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Abstract

We consider localization of gravity in smooth domain wall solutions of gravity coupled to a scalar field with a generic potential
in the presence of the Gauss—Bonnet term. We discuss conditions on the scalar potential such that domain wall solutions are
non-singular. We point out that the presence of the Gauss—Bonnet term does not allow flat solutions with localized gravity that
violate the weak energy condition. We also point out that in the presence of the Gauss—Bonnet term infinite tension flat domain
walls violate positivity. In fact, for flat solutions unitarity requires that on the solution the scalar potential be bounded below.
0 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In the Brane World scenario the Standard Model gauge and matter fields are assumed to be localized on brane
(or an intersection thereof), while gravity lives in a larger dimensional bulk of space—time [1-12]. The volume of
dimensions transverse to the branes is automatically finite if these dimensions are compact. On the other hand
the volume of the transverse dimensions can be finite even if the latter are non-compact. In particular, this can be
achieved by using [13] warped compactifications [14] which localize gravity on the brane. A concrete realization
of this idea was given in [15].

One motivation for considering such unconventional compactifications is the moduli problem. In particular,
the extra dimensions in such scenarios are non-compact while their volume is finite and fixed in terms of other
parameters in the theory such as those in the scalar potential. That is, the expectation values of the scalar:
descending from the components of the higher dimensional metric corresponding to the extra dimensions are
actually fixed.

Recently in [16] one of us considered localization of gravity arisinglin— 1)-dimensional (smooth) domain
wall solutions in the system dp-dimensional Einstein—Hilbert gravity coupled to a single real scalar field with a
generic scalar potential. In particular, [16] discussed conditions on the scalar potential such that the corresponding
domain wall solutions are non-singular (in the sense that singularities do not arise at finite values of the coordinate
transverse to the domain wall). The usual kink type of solutions are non-singular as they interpolate between two
adjacent local AdS minima of the scalar potential. On the other hand, there exist other non-singular solutions
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(subject to the aforementioned non-singularity conditions on the scalar potential) which do not interpolate between
AdS minima. In fact, such solutions exist even for potentials which have no minima at all and are unbounded below.
Domain walls of this type have infinite tension.

In this paper we study effects of higher curvature bulk terms on the domain wall solutions of the aforementioned
types. As was pointed out in [16], adding arbitrary higher curvature combinations would generically lead to
delocalization of gravity. Moreover, if we truncate the bulk action at any finite higher derivative level, then generic
higher curvature terms would lead to the appearance of ghosts in the Hilbert space. To avoid these difficulties,
one might consider adding special “topological” combinations which do not spoil unitarity [17,18]. In this paper
we focus on the simplest non-trivial term of this type, namely, the Gauss—Bonnet combih&iam though it
is a total derivative in four dimensions (in particular, it is the four-dimensional Euler invariant), it is non-trivial in
higher dimensions. Nonetheless, when expanded around a flat Minkowski metric, the Gauss—Bonnet term does no
give rise to corrections to the propagator, so that ghost are not introduced. Another feature of the Gauss—Bonne
combination is that it can be supersymmetrized.

Thus, even though it is a special combination of higher curvature terms, studying domain walls with localized
gravity in the presence of the Gauss—Bonnet term gives some insight into the higher curvature effects on such
domain walls. Thus, for instance, we point out that the presence of the Gauss—Bonnet temotddlesv flat
solutions with localized gravity that violate the weak energy condition (that is, the analog etlileerem [23]).

We also point out that in the presence of the Gauss—Bonnet term infinite tension flat domain walls violate positivity.
In fact, for flat solutions unitarity requires that (on the solution) the scalar potential be bounded below.

The rest of this Letter, which is essentially a generalization of [16], is organized as follows. In Section 2 we
describe the setup within which we will discuss solutions with localized gravity. In Section 3 we discuss solutions
with vanishing(D — 1)-dimensional cosmological constant. Section 4 contains concluding remarks.

