it appealing.

The learning rate of the intrinsic moment prior is il-
lustrated in Figure 2(a), which reports the average pos-
terior probability of the null model when θ = 0.25 (null
value) and when θ = 0.4 (an instance of the alterna-
tive model). It is apparent from this plot that a nonlocal

prior (h > 0) is needed, if strong evidence in favor of
the null has “ever” to be achieved, and also that the
intrinsic procedure is crucial to calibrate small sam-
ple evidence. These results are striking, and they sig-
nal that our strategy actually represents a marked im-
provement over current methods. Notice that there is
an associated cost: the moment prior trades off a de-
lay in learning the alternative model for speed in learn-
ing the null model; the intrinsic procedure is remark-
ably effective in controlling this trade-off. In light of
Figure 2(a), we recommend letting h = 1 by default
and trying h = 2 for sensitivity purposes; we remark
that h = 1 is enough to change the convergence rate of
BFIM

10 (y(n)), when M0 holds, from sub-linear to super-
linear.

3.1 Choosing the Training Sample Size

Recall that the goal of the intrinsic procedure is
to transfer probability mass toward the null subspace
within the default prior under M1. There is clearly
a tension here between this aim and that of leaving
enough mass in other areas of the parameter space, not
to unduly discredit M1. This is precisely the issue we
face when choosing t . We now provide some guide-
lines for the Bernoulli problem, with a view to more
general situations.

We aim at a single recommended value of t for
all possible values of θ0. For this purpose, we fix
θ0 = 1/2, representing the worst case scenario in
terms of the information content of a single obser-
vation. A minimal sample size to discriminate be-
tween M1 and M0 is n = 2, with possible data values
y = 0,1,2. Define the weight of evidence against the
null using an intrinsic moment prior as WOEy(t) =
log BFIM

10 (y|b,h, t), where we focus on the depen-
dence on t for a given choice of b and h. By sym-
metry, WOE0(t) = WOE2(t). However, WOE1(t) 
=
WOE0(t); this is why we are able to discriminate be-
tween the two models if n = 2, which would not hap-
pen with n = 1. It can be checked that WOE1(t) is
increasing in t , while WOE0(t) = WOE2(t) is decreas-
ing in t . The explanation of this phenomenon is simple,
keeping in mind that an increase in t transfers proba-
bility mass toward θ0 = 1/2 within the prior: the value
y = 1 supports M0, and thus its marginal probability
under M1 will increase with t ; the values y = 0 and
y = 2 support M1, and thus an increase in t will make
their marginal probability under M1 smaller. How far
should we let t grow? To answer this question, define
the total weight of evidence TWOE(t) = ∑

y WOEy(t),
and consider the weight of evidence as a sort of cur-
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FIG. 2. Learning rate (a) and minimal data set evidence (b) for the Bernoulli example. Horizontal gray lines in (a) denote possible decision
thresholds at 1%, 5%, 25%, 50%, 75%, 95% and 99% on the posterior probability scale.

rency: we will be willing to trade off a decrease in
WOE0(t) and WOE2(t) for an increase in WOE1(t)

as long as we get more than we give, that is, as long as
we increase TWOE(t). Define t∗ = arg maxt TWOE(t)

and assume that this quantity is well-defined. The value
t∗ represents our optimal training sample size when
implementing the intrinsic procedure. Since this choice
of t is based on a somewhat unusual criterion, we will
be willing to let t vary in a neighborhood of t∗ for a
sensitivity analysis.

We remark that the above strategy to find t∗ in an in-
trinsic procedure is general, at least for finitely discrete

data models. In particular, it can be used to determine
an optimal training sample size also for the standard
intrinsic prior (h = 0). Figure 2(b) plots TWOE(t) for
h = 0,1,2, assuming a uniform default prior (b = 1).
Interestingly, when h = 0 (standard intrinsic prior), we
find t∗ ∈ {0,1}. This seeming indeterminacy can be ex-
plained by noticing that, when θ0 = 0.5, the intrinsic
prior with t = 1 is the uniform prior, that is, it is the
same as the default prior (corresponding to t = 0). On
the other hand, when the starting prior is the default
moment prior of order h = 1, it turns out that t∗ = 8,
while for h = 2 we obtain t∗ = 13, so that with nonlo-
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cal moment priors the intrinsic procedure is necessary:
this makes sense, because the starting prior puts mass
at the endpoints of the parameter space in a rather ex-
treme way.

4. TESTING THE EQUALITY OF TWO
PROPORTIONS

Suppose the larger (encompassing) model is the
product of two binomial models

M1 :f1(y1, y2|θ1, θ2)
(13)

= Bin(y1|n1, θ1)Bin(y2|n2, θ2),

where n1 and n2 are fixed sample sizes. The null model
assumes θ1 = θ2 = θ , so that

M0 :f0(y1, y2|θ) = Bin(y1|n1, θ)Bin(y2|n2, θ).(14)

A default prior for θ under M0 is p0(θ |b0) = Beta(θ |
b0, b0), while a default prior for (θ1, θ2) under M1
is given by p1(θ1, θ2|b1, b2) = Beta(θ1|b1, b1)Beta(θ2|
b2, b2).

Starting from a more general conjugate prior
Beta(θ1|a11, a12)Beta(θ2|a21, a22) under M1, we de-
fine the moment prior of order h as

pM
1 (θ1, θ2|a,h)

= (θ1 − θ2)
2h

K(a,h)
Beta(θ1|a11, a12)(15)

· Beta(θ2|a21, a22),

where a = [[ajk]k=1,2]j=1,2 is a matrix of strictly pos-
itive real numbers and

K(a,h) =
2h∑

j=0

(
2h

j

)
(−1)j

B(a11 + j, a12)

B(a11, a12)

(16)

· B(a21 + 2h − j, a22)

B(a21, a22)
.

The default moment prior will be obtained by letting
a11 = a12 = b1 and a21 = a22 = b2; letting h = 0 will
then return, as usual, the default prior.

Consider now the intrinsic approach applied to the
default moment prior. Since the data consist of two
counts, a vector of length two is needed to specify the
training sample size. The intrinsic moment prior of or-
der h with training sample size t = (t1, t2) will be de-
fined as

pIM
1 (θ1, θ2|b,h, t)

(17)

=
t1∑

x1=0

t2∑
x2=0

pM
1

(
θ1, θ2|a�

x, h
)
m0(x1, x2|b0),

where b = (b0, b1, b2), while (a�
x)11 = b1 + x1,

(a�
x)12 = b1 + t1 − x1, (a�

x)21 = b2 + x2, (a�
x)22 =

b2 + t2 − x2, and

m0(x1, x2|b0)

=
(

t1
x1

)(
t2
x2

)
(18)

· B(b0 + x1 + x2, b0 + t1 + t2 − x1 − x2)

B(b0, b0)
;

letting h = 0 returns the standard intrinsic prior pI
1(θ1,

θ2|b, t).
The BF against M0 using the intrinsic moment prior

under M1 is given by

BFIM
10 (y1, y2|b,h, t)

(19)

=
t1∑

x1=0

t2∑
x2=0

BFM
10

(
y1, y2|a�

x, h
)
m0(x1, x2|b0),

where BFM
10(y1, y2|a�

x, h) is the BF obtained with the
“posterior” pM

1 (θ1, θ2|a�
x, h) as parameter prior under

M1 (and the default parameter prior under M0).
Similarly to the Bernoulli case, we can write

BFM
10(y1, y2|a,h) = K(a�

y, h)

K(a,h)
BF10(y1, y2|a),(20)

where (a�
y)11 = a11 + y1, (a�

y)12 = a12 + n1 − y1,
(a�

y)21 = a21 + y2, and (a�
y)22 = a22 + n2 − y2. A stan-

dard computation then gives

m1(y1, y2|a)

=
(

n1
y1

)(
n2
y2

)

· B(a11 + y1, a12 + n1 − y1)

· B(a21 + y2, a22 + n2 − y2)

/
(
B(a11, a12)B(a21, a22)

)
,

and it follows that the Bayes factor against M0 ob-
tained with the moment prior under M1 (and the de-
fault prior under M0) can be written as

BF10(y1, y2|a)

= B(b0, b0)B(a11 + y1, a12 + n1 − y1)

· B(a21 + y2, a22 + n2 − y2)

/
(
B(a11, a12)B(a21, a22)

· B(b0 + y1 + y2, b0 + n1 + n2 − y1 − y2)
)
.