2. Setup

In this section we discuss the setup within which we will discuss solutions with localized gravity. Thus, consider
a single real scalar fielg coupled to gravity with the following actioA:

4
S= M,?_Z/de V=G[R+x(R*—4RMN Ry + RMFS Ry ps) — m(V(]ﬁ)z - V@] 1)

where Mp is the D-dimensional (reduced) Planck mass, and the term multiplied by a free paramisténe
Gauss—Bonnet combinatiohThe equations of motion read:

8 2
—— V2p = 2
o 37 ¢=Ve: )

1 1
Run = 5GmunR = 5)‘(7MN(1?2 — 4RV Ryy + RMVRS Ry gs)

+ 20(RRuN — 2RusRY + Rurst REST — 2R®S Ryrvs)

1 Discontinuous domain walls (that is, domain walls witHunction-like brane sources with non-zero tension which explicitly break
diffeomorphism invariance) in the presence of bulk Gauss—Bonnet term were discussed in [19-21]. In this Letter we will not discuss such
domain walls (and, therefore, we will not have to deal with the issues recently pointed out in [22]). Rather, we will focus on smooth domain
walls (without anys-function brane sources) which break diffeomorphisms spontaneously.

2 Here we focus on the case with one scalar field for the sake of simplicity. In particular, in this case we can absorb a (non-singular) metric
Z(¢) in the (V¢)2 term by a non-linear field redefinition. This cannot generically be done in the case of multiple scalazpifje{dt&are one
must therefore also consider the metig (¢).

3 We are using the conventiom®Y ¢ = IV ¢ — ' g + TRT T — Tt Tgs adRyn = Ry p -
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__4 VuoV 1G V)2 lG 1% 3
—m[ Mo N¢_E MmN ( ¢)]—§ MnV. (3)

The subscrip® in V, denotes derivative w.r.é.
In the following we will be interested in solutions to the above equations of motion with the warped [14] metric
of the following form:

ds® = exp(2A)d5 % + dy?, (4)

wherey = x?, the warp factor, which is a function of, is independent of the coordinates, u =1,..., D —1,
and the(D — 1)-dimensional interval is given by

d§? = g, dx"dx", (5)

with the (D — 1)-dimensional metrig,., independent of.
With the above ansatz, we have:

Ruy = Ryy — exp24)[A” + (D — 1)(A)?] 300, ©6)
Rpp=—(D = D[A" +(4)7], (7)
Rup =0, (8)
R, = R+ (A)?exp2A) (8280 — 8" Guo . )
Rips =0, (10)
RD), = —exp2A)[A” + (A)?]3us. (11)

where prime denotes derivative w.fit.Also, the(D — 1)-dimensional (“tilded”) quantities such @v andl?,m,,
are calculated w.r.t. theD — 1)-dimensional metrig,.., .

In the following we will be interested in solutions whefelepends non-trivially om. From the above equations
it then follows thatp is independent of#. The equations of motion fat and A then become:

8 " Y _
m[qb +(D—DA'¢]| - Vs =0, (12)

(D = 1)(D —2)(A)[1— (D = 3)(D — Hr(A)?] - %(«W +V
- g—:;/i exp(—2A)[1— 2(D — 3)(D — HA(A)?] — 11 exp(—4A) =0, (13)
" N2 D—-4 - 4 "2
(D—-2)A [1 —2(D —=3)(D —Hr(AH + me exp(—2A)] + m(qb )

+- L i exp(—24)[1— 2(D — 3)(D — Hi(A")?] + Z—A)?exp(—4A) =0 (14)
D3 D1 '

The first equation is the dilaton equation of motion, the second equation {®thg¢ component of (3), and the
third equation is a linear combination of the latter and ¢he) component of (3). In fact, thewv) component of
(3) implies thatA is a constant, and is nothing but the cosmological constant gf2he1)-dimensional manifold,
which is therefore an Einstein manifold, described by the meiric Our normalization ofA is such that the
(D — 1)-dimensional metrig,,, satisfies Einstein’s equations

~ 1. ~ 1. -

R/w - E /u)R = _Eg/wA' (15)
Moreover, the quantity

% =R?—4R? +R?