Using the above expression in (20) and plugging the
latter into (19) provides an explicit expression for
BFIM

10 (y1, y2|b,h, t).
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4.1 Choice of Hyperparameters

The intrinsic moment prior pIM
1 (θ1, θ2|b,h, t) de-

pends on three hyperparameters. We recommend
choosing b1 + b2 = b0, so that the same amount of
prior information is imposed under M1, on the vec-
tor parameter (θ1, θ2), and under M0, on the scalar
parameter θ . Specifically, adopting a prior distribu-
tion with unit prior information, we let b0 = 1/2, and
b1 = b2 = 1/4, for the balanced case n1 = n2, while in
the nonbalanced case b1 and b2 will be proportional to
n1 and n2. Then, as in the Bernoulli example, we rec-
ommend choosing h = 1, which is enough to change
the asymptotic learning rate of the BF, when the null
holds, from sub-linear to super-linear. Finally, concern-
ing the choice of t , we follow the general procedure
outlined in the Bernoulli example, with suitable spe-
cific modifications to deal with the present case. In

particular, we focus on the balanced case to obtain a
single optimal value of t+ = t1 + t2, which can then be
used also in the nonbalanced case to specify t1 and t2
as (approximately) proportional to n1 and n2.

Clearly, n1 = n2 = 1 represent the minimal sam-
ple sizes for the testing problem at hand. In this
case, of the four possible data outcomes, two are
supportive for M0, namely, (y1 = 0, y2 = 0) and
(y1 = 1, y2 = 1), and two are supportive for M1,
namely, (y1 = 0, y2 = 1) and (y1 = 1, y2 = 0). We
repeat the argument in Section 3.1 and take t∗+ =
arg maxt+ TWOE(t+) as the optimal total training
sample size, where TWOE(t+) = ∑

y WOEy(t+) and
WOEy(t+) = log BFIM

10 (y1, y2|b,h, t) with t = (t+/2,

t+/2) and t+ even.
Figure 3(a) plots TWOE(t+) for h = 0,1,2. As in

the Bernoulli case, t∗+ is well defined and when h = 0

FIG. 3. Characteristics of intrinsic moment priors for comparing two proportions. Horizontal gray lines in (c) denote possible decision
thresholds at 1%, 5%, 25%, 50%, 75%, 95% and 99% on the posterior probability scale. Contour lines in (d) refer to the posterior probability
of the alternative model computed from data y1 = n1ȳ1 and y2 = n2ȳ2 (letting b0 = 1/2 and b1 = 1/4).
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(standard intrinsic prior) we get t∗+ = 0. Hence, in
this case, we would recommend a sensitivity analysis
in line with that carried out by Casella and Moreno
(2009, Table 2). On the other hand, when h = 1 we
find t∗+ = 8, while for h = 2 we get t∗+ = 14; as in the
Bernoulli case, it turns out that, starting with a nonlocal
moment prior, the intrinsic approach is needed. In the
following subsection we highlight some features of the
intrinsic moment priors specified by the above values
of h and t+ = t∗+ (including h = 0 and t∗+ = 0).

4.2 Characteristics of Intrinsic Moment Priors

Figure 4 presents a collection of nine priors for
(θ1, θ2) under M1, each labeled with its correspond-
ing correlation coefficient r . Although the absolute
values of r are of dubious utility in describing these
distributions, because of their shape, comparison of
the displayed values enables us to highlight the roles
played by h and t+: as h grows the prior mass is dis-
placed from areas around the line θ1 = θ2 to the corners
(θ1 = 0, θ2 = 1) and (θ1 = 1, θ2 = 0), thus inducing
negative correlation; on the other hand, as t+ grows the
prior mass is pulled back toward either side of the line
θ1 = θ2, and positive correlation is induced. The priors
in the first row are local, while those in the second and
third rows are nonlocal. The three distributions on the
main diagonal represent, for the three values of h, our
suggested priors based on the criterion for the choice
of t+ described in Section 4.1. Notice that r � 0 for all
three suggested priors, so that the chosen value of t+
can be seen as “compensating” for h.

Some further insight into the structure of the priors
on the main diagonal of Figure 4 can be gleaned by
looking at Figure 3(b), which reports their marginal
distributions (identical for θ1 and θ2). All three den-
sities are symmetric around the value 0.5, but the two
intrinsic moment priors with h > 0 give more credit
to the inner values of the interval (0,1). For these
three priors, Figure 3(c) reports the average posterior
probability of the null model computed on 1000 simu-
lated data sets of increasing size, generated first letting
θ1 = θ2 = 0.25 and then setting θ1 = 0.25, θ2 = 0.4 (an
instance of the alternative model). Notice that, while
in the Bernoulli example we were able to implement
an exact computation, in this case we had to resort to
a Monte Carlo approximation, because exact computa-
tion would have been too demanding (at least for ordi-
nary computational resources).

The learning rate is quite different under the three
priors on the main diagonal of Figure 4. Like in the
Bernoulli example, when the data are generated under

the null model a much quicker correct response is pro-
vided by the nonlocal priors: for sample sizes up to 500
the average posterior probability of M0 under the de-
fault prior hardly reaches the 95% threshold, whereas
under the nonlocal intrinsic moment priors it easily
achieves the 99% threshold by the time 250 observa-
tions have been collected. On the other hand, switching
from h = 0 to h > 0, the learning rate under the alter-
native model is compromised in the short run, but not
in the long run.

Figure 3(d) illustrates the small sample behavior of
intrinsic moment priors, by reporting the contour lines
in the (ȳ1, ȳ2)-plane of observed frequencies, when
n1 = n2 = 12, for selected thresholds of the poste-
rior probability of M1. There is a clear indication that
the displayed thresholds are reached for pairs (ȳ1, ȳ2)

closer to the ȳ1 = ȳ2 line under the nonlocal priors than
under the default prior. Similarly to the Bernoulli ex-
ample, this is due to the steeper gradient of the evi-
dence surface as the data move away from the null sup-
porting values.

5. VARIABLE SELECTION IN LOGISTIC
REGRESSION MODELS

We now develop the intrinsic moment procedure
when the models under comparison are logistic regres-
sion models. This demonstrates that the general proce-
dure can be applied to a flexible and general class of
discrete data models.

Suppose we observe N independent binomial obser-
vations, y = (y1, . . . , yN), where

yi |θi ∼ Bin(ni, θi); i = 1, . . . ,N.

The binomial probabilities θ = (θ1, . . . , θN) are as-
sumed to depend on the values of k explanatory vari-
ables zij , i = 1, . . . ,N , j = 1, . . . , k, through linear
predictors η = (η1, . . . , ηN), where

ηi = log
θi

1 − θi

= β0 +
k∑

j=1

zijβj ; i = 1, . . . ,N.

Hence, the likelihood is f (y|β) = {∏N
i=1

(ni

yi

)}L(β|y,

n), where

L(β|y,n)

=
N∏

i=1

exp

{
yi

(
β0 +

k∑
j=1

zijβj

)

− ni log

(
1 + exp

[
β0 +

k∑
j=1

zijβj

])}
,
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FIG. 4. Intrinsic moment prior densities for comparing two proportions (b0 = 1/2, b1 = 1/4).

β = (β0, β1, . . . , βk) and n = (n1, . . . , nN). We refer
to this model as the full model. Further models under
consideration for variable selection correspond to an
exclusion of some explanatory variables, that is, to set-
ting some βj = 0 (j 
= 0).

In the development below, we present the prior for
the full model with k explanatory variables, but the
prior for any other model takes an identical form with a
regression parameter of correspondingly lower dimen-
sionality.
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For convenience, and consistency with our earlier
developments in the context of two binomial models,
we adopt a conjugate local prior (Bedrick, Christensen
and Johnson, 1996) given by pC(β|u,w) ∝ L(β|u,w),
where u = (u1, . . . , uN) and w = (w1, . . . ,wN) are hy-
perparameters corresponding to y = (y1, . . . , yN) and
n = (n1, . . . , nN), respectively, in the likelihood. Let-
ting w+ = ∑N

i=1 wi , we choose as the default prior
specification

wi = w+
ni∑
i ni

, ui = wi

2
,(21)

where w+ represents a prior sample size. The condi-
tion ui = wi/2 ensures that the mode of the prior is
at β = 0. To see why, recall that the prior, as a func-
tion of β , is proportional to the likelihood. Now, if
yi = ni/2, then the MLE of each θi , unconstrained
by the model, is exactly 1/2 and, therefore, the MLE
of each ηi is zero. The value η = 0 is attained within
any logistic regression model by β = 0 and, hence, this
value must also maximize the model constrained likeli-
hood, which corresponds to the prior density. As a de-
fault choice, corresponding to unit prior information,
we take w+ = 1. For the comparison of two propor-
tions θ1 and θ2 (N = 2) in the balanced case n1 = n2,
this formulation leads to identical default local priors
θi ∼ Beta(1/4,1/4) with θ1 and θ2 independent.

In order to construct the moment prior, we need to
specify a function gh(β). We choose

gh(β) =
k∏

j=1

β2h
j ,(22)

which vanishes if at least one βj = 0 (j 
= 0), imply-
ing that we separate the full model from every model
nested within it having one less explanatory variable. In
the context of variable selection for Gaussian distribu-
tions, this choice of gh(β) has been used by Consonni
and La Rocca (2011) and also by Johnson and Rossell
(2012), who named the resulting nonlocal prior a prod-
uct moment prior. Our main result in the Appendix
(Theorem A.2), though stated for i.i.d. observations,
confirms that this is a sensible choice for variable se-
lection, resulting in an effective separation of models.
With this choice we obtain

pM(β|u, v,h) ∝ pC(β|u,w)

k∏
j=1

β2h
j .

At this stage, to specify the intrinsic moment prior
under any given model M, we need a reference
model M0, which we take as the null model having

no explanatory variable (k = 0) because it is nested in
every other model. In this construction, the priors used
in any pairwise model comparison depend only on the
(common) null model. This strategy is called encom-
passing from below and provides a coherent model
comparison procedure; see Liang et al. (2008). Un-
der M0 we assume a default prior for the intercept
β0 given by

p(β0) ∝ exp
{
β0u+ − w+ log

(
1 + exp[β0])},

where u+ = ∑N
i=1 ui , which corresponds to a Beta(u+,

w+ − u+) = Beta(1/2,1/2) distribution, because of
the assumed value w+ = 1, for the common success
probability implied by M0 in the comparison of two
proportions.

The final step in the construction of the intrinsic mo-
ment prior requires the specification of training sam-
ples, which also involves covariates when dealing with
regression models. Methods for choosing covariates
for training data have been discussed for Gaussian re-
gression models by Girón et al. (2006). We assume that
the covariate patterns in the training data are a subset
of those appearing in the observed data. Following for-
mula (2), we now construct the intrinsic moment prior
for the parameter of a logistic regression model. Let

pM(β|x + u, t + w,h)

∝
{

k∏
j=1

β2h
j

}
L(β|x + u, t + w)

be the posterior moment prior based on the training
sample x = (x1, . . . , xN), with training sample sizes
given by t = (t1, . . . , tN ), where some of the ti may be
zero. Since x is drawn from m0(x), the marginal joint
distribution under M0, the intrinsic moment prior is
thus given by

pIM(β|h, t)

= ∑
x

m0(x)
{∏k

j=1 β2h
j }L(β|x + u, t + w)

Q(x + u, t + w,h)
,

where Q(z, s, h) = ∫
�k+1{∏k

j=1 β2h
j }L(β|z, s) dβ . The

existence of Q(z, s, h) follows from the theorem in
Forster (2010, Section 6) stating that a necessary and
sufficient condition for a log-concave function over Rd

to have a finite integral is that it achieves its maxi-
mum in the interior of the parameter space. Here, we
need to adapt this result slightly. First, we notice that
in each (open) orthant the integrand is log-concave, be-
cause both its constituent components are log-concave:
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∏k
j=1 β2h

j by straightforward calculus, and L(β|x +
u, t +w) by log-concavity of the likelihood for a bino-
mial logistic regression model. For our default choices
of u and w (or any alternative choice with u > 0
and 0 < u < w), L(β|x + u, t + w) has a unique fi-
nite maximum, provided that the model is identified
(which we will assume). Hence, L(β|x + u, t + w)

tends to zero, as ‖β‖ → ∞, in any direction, and so
does {∏k

j=1 β2h
j }L(β|x + u, t + w), due to the domi-

nance of L(β|x + u, t + w) for large ‖β‖. Hence, we
have the conditions to apply the result of Forster (2010)
in each orthant to guarantee a finite integral.

Now we require to compute the marginal likelihood
induced by pIM(β|h, t). This is given by

mIM(y|h, t)

=
{

N∏
i=1

(
ni

yi

)}∫
�k+1

L(β|y,n)pIM(β|h, t) dβ

(23)

=
{

N∏
i=1

(
ni

yi

)}

· ∑
x

m0(x)
Q(x + u + y, t + w + n,h)

Q(x + u, t + w,h)
.

In practice, we need an efficient method to compute
Q(z + x, s + t, h) for (z, s) = (u,w) and (z, s) = (u +
y,w + n). Since

Q(z + x, s + t, h)

=
∫
�k+1

L(β|z, s)L(β|x, t)

Q(z, s,0)
Q(z, s,0)

·
{

k∏
j=1

β2h
j

}
dβ

= Q(z, s,0)EpC(β|z,s)
{(

k∏
j=1

β2h
j

)
L(β|x, t)

}
,

one can simulate from the conjugate local prior pC(β|
z, s) using MCMC methods and obtain mIM(y|h, t) as
a mixture, with respect to m0(x), of ratios of expec-
tations; the normalizing constants Q(z, s,0) for h = 0
will be computed once and for all, for a given data set,
again using MCMC methods; see Section 6.2.

6. APPLICATIONS

In this section we apply our methodology to two
problems. The first application concerns a set of ran-
domized trials and uses results presented in Section 4;

the second application performs model selection within
a logistic regression framework to analyze the relation-
ship between the probability of patients’ survival and
two binary covariates, and makes use of results pre-
sented in Section 5.

6.1 Randomized Trials

We analyze data from 41 randomized trials of a new
surgical treatment for stomach ulcers. For each trial
the number of occurrences and nonoccurrences under
Treatment (the new surgery, group 1) and Control (an
older surgery, group 2) are reported; see Efron (1996,
Table 1). Occurrence here refers to an adverse event:
recurrent bleeding. Efron (1996) analyzed these data
with the aim of performing a meta-analysis, using em-
pirical Bayes methods. On the other hand, our objective
is to establish whether the probability of occurrence
is the same under Treatment and Control in each in-
dividual table; for a similar analysis see Casella and
Moreno (2009). We base our analysis on the intrinsic
moment priors of Section 4, letting b0 = 1/2 and com-
paring the results given by different choices of h and t .
Specifically, we perform a sensitivity analysis with re-
spect to the actual choice of t , and a cross-validation
study of the predictive performance achieved by differ-
ent choices of h.