Hv nvot

(16)
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is also a constant (fox # 0).% Note that forD — 1 = 4 the quantityy is the Euler invariant for theéD — 1)-
dimensional manifold described by the metgig,. Finally, the aforementionedD — 1)-dimensional Einstein
manifold must be such that
R[L,OO'TR{})GT — mRo?ﬁpﬂg/‘U' (17)

This condition is automatically satisfied for maximally symmetric Einstein manifolds.

Note that we have only two fields and A, yet we have three Egs. (12), (13) and (14). However, only two of
these equations are independent. This can be seen as follows. Using the second equation one can gkpress
via A’ (¢') andV. One can then computg’ (A”) and plug it in the first (third) equation. This equation can then
be seen to be automatically satisfied as long as the third (first) equation is satisfied. As usual, this is a consequenc
of Bianchi identities.

3. Solutions with (D — 1)-dimensional Poincaré invariance

In this section we discuss solutions of the aforementioned equationsAwitt) and 3 = 0. In this case the
equations of motion read:

4

(D =D = (AY?[1— (D = 3)(D = HA(AN?] - 5—(@)?+V =0, (18)

" N2 4 N2

(D —2)A"[1—2(D —3)(D —4)r(A) ]+m(¢) =0. (19)
As in thex = 0 case, we can rewrite these equations in terms of the following first order equations

¢ =aWy(1—rcW?), (20)

A =BW, (21)
where

D-2
= 22

a=e——"—, (22)

B= —Em, (23)

K =2(D—2)(D—3)B2 (24)
ande = +1. Moreover, the scalar potentitlis related to the functioW’ = W (¢) via

V =[W2+n](1—cWw?)? -, (25)
where

(D—-1)(D -2
n= (26)

40 (D —-3)(D—-4)

Note that for. > 0 the potential (25) is bounded below [19]. Also note that inithe O limit from (25) we recover
the familiar expressiolr = W2 — y?W?, wherey? = 4(D — 1)/(D — 2).

4 |f the corresponding Einstein manifold is maximally symmetric, then we thy@,g = /i(gﬂpg‘w — &uo8vp)/ (D —2)(D - 3), and
Xx=(D—-1(D - 4)/12/(D — 2)(D — 3). Generally, however, this Einstein manifold need not be maximally symmetric.
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Note that (19) implies the following condition:
A"[1-2(D - 3)(D - Hr(AH?] <. (27)

It then follows that, sincet as well as its derivatives are continuod$, cannot change sign. That is, we have the
following possibilities. IfA is negative, then we necessarily hat/e< 0. If A is positive, then we can have’ <0
subject to the following additional requirement’)2 < 82/« In this case gravity is localized as long Agjoes

to —oo at y — oo fast enough. Another possibility (far> 0) is thatA” > 0, and(A’)2 > 82/i«. Note that in

this case gravity isiot localized (asA goes to+oo at y — +00). Thus, the presence of the Gauss—Bonnet term
doesnotallow flat solutions with localized gravity that violate the weak energy condition (that is, the analog of the
c-theorem [23]).

3.1. Non-singularity conditions

In this subsection we would like to discuss the conditiongiorsuch that the corresponding solutions do not
blow up at finite values of. More precisely, in this section we will focus on solutions such ¢ghiatnon-singula?
at finite y. To begin with note that it is non-singular, which we will assume in the following, thBhand W,
should (generically) be non-singular as well. This then guarantees that solutions are continuous for finite values
of ¢. However, a priori it is still possible that blows up at finite values of.

The equation we would like to study here is

(]5/ = Ole,, (28)
where
)\.K 3
Y=Ww-— ?W ) (29)

In the following we will be interested in the cases where gravity is localized. Then the furictiery (W) is
invertible. Indeed, if. < 0, Y (W) is injective for anyW, while for » > 0 it is injective for W2 < 1/xk, that is,
(A2 < B?/rk. Thus, in these cases we can vigivandV as functions ot

Note that (28) arises in a non-gravitational theory described by the following action:

_ [ [ __4 2 _
S_/d x[ ~—(0¢) v], (30)
where
VEYQ%. (31)

Thus, a solution of (28) describes a BPS solution in the theory (30) which depends onlyba tension of the
corresponding domain wall is given by

2
T =—[Y(y=400)—Y(y=—00)]. (32)

o
If the theory is supersymmetric, then this (up to a normalization constant) also gives the corresponding central
charge, and is interpreted as the superpotential.