6.1.1 Sensitivity analysis. Recall that a crucial hy-
perparameter is represented by the overall training
sample size t+, which is then further split into the two
groups, t+ = t1 + t2. On the basis of our study of the
characteristics of intrinsic moment priors for the com-
parison of two proportions, we suggest a sensitivity
analysis with t+ > t∗+(h). Specifically, we here let t+
vary from t∗+(h) to t∗∗+ (h) = t∗+(h + 1), where h = 0
(standard local prior) or h = 1 (recommended nonlocal
prior); recall that t∗+(0) = 0, t∗+(1) = 8 and t∗+(2) = 14.
We choose t1 and t2 approximately proportional to the
trial sample sizes for Treatment and Control, n1 and
n2, and b1 and b2 exactly proportional to these quanti-
ties, with b1 + b2 = b0 = 1/2 (unit prior information).
For all the above pairs (h, t), and all 41 tables in the
data set, we evaluate the posterior probability of the
null model.

We report our findings in Figure 5(a), where the ta-
bles are arranged (for a better appreciation of our re-
sults) from left to right in increasing order of | y1

n1
− y2

n2
|

(absolute difference in observed fractions): this ex-
plains the mostly declining pattern of the posterior
probabilities of the null model. The range of these
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FIG. 5. Results of sensitivity analysis and cross-validation study: each number on the horizontal axis identifies a table.

probabilities is depicted as a vertical segment, sepa-
rately for the standard intrinsic and the intrinsic mo-
ment prior, and the values for t = t∗ and t = t∗∗ are
marked with circles and triangles, respectively, so that
in most cases (thanks to a monotonic behavior) we can
see an arrow describing the overall change in probabil-
ity. One can identify three sets of tables: left-hand (up
to Table 38), center (tables from 20 to 7) and right-hand
(remaining tables). Some specific comments follow be-
low.

Consider first the left-hand tables. Except for Ta-
ble 41 under the local prior (and possibly Table 18),
the posterior probability of M0 ranges well above the

value 0.5, which can be regarded as a conventional de-
cision threshold for model choice under a {0,1}-loss
function. The nonlocal intrinsic moment prior (black
triangle) produces values for the posterior probability
of M0 higher than under the standard intrinsic prior
(white triangle): this is only to be expected, because of
the nonlocal versus local nature of these priors. The ef-
fect is dramatic for Table 41, which is characterized by
counting no occurrences at all. All arrows point down-
ward: this is the effect of the intrinsic procedure; when
the data support the null model, the action of pulling
the prior toward the null subspace makes the alternative
more competitive and takes evidence away from M0.
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For this first group of tables, a robust conclusion can
be reached in favor of the equality of proportions be-
tween the two groups. Next consider the tables in the
center. Four of these tables (20, 39, 15, 7) exhibit a
posterior probability of the null hovering over the 0.5
threshold, so that no robust conclusion can be drawn;
four of them (32, 26, 16, 33) give a robust conclusion
in favor of the null, while two of them (34, 5) give a
robust conclusion against the null. Leaving aside these
last two tables, which are characterized by zero occur-
rences in one of the two groups and are more similar
in behavior to the right-hand tables, all arrows point
downward, indicating that here too the intrinsic proce-
dure is working in favor of the alternative. Notice that
now the local priors give more credit to the null than
the nonlocal priors, showing that the steeper evidence
gradient of the latter gets into play. Finally, the pattern
of the right-hand tables indicates a low support for the
null, with the possible exception of Tables 1 and 12.
Ranges become shorter, and on some occasions negli-
gible, especially for the nonlocal priors. Some arrows
point upward: this is the action of the intrinsic pro-
cedure in favor of M0, because the data do not sup-
port the null model; the two Bayesian models are on
the way of becoming equivalent. For the tables in this
last group, a robust conclusion against the null can be
drawn.

6.1.2 Cross-validation study. We now compare the
predictive performance of the intrinsic moment priors
with h = 0, h = 1 and h = 2, taking for granted that
t+ should be equal to t∗+ (for any given value of h)
and t1 and t2 should be (approximately) proportional to
n1 and n2. To this aim, we assign a logarithmic score
to each probability forecast p, say, of an event E: the
score is log(p), if E occurs, and log(1 − p), if Ē oc-
curs; this is a proper scoring rule (Bernardo and Smith,
1994, Section 2.7.2). Notice that each score is negative,
the maximum value it can achieve is zero, and higher
scores indicate a better prediction. Suppose we want
to predict the outcome for a patient who is an occur-
rence in group 1. We exclude this patient from the data
set and compute the probability for an occurrence of
such a patient, θ̂

(1)
1 , as the Bayesian model average of

the posterior means of θ1 under M1 and θ under M0
based on counts (y1 − 1, n1 − y1, y2, n2 − y2); simi-
larly, to predict the outcome for a patient who is an
occurrence in group 2, we compute her probability of

occurrence, θ̂
(1)
2 , upon interchanging subscript 1 and 2

above. On the other hand, to predict the outcome for a
patient who is a nonoccurrence in group 1, we compute

the corresponding probability of an occurrence, θ̂
(0)
1 ,

as the Bayesian model average of the posterior means
of θ1 under M1 and θ under M0 based on counts
(y1, n1 − y1 − 1, y2, n2 − y2); as before, the compu-
tation of θ̂

(0)
2 , for a patient who is a nonoccurrence in

group 2, requires interchanging subscripts 1 and 2. In
the spirit of cross-validation, we repeat the analysis for
each patient and compute the overall mean score

S = (
y1 log θ̂

(1)
1 + (n1 − y1) log

(
1 − θ̂

(0)
1

)
+ y2 log θ̂

(1)
2 + (n2 − y2) log

(
1 − θ̂

(0)
2

))
/(n1 + n2).

Now let Sh be the score associated with the intrin-
sic moment prior of order h, h = 0,1,2. Of particular
interest are the differences S1 −S0 and S2 −S0. A pos-
itive value for S1 − S0, say, means that the prior with
h = 1 produces on average a better forecasting system
than the standard intrinsic prior (h = 0); notice that the
latter coincides with the default prior because t∗+ = 0.
One can use a first order expansion of the logarithmic
score to gauge the difference more concretely: a pos-
itive difference S1 − S0 = d > 0 means that the prior
with h = 1 generates “correctly-oriented probability
forecasts” (higher values for occurrences and lower
values for nonoccurrences) which are, on average, d ×
100% better than those produced by the standard in-
trinsic prior. Here the average is taken over the combi-
nation of event outcomes (occurrence/nonoccurrence)
and groups (Treatment/Control) with weights given by
the observed sample frequencies. Since d > 0 is an
average of score differences over the four blocks of
events, there is no guarantee of a uniform improvement
in prediction across all of them.

Figure 5(b) reports the results of our cross-validation
study with the tables again arranged from left to right
in increasing order of absolute difference in observed
fractions. Essentially for all tables, but with the notable
exception of the last three, the nonlocal intrinsic mo-
ment priors perform better than the standard intrinsic
prior, with differences in score ranging from −0.42%
to 4.2% (median improvement 0.54%) when h = 1 and
from −0.26% to 5.0% (median improvement 0.68%)
when h = 2. On the other hand, for the last three tables,
which are clearly against the null, the performance of
nonlocal priors is much worse: this happens because
the intrinsic moment priors produce a greater degree
of posterior shrinkage toward the null within the alter-
native model. Differences in score range from −1.0%
down to −11%, when h = 1, and from −2.5% down to
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TABLE 1
Survival data

Condition Antitoxin Death Survival

More severe Yes 15 6
No 22 4

Less severe Yes 5 15
No 7 5

−16%, when h = 2. Notice that the intrinsic moment
prior predicts better with h = 2 than with h = 1 when
the difference in score is positive, but the reverse oc-
curs for negative differences in score; in the latter case
the performance can be appreciably worse. On grounds
of prudence, these results seem to reinforce our recom-
mendation in favor of the choice h = 1.

6.2 Logistic Regression Models for Survival Data

In Table 1 we consider a data set previously exam-
ined in Dellaportas, Forster and Ntzoufras (2002); see
also references therein for further analyses of the same
problem. Our aim is to investigate the relationship be-
tween the probability of Survival, on the one hand, and
two binary covariates: Severity of condition and Anti-
toxin medication.

The full model is given by

yjl|θjl
ind∼ Bin(njl, θjl),

log
(

θjl

1 − θjl

)
= α + βj + γl + δjl,

j, l = 1,2, where yjl , njl and θjl are the number of
survivals, the total number of patients and the probabil-
ity of survival under level j of Severity and level l of
Antitoxin medication; α, βj , γl and δjl are the model
parameters corresponding to the intercept, Severity ef-
fect, Antitoxin effect, and interaction effect of Severity
and Antitoxin. The number of free parameters is actu-
ally four: intercept, two main effects and one interac-
tion.

We are interested in five distinct logistic regression
models: the intercept-only model, two models with a
single main effect each (plus intercept), one model with
two additive main effects (plus intercept), and the full
model. We wish to compare them through their pos-
terior probabilities based on our intrinsic moment pri-
ors. Our results are summarized in Table 2, where we
report posterior model probabilities with an accuracy
(standard error) of approximately 0.01.

Computations were performed using the methodol-
ogy presented in Section 5. In particular, for the choice

of prior hyperparameters, we used formula (21) with
w+ = 1. A uniform prior on the model space was as-
sumed. For each model, a random walk Metropolis–
Hastings sampler was implemented through the func-
tion metrop() of the R package mcmc (Geyer, 2010).
Prior and posterior normalizing constants with h = 0
were computed, once and for all, using the method by
Chib and Jeliazkov (2001) on chains of length 40,000
after thinning by a factor 20; the proposal distribu-
tions were tuned so as to obtain acceptance rates be-
tween 24% and 28%. Different chains with the same
features were used to compute the ratios of posterior
expectations needed to calculate the intrinsic moment
marginal likelihood (23) as a mixture with respect to
m0(x). Since the mixing step proved to be computa-
tionally demanding, we used C (within R).

Differently from the case of the comparison of two
proportions, for general logistic regression models
there seems to be no simple method to determine t∗+
once and for all, because the explanatory variables are
different in each application. Moreover, extending the
methodology of total weight of evidence presented in
Section 3.1 to the case of more than two models ap-
pears to be nontrivial. In the present application we
found it natural to let njl ≡ 1 for minimal data, and
contented ourselves with computing the total weight of
evidence for the full model against the intercept-only
one, focusing on the two models farthest from each
other. We used this information to guide our choice
of t+ in the context of a sensitivity analysis across a
grid of values for the hyperparameters h = 0,1,2 and
t+ = 0,4,8,12,16,20,24; the actual values of tj l were
obtained, by rounding them, as approximately propor-
tional to njl . In general, the choice of t could depend
on the model, which could help comparing models of
very different dimension, but in the present case we
avoided this additional complexity.

The values of the total weight of evidence in Table 2
suggest that we should take t+ = 0 when h = 0, t+ = 4
when h = 1, and t+ = 16 when h = 2. However, the
last column of Table 2 is not stable across different
MCMC runs, and it should be considered as merely in-
dicative. This is not surprising, because the total weight
of evidence was quite flat around its maximum in both
Figure 2(b) and Figure 3(a); it is a problem that can-
not be solved by a feasible increase in chain length.
The clear message appears to be that t+ = 12 is too
much when h = 0, t+ = 0 is not a good choice when
h = 1, and t+ = 4 is not enough when h = 2. Notice
that the first value would give some credit to the full
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TABLE 2
Posterior probabilities of five logistic regression models for the survival data in Table 1, using

intrinsic moment priors with total weight of evidence on corresponding minimal data given in the
last column. Each model is described through the main effect(s) it includes beside intercept

h t+ Intercept-only Severity Antitoxin Sever + Antitox Full model TWOE

0 0 0.01 0.61 0.01 0.35 0.02 7
4 0.01 0.56 0.01 0.40 0.01 4
8 0.00 0.44 0.01 0.51 0.03 3

12 0.00 0.35 0.01 0.54 0.10 2
16 0.00 0.33 0.01 0.54 0.12 2
20 0.00 0.29 0.01 0.53 0.17 2
24 0.00 0.26 0.01 0.52 0.21 2

1 0 0.22 0.77 0.01 0.00 0.00 2
4 0.03 0.86 0.01 0.10 0.00 7
8 0.01 0.85 0.01 0.13 0.00 6

12 0.00 0.67 0.01 0.31 0.00 6
16 0.00 0.62 0.01 0.36 0.00 6
20 0.00 0.52 0.01 0.46 0.00 6
24 0.00 0.45 0.01 0.53 0.00 5

2 0 0.95 0.05 0.00 0.00 0.00 −2
4 0.13 0.86 0.01 0.01 0.00 21
8 0.03 0.95 0.01 0.00 0.00 25

12 0.01 0.93 0.01 0.05 0.00 26
16 0.01 0.89 0.01 0.09 0.00 27
20 0.00 0.80 0.01 0.19 0.00 26
24 0.00 0.70 0.01 0.29 0.00 25

model, while the last two values would attribute a size-
able posterior probability to the intercept-only model.
Then, if a recommended value t∗+(h) has to be singled
out for each value of h, the choice t∗+(0) = 0, t∗+(1) = 8
and t∗+(2) = 16 achieves a better scaling with respect
to h, and it is in line with the values found for the com-
parison of two proportions. Here too the intrinsic step
appears to be necessary for nonlocal priors only.

Bearing in mind that the intercept term is present in
each model, the posterior model probabilities reported
in Table 2 suggest that the two models “Severity” and
“Severity + Antitoxin” account for at least 90% of the
probability mass in all reasonable scenarios. Specif-
ically, model “Severity” is a clear winner under the
nonlocal priors, except for h = 1 and the highest val-
ues of t+, which are far from t∗+(1). The situation is
more mixed under the local priors: the leadership of
“Severity” is not equally clear, and it fades away as
t+ increases; these results are in line with those ob-
tained by Dellaportas, Forster and Ntzoufras (2002)
using several MCMC schemes all based on local nor-
mal parameter priors. While local and nonlocal pri-
ors broadly agree on the two leading models, they di-
verge on the allocation of probability mass between
them: for values of t+ close to the recommended ones

nonlocal priors more sharply select the parsimonious
model “Severity”, dropping its more complex competi-
tor “Severity + Antitoxin”.

7. DISCUSSION

In this paper we have presented a general approach to
objective Bayesian testing for nested hypotheses in dis-
crete data models. The only required input is a default
(proper) parameter prior under each of the entertained
models. Next, a default nonlocal prior is derived, and
finally a procedure based on the intrinsic methodology
is applied. The fundamental tool in our approach is rep-
resented by a particular class of nonlocal priors, which
we name intrinsic moment priors. These distributions
combine the virtues of nonlocal priors and intrinsic pri-
ors to obtain balanced objective tests, whose learning
rate is improved (strongly accelerated when the smaller
model holds) relative to current local prior methods,
while their small sample evidence is broadly compa-
rable with that afforded by modern objective methods,
including those based on intrinsic priors.

An important feature of intrinsic moment priors is
represented by the training sample size. We handle the
choice of this hyperparameter in a novel way, and quite
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differently from current intrinsic approaches, using the
notion of total weight of evidence. This criterion looks
promising, at least for finitely discrete data models,
but it cannot be naively extended to the countably infi-
nite or continuous case because we cannot weight data
values uniformly; a suitable weighting data measure
should be devised, whose choice, however, remains an
open issue. Whether or not an optimal value for the
training sample size can be found, one can always carry
out a sensitivity analysis, an exercise we typically rec-
ommend to assess robustness of conclusions with re-
spect to this hyperparameter.

Our approach for the construction of prior distribu-
tions is based on a comparison of two nested mod-
els. When several models are entertained, we select the
null model as a natural baseline, because it is nested
within any other model, similarly to methods based on
intrinsic priors (Girón et al., 2006) or on mixtures of
g-priors (Liang et al., 2008). This choice of course can
be modified, if an alternative minimal model is avail-
able. Clearly, the baseline model acquires a special sta-
tus in this approach. Assignments of parameter priors
for pairwise comparison of models which are symmet-
ric in nature, because they do not require a baseline
model, are developed in Cano, Salmerón and Robert
(2008).