Next, let us discuss the general condition for such domain walls to be non-singular. That is, we would like to
find the condition under which does not blow up at finite values of First, let as assume th&j does not vanish

5 We will refer to the corresponding domain walls as non-singular. However, some of such solutions are actually singular in the sense that
the D-dimensional Ricci scalaR blows up, but the singularities are locatedvat +oo (see below).
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for any¢. Then for the domain wall to be non-singular, it is necessary and sufficient that the function

d
F(¢) = / Y—;’f (33)

is unbounded ap — +o0. That is, the non-singularity condition reads:

¢ Y should noP grow faster tham? for ¢ — 400, or, equivalently,
e W should not grow faster thap?/2 for ¢ — +o0.

On the other hand, if, vanishes at one pointcall it ¢g, then we have non-singular domain walls interpolating
betweenp = ¢g and¢ = +co as long as ap = oo the above non-singularity condition is satisfied. Finally, if
Y, vanishes for more then one value of then we have the usual non-singular domain walls of the kink type
interpolating between the adjacent valueg aihereY, vanishes. Note that such domain walls have finite tension.
In contrast, non-singular solutions whefegoes to+oo have infinite tension. Such domain walls automatically
localize gravity (provided thalt = Y (W) is invertible) as long a® changes sign. On the other hand, for the kink
type of solutions to localize gravity it is also required thatdoes not vanish at the edges of the domain wall (that
is, at the points wherg, vanishes).

3.2. Positivity conditions

In this subsection we would like to discuss an additional consistency condition on domain wall solutions in the
presence of the Gauss—Bonnet term. Thus, since we are dealing with higher curvature terms, we must make sur
that unitarity is not violated in the corresponding warped backgrounds. As in the previous subsection, let us focus
on non-singular solutions that localize gravity.

Let us substitute the domain wall ansatz (with= ¥ = 0) into the actionS given by (1). We then obtain the
following (D — 1)-dimensional action for the metrig,, (x°):

S D-1_ /TZ[3 L5 (P2 _aAR2 . 72
W :/d X —g [R+ (R _4R,uv+RMVPO')]’ (34)
where we have dropped the boundary terms as they vanish for non-singular domain walls that localize gravity
(for such domain wallst’ exp(A) and A” exp(2A) go to zero aty — £00). In the last equation we are using the
following notations:

MP=3= M}?’Z/dy exd (D — 3)Al[1+ 20(D — 3)(D — 4)(A)?], (35)

- MpP?

A= ,\# f dy exp(D — 5)A]. (36)
P

The quantityA71p is interpreted as theD — 1)-dimensional Planck scale, ands the(D — 1)-dimensional analog

of A. Note that inD = 5 the quantity’ is infinite. This, however, does not pose a problem a®in 1 =4
dimensions the Gauss—Bonnet term is a total derivative, and if we drop the corresponding topological term, we
obtain the usual 4-dimensional Einstein—Hilbert action:

§=ii2 / d*x V=3 R. (37)

6 More precisely, this is correct up to usual “logarithmic” factors (that is(¢oglog(log(¢)), etc., or, more generally, the appropriate
products thereof). Thus, for instance, the non-singularity condition on (33) is satisfilz*d:fdnz;b2 log(¢).
7 Here such a point can be at finifeor ¢ = o0,
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For D > 5 the Gauss—Bonnet term is no longer a total derivative jaisdinite. Note, however, that if we expand
the Gauss—Bonnet term around the flat Minkowski solution (and this isbhe 1)-dimensional background we
must consider in accord with the original domain wall solution), it does not modify the graviton propagator (that
is, the terms quadratic in metric fluctuations arising from expanding the Gauss—Bonnet term combine into a total
derivative), so that unitarity is not violated [17,18]. Nonetheless, the Gauss—Bonnet term does non-trivially modify
the interactions.