While our analysis was solely based on proper pri-
ors, we emphasize that moment priors can also be
improper. The subsequent analysis can then proceed
through an intrinsic step, as in this paper, or through
other methods currently available to deal with im-
proper priors for model comparison, such as expected
posterior priors, or fractional Bayes factors (O’Hagan,
1995); for an application of the latter methodology see
Consonni and La Rocca (2011) and Altomare, Con-
sonni and La Rocca (2013).

APPENDIX: BAYES FACTOR ASYMPTOTICS

We study the asymptotic learning rate of BFs for
comparing nested models, allowing for nonlocal pa-
rameter priors, under fairly general assumptions. It will
be understood that the data be discrete, but this as-
sumption will not be crucial to our results. We start
with the notion of a regular, possibly misspecified,
model.

DEFINITION A.1. A nonsingleton statistical model
M = {f n(·|ξ), ξ ∈ �} for a sequence of data y(n) =
(y1, . . . , yn) taking values in Y n is regular with respect
to the strictly positive sampling density qn(·) if the fol-
lowing assumptions hold:

1. � is an open subset of �d ;
2. f (·|ξ) is strictly positive, for all ξ ∈ �;
3. the Kullback–Leibler projection of q(·) on M is

well-defined, that is, there exists a unique ξ� ∈ �

such that Kq(ξ�) = infξ∈� Kq(ξ), where Kq(ξ) =
Eq log{q(y1)/f (y1|ξ)} is the Kullback–Leibler di-
vergence from q(·) to f (·|ξ);

4. Vq log {q(y1)/f (y1|ξ�)} < ∞;
5. the unit log-likelihood �(y1|·) = logf (y1|·) is twice

continuously differentiable on � with gradient
s(y1|·) and Hessian matrix H(y1|·), for all y1 ∈ Y ;

6. Eq |�(y1|ξ�)| < ∞ and Eq‖s(y1|ξ�)‖2
2 < ∞;

7. there exist a spheric neighborhood B of ξ�, B ⊆ �,
and a function c(·) from Y to �+, with Eqc(y1) <

∞, such that supξ∈B ‖H(y1|ξ)‖∞ ≤ c(y1);
8. the upper level sets of the average log-likelihood

�̄n(y
(n)|·) = n−1 ∑n

i=1 �(yi |·), that is, all sets of the
form {ξ ∈ � : �̄n(y

(n)|ξ) > λ}, with λ ∈ �, are con-
nected, for all y(n) ∈ Y n.

A singleton model M = {f n(·|ξ�)} is regular with re-
spect to qn(·) if 2 and 4 hold, being understood that
K� = Kq(ξ

�) < ∞ and � = {ξ�}.
For a nonsingleton model, the Kullback–Leibler di-

vergence K� from q(·) to M is necessarily finite; oth-
erwise ξ� would not be uniquely defined. If q(·) ∈ M,
then assumption 3 is implied by identifiability, while
assumption 4 is trivial, because f (·|ξ�) = q(·). On
the other hand, if q(·) /∈ M, then K� > 0, because
Kq(ξ) = 0 implies q(·) = f (·|ξ).

Assumption 7 in Definition A.1 implies Eq‖H(y1|
ξ)‖∞ < ∞ for all ξ ∈ B and can be extended to the
unit score vector by writing the Taylor expansion with
integral remainder

s(y1|ξ) = s
(
y1|ξ�)

+
∫ 1

0
H

(
y1|ξ� + t

(
ξ − ξ�))(ξ − ξ�)dt,

which gives supξ∈B ‖s(y1|ξ)‖∞ ≤ ‖s(y1|ξ�)‖2 +
dc(y1) supξ∈B ‖ξ − ξ�‖2 = b(y1); this in turn implies
Eq‖s(y1|ξ)‖2 < ∞ for all ξ ∈ B . Similarly, assump-
tion 7 in Definition A.1 can be extended to the unit
log-likelihood, obtaining

sup
ξ∈B

∣∣�(y1|ξ)
∣∣ ≤ ∣∣�(

y1|ξ�)∣∣ + db(y1) sup
ξ∈B

∥∥ξ − ξ�
∥∥

2

= a(y1)

and Eq |�(y1|ξ)| < ∞ for all ξ ∈ B . We are now ready
for a technical lemma.
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LEMMA A.1. If a nonsingleton statistical model
M = {f n(·|ξ), ξ ∈ �} is regular with respect to the
strictly positive sampling density qn(·), the expected
log-likelihood Lq(ξ) = Eq�(y1|ξ), ξ ∈ B , is twice con-
tinuously differentiable on B with gradient L′

q(·) =
Es(y1|·) and Hessian matrix L′′

q(·) = EqH(y1|·).
PROOF. Lq(·) is differentiable on B with gradient

L′
q(·) = Eqs(y1|·) because assumption 7 extended to

the unit score vector allows the derivative to pass un-
der the integral sign; see, for instance, the lemma on
page 124 of Ferguson (1996). In the same way, it fol-
lows from assumption 7 that the expected score vec-
tor L′

q(·) is differentiable on B with derivative matrix
L′′

q(·) = EqH(y1|·). Then, through a direct application
of Lebsegue’s Dominated Convergence theorem, it also
follows from assumption 7 that L′′

q(·) is continuous
on B . �

Since Kq(ξ) = Kq(ξ�)+Lq(ξ
�)−Lq(ξ), for ξ ∈ B ,

with Kq(ξ
�) < ∞, the Kullback–Leibler divergence

from q(·) to f (·|ξ) is also twice continuously dif-
ferentiable on B , as a function of ξ , with gradient
K ′

q(·) = −L′
q(·) and Hessian matrix K ′′

q (·) = −L′′
q(·).

Then, since ξ� is the unique minimum of Kq(·) on �,
ξ� is also the unique maximum of Lq(·) on B . Finally,
since ξ� is an interior point of B , we find L′

q(ξ�) =
K ′

q(ξ
�) = 0 and L′′

q(ξ
�) a negative definite matrix,

equivalently, K ′′
q (ξ�) a positive definite matrix.

We now give a classical theorem on maximum like-
lihood asymptotics, but for a possibly misspecified
model; see Theorems 17 and 18 of Ferguson (1996).

THEOREM A.1. Let y(n) = (y1, . . . , yn) be data
arising under i.i.d. sampling from a distribution with
strictly positive density qn(·) and M = {f n(·|ξ), ξ ∈
�} be a nonsingleton model for such data, which we
assume to be regular with respect to qn(·). Then, there
exists ξ̂n such that, almost surely, for large enough n,
ξ̂n is a global maximum of the log-likelihood. More-
over, for any such maximum likelihood estimator ξ̂n,
the following conditions are satisfied:

(i) almost surely, for large enough n, ξ̂n is a root
of the score equation, that is, s̄n(y

(n)|ξ̂n) = 0, where
s̄n(y

(n)|·) = n−1 ∑n
i=1 s(yi |·) is the average score;

(ii) almost surely ξ̂n → ξ�, as n → ∞;
(iii) for all small enough ρ > 0 there exists δ > 0

such that, almost surely, for large enough n, it holds
that

sup
ξ∈�∩{‖ξ−ξ�‖2≥ρ}

�̄n

(
y(n)|ξ )

< �̄n

(
y(n)|ξ̂n

) − δ;

(iv) n1/2(ξ̂n − ξ�) � Nd(0,V �), as n → ∞, where

V � = L′′
q

(
ξ�)−1

Eq

{
s
(
y1|ξ�)s(y1|ξ�)�}

· L′′
q

(
ξ�)−1

.

Finally, as a consequence of (iv), we can write ξ̂n −
ξ� = Op(n−1/2).

PROOF. Let S be a compact sphere contained in B

and denote by ξ̂n a maximum likelihood estimator of ξ

constrained to S, which always exists because the aver-
age log-likelihood �̄n(y

(n)|·) is continuous on S. Then,
fix ρ > 0 small enough for C = {ξ ∈ S :‖ξ −ξ�‖2 ≥ ρ}
to be nonempty. Since C is compact, a uniform version
of the Strong Law of Large Numbers for continuous
dominated summands (Ferguson, 1996, Theorem 16)
gives supξ∈C |�̄n(y

(n)|ξ) − Lq(ξ)| → 0, as n → ∞,
almost surely. Now supξ∈C Lq(ξ) = Lq(ξ�) − 3δ, for
some δ > 0, because ξ� /∈ C and Lq(·) is continuous
on C. Hence, almost surely, for large enough n, we
have supξ∈C �̄n(y

(n)|ξ) < Lq(ξ�) − 2δ. However, due
to the ordinary Strong Law of Large Numbers, we also
have �̄n(y

(n)|ξ�) > Lq(ξ�)−δ. Then, the connected set
{ξ ∈ � : �̄n(y

(n)|ξ) > Lq(ξ�) − 2δ} contains ξ� but has
empty intersection with C. Since C 
= ∅, this upper
level set has also empty intersection with � \ S. It fol-
lows that ξ̂n is a global maximum of the log-likelihood.

Now let ξ̂n be any global maximum likelihood es-
timator. Since � is open, ξ̂n is necessarily an interior
point of � and (i) follows. Moreover, the above argu-
ment shows that ‖ξ̂n − ξ�‖2 < ρ, for any small enough
ρ > 0, which is enough to prove (ii). The above argu-
ment also gives

sup
ξ∈�∩{‖ξ−ξ�‖2≥ρ}

�̄n

(
y(n)|ξ ) ≤ Lq

(
ξ�) − 2δ

< �̄n

(
y(n)|ξ̂n

) − δ,

which is (iii). Therefore, only (iv) remains to be shown.
Consider the Taylor expansion with integral remain-

der

s̄n
(
y(n)|ξ�) =

∫ 1

0
H̄n

(
y(n)|ξ̂n + t

(
ξ� − ξ̂n

))(
ξ� − ξ̂n

)
dt,

where H̄n(y
(n)|·) = n−1 ∑n

i=1 H(yi |·) is the average
Hessian of the log-likelihood and we have used the
fact that ξ̂n is a root of the score equation. The
central limit theorem tells us that s̄n(y

(n)|ξ�) �
Nd(0,Eq{s(y1|ξ�)s(y1|ξ�)�}), as n → ∞. Hence,
Slutsky’s theorem will give us (iv) if we show that

Rn

(
ξ̂n, ξ

�) =
∫ 1

0
H̄n

(
y(n)|ξ̂n + t

(
ξ� − ξ̂n

))
dt

→ L′′
q

(
ξ�) as n → ∞,
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almost surely, as we do below; notice that L′′
q(ξ�) is

negative definite and, thus, Rn(ξ̂n, ξ
�) will be nonsin-

gular, for large enough n, almost surely.
Fix ε > 0 and find ρ > 0 such that ‖L′′

q(ξ) −
L′′

q(ξ
�)‖∞ < ε/2 if ‖ξ − ξ�‖2 ≤ ρ; this is possi-

ble because L′′
q(·) is continuous. Then, observe that

‖ξ̂n − ξ�‖2 ≤ ρ, for large enough n, almost surely, be-
cause of (ii). Therefore, we can write∥∥Rn

(
ξ̂n, ξ

�) − L′′
q

(
ξ�)∥∥∞

< sup
ξ :‖ξ−ξ�‖2≤ρ

∥∥H̄n

(
y(n)|ξ ) − L′′

q(ξ)
∥∥∞ + ε

2

for large enough n, almost surely, where the first term
in the right-hand side can be made smaller than ε/2 by
the same uniform Strong Law of Large Numbers in-
voked above. The thesis follows, because ε is arbitrary.

�

If q(·) ∈ M, the asymptotic covariance matrix V �

in Theorem A.1 is the inverse of Fisher’s information
matrix at ξ�; this can be shown through a well-known
argument relying on passing the derivative under the
integral sign (Ferguson, 1996, Chapter 18).

Next, in order to study the asymptotic behavior of the
marginal likelihood, we need to introduce the notion of
a regular generalized moment prior.

DEFINITION A.2. A generalized moment prior
pM(·) ∝ g(·)p(·) on the open parameter space � ⊆ �d

is regular if the following assumptions hold:

1. p(·) is a strictly positive continuous probability
density on � (local prior);

2. g(·) is an infinitely smooth function from � to �+,
whose kth derivative we denote by g(k)(·);

3. for all ξ ∈ � the least positive integer h such that
g(2h)(ξ) 
= 0 (order of the generalized moment prior
at ξ ) is finite.

It is intended that the normalizing constant Cg =∫
� g(ξ)p(ξ) dξ be finite, as well as strictly positive,

so that pM(·) is a proper prior.

Notice that g(ξ) = 0 implies g′(ξ) = 0 and g′′(ξ)

positive semidefinite, because g(·) is a function to �+.
By iterating this argument, we find that g(2h−1)(ξ) = 0
and g(2h)(ξ) is a positive semidefinite, nonnull, multi-
linear form on �2h.

We are now ready to give our main result on the
marginal likelihood of a regular model with a regular
generalized moment prior.

THEOREM A.2. Let y(n) = (y1, . . . , yn) be data
arising under i.i.d. sampling from an unknown distri-
bution with strictly positive density qn(·) and M =
{f n(·|ξ), ξ ∈ �} be a nonsingleton statistical model
for such data, which we assume to be regular with re-
spect to qn(·). Denote by mM(y(n)) the marginal likeli-
hood of M under a regular generalized moment prior
pM(·). Then:

(i) if q(·) /∈ M,

log
mM(y(n))

qn(y(n))
= −nK� + Op

(
n1/2);

(ii) if q(·) ∈ M,

log
mM(y(n))

qn(y(n))
= −d

2
logn − h� logn + Op(1),

where h� is the order of pM(·) at ξ�.

If M is a singleton model, which needs no prior, then
(i) holds unchanged and (ii) holds trivially with d = 0
and h� = 0.

PROOF. Following Dawid (2011), we factorize the
ratio of the marginal likelihood to the unknown sam-
pling distribution as

mM(y(n))

qn(y(n))
= mM(y(n))

f n(y(n)|ξ̂n)
× f n(y(n)|ξ̂n)

f n(y(n)|ξ�)
(24)

· f n(y(n)|ξ�)

qn(y(n))
.

We deal with the three factors, which we name F1, F2
and F3, in reverse order. Notice that F1 and F2 are (to
be considered) identically one for a singleton model.

The third factor in (24) is trivially one if q(·) ∈ M,
because in this case f (·|ξ�) = q(·). On the other hand,
if q(·) /∈ M, its logarithm can be written as

logF3 =
n∑

i=1

log
f (yi |ξ�)

q(yi)
,

that is, as a sum of i.i.d. random numbers with expec-
tation −K�. It follows from the central limit theorem
that

1√
n

(
logF3 + nK�)

� N1

(
0,Vq log

q(y1)

f (y1|ξ�)

)
as n → ∞,

and, thus, we find logF3 = −nK� + Op(n1/2).
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The logarithm of the second factor in (24) can be
written as

logF2 = −n

∫ 1

0
(1 − u)

(
ξ� − ξ̂n

)�
· H̄n

(
y(n)|ξ̂n + u

(
ξ� − ξ̂n

))
· (

ξ� − ξ̂n

)
du,

using a Taylor expansion with an integral reminder of
the average log-likelihood about ξ̂n; remember that ξ̂n

is a root of the score equation. Like in the proof of The-
orem A.1, it can be shown that∫ 1

0
(1 − u)H̄n

(
y(n)|ξ̂n + u

(
ξ� − ξ̂n

))
du

= 1

2
L′′

q

(
ξ�) + op(1).

Then, since we know from Theorem A.1 that n1/2(ξ̂n −
ξ�) = Op(1), we find logF2 = Op(1); this holds re-
gardless of q(·) ∈ M or q(·) /∈ M.