The above observation, however, is insufficient to ensure positivity. Thus, the integrand in (36) is positive-definite
if A >0, butforx < 0 it can become negative. This implies tlzl}ﬁf‘3 can in some cases be negative & 0. We
would then have negative-norm states, which violate unitarity. In fact, to ensure unitarity we should require that the
integrand in (36) is positive-definite for all indeed,

exp (D — 3)Al[1+ 20(D — 3)(D — 4)(4")?] (38)

is interpreted as the square of (thelependent part of) the graviton wave-function. This then implies the following
positivity condition:

(ANZ < B2/, (39)
or, equivalently,
W2 < 1/|Alk. (40)

Note that fors > 0 this is a necessary condition for a domain wall to localize gravity. On the other hand<for
this condition ensures unitarity.

The above positivity condition has an important implication. Thus, it is not difficult to see that infinite
tension domain walls discussed in the previous subsection exist only 400, and they violate the positivity
condition (40). That is, as was already suspected in [16], infinite tension domain wall solutions are not completely
consistent once higher curvature terms are included. The reason for this is that such domain walls are actually
singular with the singularities (where the Ricci scaladiverges) located ag = +oo. In contrast, flat domain
walls with finite tension are non-singular everywhere, and as long as (40) is satisfied (on the solution), they do not
violate unitarity. This implies that (for both < 0 andi > 0) on the solution we have

that is, the scalar potential is bounded below.
3.3. An example
For illustrative purposes let us end our discussion here with a simple example of a domain wall with finite

tension which satisfies the consistency conditions discussed in this section. Thus, Getand letW = ¢¢ (for
definiteness let us assurne- 0). We then have

A
Y=cp- 5% (42)
The domain wall solution is then given by:
b= jﬁ tanh{ac2Vix (v — o), (43)
B
A(y) = oy In(cosh[a¢? Vak (y — yo)]) + Ao, (44)

whereyg and Ag are integration constants.
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4. Comments

In this section we would like to make a few concluding remarks. As we saw in the previous section, consistent
flat domain wall solutions in the presence of the Gauss—Bonnet term are of the kink type, and they interpolate
between adjacent AdS minima of the scalar potential. Here we should point out that such solutions always have
consistent curved deformations (that is, for such potentials there always exist consistent domain wall solutions with
non-vanishing D — 1)-dimensional cosmological constant).

As we have already mentioned in introduction, one of the motivations for choosing the Gauss—Bonnet
combination is that, as was pointed out in [16], generic higher curvature terms actually delocalize gravity. Thus,
inclusion of higher derivative terms of, say, the form

e /de V—GR*
into the bulk action would produce terms of the form [16]

¢ /delx dyexp(D — 2k — 1)Aly/—g R*.

Assuming thatA goes to—oo at y — £oo, for large enouglt the factor exp(D — 2k — 1) A] diverges, so that at
the end of the day gravity is no longer localized. In fact, foe= 5 delocalization of gravity takes place already at
the four-derivative level once we include tiRé, RZZVIN andRIZWNRS terms with generic coefficients (with the only
exception being the Gauss—Bonnet combination).

A possible way around this difficulty might be that all the higher curvature terms should come in “topological”
combinations (corresponding to Euler invariants such as the Gauss—Bonnet term [17,18]) so that their presence
does not modify thé D — 1)-dimensional propagator for the bulk graviton modes. That is, even though such terms
are multiplied by diverging powers of the warp factor, they are still harmless. One could attempt to justify the fact
that higher curvature bulk terms must arise only in such combinations by the fact that otherwise the bulk theory
would be inconsistent to begin with due to the presence of ghosts. However, it is not completely obvious whether
it is necessary to have only such combinations to preserve unitarity. Thus, in a non-local theory such as string
theory unitarity might be preserved, even though at each higher derivative order there are non-unitary terms, due
to a non-trivial cancellation between an infinite tower of such terms.

We would like to end our discussion by pointing out that the aforementioned difficulty with higher curvature
terms does not arise in theories with infinite-volume non-compact extra dimensions [24—-30]. However, in such
scenarios consistency of the coupling between bulk gravity and brane matter might give rise to additional
constraints. Thus, in some cases the brane world-volume theory must be conformal [29]. In such cases it would be
interesting to understand if there is a relation to [31].
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