The first factor in (24) can be dealt with by means
of a Laplace approximation of the marginal likelihood.
Specifically, for all sufficiently small ρ > 0, the lat-
ter can be written as mM(y(n)) = Iρ(y(n)) + I �

ρ(y(n)),
where

Iρ

(
y(n)) =

∫
{ξ∈�:‖ξ−ξ�‖2>ρ}

f n(
y(n)|ξ )

pM(ξ) dξ,

I �
ρ

(
y(n)) =

∫
{ξ∈�d :‖ξ−ξ�‖2≤ρ}

f n(
y(n)|ξ )

pM(ξ) dξ.

By (iii) of Theorem A.1, we can find δ > 0 such
that, almost surely, for large enough n, Iρ(y(n)) ≤
f n(y(n)|ξ̂n)e

−δn; it follows that, by increasing n, we
can make Iρ(y(n))/{n−h�−d/2f n(y(n)|ξ̂n)} as small as
we like. On the other hand, a Taylor expansion of the
average log-likelihood about ξ̂n gives us

I �
ρ(y(n))

f n(y(n)|ξ̂n)

=
∫
{ξ∈�d :‖ξ−ξ�‖2≤ρ}

exp
{−n(ξ − ξ̂n)

�Rn(ξ, ξ̂n)

· (ξ − ξ̂n)
}

· pM(ξ) dξ,

where Rn(ξ, ξ̂n) = − ∫ 1
0 (1 − u)H̄n(y

(n)|ξ̂n + u(ξ −
ξ̂n)) du is the integral reminder.

Now fix ε > 0. Like in the proof of Theorem A.1, a
suitable choice of ρ makes ‖Rn(ξ, ξ̂n) − 1

2K ′′
q (ξ�)‖∞

smaller than ε, for large enough n, almost surely. In

this way, we obtain Jn(−ε) ≤ I �
ρ(y(n))/f n(y(n)|ξ̂n) ≤

Jn(ε), where

Jn(ε)

=
∫
{ξ∈�d :‖ξ−ξ�‖2≤ρ}

exp
{
−n

2
(ξ − ξ̂n)

�

· (
K ′′

q

(
ξ�) − 2εd2Id

)
· (ξ − ξ̂n)

}

· pM(ξ) dξ

with Id denoting the d × d identity matrix. In the fol-
lowing we deal with Jn(−ε) implicitly, by considering
Jn(ε) without assuming ε > 0.

Since p(ξ) = p(ξ�) + o(1) and g(ξ) = 1
(2h�)! ·

g(2h�)(ξ�)[(ξ − ξ�)2h�] + o(‖ξ − ξ�‖2h�

2 ), as ξ → ξ�,
we have

pM(ξ) = p(ξ�)

Cg(2h�)!g
(2h�)(ξ�)[(ξ − ξ�)2h�]

+ o
(∥∥ξ − ξ�

∥∥2h�

2

)
as ξ → ξ�,

and a suitable choice of ρ makes |Jn(ε) − {Cg(2 ·
h�)!}−1p(ξ�)J �

n (ε)|/J̃n(ε) as small as we like, where

J �
n (ε)

=
∫
{ξ∈�d :‖ξ−ξ�‖2≤ρ}

exp
{
−n

2
(ξ − ξ̂n)

�

· �ε(ξ − ξ̂n)

}

· g(2h�)(ξ�)[(ξ − ξ�)2h�]
dξ

and

J̃n(ε)

=
∫
{ξ∈�d :‖ξ−ξ�‖2≤ρ}

exp
{
−n

2
(ξ − ξ̂n)

�

· �ε(ξ − ξ̂n)

}

· ∥∥ξ − ξ�
∥∥2h�

2 dξ

with �ε = K ′′
q (ξ�)−2εd2Id . Both J �

n (ε) and J̃n(ε) are
of the form

JA
n (ε)

=
∫
{ξ∈�d :‖ξ−ξ�‖2≤ρ}

exp
{
−n

2
(ξ − ξ̂n)

�

· �ε(ξ − ξ̂n)

}

· A[(
ξ − ξ�)2h�]

dξ,
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where A is a positive semidefinite, nonnull, multilin-
ear form on �2h. We consider below the extension of
JA

n (ε) to �d , which we denote by J̄ A
n (ε).

By writing A[(ξ − ξ�)2h�] = ∑2h�

i=0
(2h�

i

)
A[(ξ̂n −

ξ�)i(ξ − ξ̂n)
2h�−i], and operating the change of vari-

able ζ = n1/2(ξ − ξ̂n), we obtain

J̄ A
n (ε) =

∫
�d

exp
{
−n

2
(ξ − ξ̂n)

��ε(ξ − ξ̂n)

}

· A[(
ξ − ξ�)2h�]

dξ

=
2h�∑
i=0

(
2h�

i

)∫
�d

exp
{
−1

2
ζ��εζ

}

· A[{
n1/2(

ξ̂n − ξ�)}i
ζ 2h�−i]n−h�−d/2 dζ

= (2π)d/2

|�ε|1/2 n−h�−d/2
EA

[
Z2h�

ε

]{
1 + Op(1)

}
,

where Zε is a normal random vector with zero mean
and precision matrix �ε , and {1 + Op(1)} is bounded
away from zero in probability. We are now ready to
conclude our proof.

Since |J̄ A
n (ε) − JA

n (ε)| is less than∫
{ξ∈�d :‖ξ−ξ̂n‖2>ρ/2}

exp
{
−n

2
(ξ − ξ̂n)

��ε(ξ − ξ̂n)

}

· A[(
ξ − ξ�)2h�]

dξ,

if n is large enough to have ‖ξ̂n − ξ�‖2 < ρ/2,
the same computations carried out above show that
|J̄ A

n (ε) − JA
n (ε)|/n−h�−d/2 is arbitrarily small, for

large enough n. Hence, we have JA
n (ε) = (2π)d/2 ·

|�ε|−1/2n−h�−d/2
EA[Z2h�

ε ]{1 + Op(1)} and then
Jn(ε) = {Cg(2h�)!}−1p(ξ�)(2π)d/2|�ε|−1/2n−h�−d/2 ·
Eg(2h�)(ξ�)[Z2h�

ε ]{1 + Op(1)}.
Finally, since ε is arbitrary, it follows that

mM(y(n))

f n(y(n)|ξ̂n)

= p(ξ�)

Cg(2h�)!
(2π)d/2

|K ′′
q (ξ�)|1/2

· E
{
g(2h�)(ξ�)[Z2h�]}

n−h�−d/2{
1 + Op(1)

}
,

where Z is a normal random vector with zero mean
and precision matrix K ′′

q (ξ�); this eventually leads to

logF1 = −h� logn − d
2 logn + Op(1) as desired. �

The above theorem also covers local priors, by let-
ting g(ξ) ≡ 1, so that h� is identically zero; in this case
it essentially returns the result of Dawid (2011).

We are now in a position to describe the asymptotic
behavior of BFs using a generalized moment prior un-
der the alternative and a local prior under the null (or
comparing to a point null).

COROLLARY A.1. Let M0 ⊂ M1 be two nested
models for the same data y(n) = (y1, . . . , yn) and as-
sume that both these models are regular with respect
to all distributions in M1, with dimensions d0 < d1.
Denote by BFM

10(y
(n)) the Bayes factor in favor of M1

against M0 using a regular generalized moment prior
under M1 with order h on the subspace of M1 cor-
responding to M0. If M0 is a nonsingleton model, let
it be equipped with a local prior. Finally, denote by
qn(·) the actual sampling distribution and recall that
BFM

01(y
(n)) = 1/BFM

10(y
(n)). Then:

(i) if q(·) ∈ M1 \ M0,

BF01
(
y(n)) = exp

{−nK� + Op

(
n1/2)};

(ii) if q(·) ∈ M0,

BF10
(
y(n))

= exp
{
−(d1 − d0)

2
logn − h logn + Op(1)

}
.

PROOF. This follows directly from Theorem A.2.
�
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