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Abstract

We consider localization of gravity in smooth domain wall solutions of gravity coupled to a scalar field with a generic potential
in the presence of the Gauss–Bonnet term. We discuss conditions on the scalar potential such that domain wall solutions are
non-singular. We point out that the presence of the Gauss–Bonnet term does not allow flat solutions with localized gravity that
violate the weak energy condition. We also point out that in the presence of the Gauss–Bonnet term infinite tension flat domain
walls violate positivity. In fact, for flat solutions unitarity requires that on the solution the scalar potential be bounded below.
 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In the Brane World scenario the Standard Model gauge and matter fields are assumed to be localized on branes
(or an intersection thereof), while gravity lives in a larger dimensional bulk of space–time [1–12]. The volume of
dimensions transverse to the branes is automatically finite if these dimensions are compact. On the other hand,
the volume of the transverse dimensions can be finite even if the latter are non-compact. In particular, this can be
achieved by using [13] warped compactifications [14] which localize gravity on the brane. A concrete realization
of this idea was given in [15].

One motivation for considering such unconventional compactifications is the moduli problem. In particular,
the extra dimensions in such scenarios are non-compact while their volume is finite and fixed in terms of other
parameters in the theory such as those in the scalar potential. That is, the expectation values of the scalars
descending from the components of the higher dimensional metric corresponding to the extra dimensions are
actually fixed.

Recently in [16] one of us considered localization of gravity arising in(D − 1)-dimensional (smooth) domain
wall solutions in the system ofD-dimensional Einstein–Hilbert gravity coupled to a single real scalar field with a
generic scalar potential. In particular, [16] discussed conditions on the scalar potential such that the corresponding
domain wall solutions are non-singular (in the sense that singularities do not arise at finite values of the coordinate
transverse to the domain wall). The usual kink type of solutions are non-singular as they interpolate between two
adjacent local AdS minima of the scalar potential. On the other hand, there exist other non-singular solutions
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(subject to the aforementioned non-singularity conditions on the scalar potential) which do not interpolate between
AdS minima. In fact, such solutions exist even for potentials which have no minima at all and are unbounded below.
Domain walls of this type have infinite tension.

In this paper we study effects of higher curvature bulk terms on the domain wall solutions of the aforementioned
types. As was pointed out in [16], adding arbitrary higher curvature combinations would generically lead to
delocalization of gravity. Moreover, if we truncate the bulk action at any finite higher derivative level, then generic
higher curvature terms would lead to the appearance of ghosts in the Hilbert space. To avoid these difficulties,
one might consider adding special “topological” combinations which do not spoil unitarity [17,18]. In this paper
we focus on the simplest non-trivial term of this type, namely, the Gauss–Bonnet combination.1 Even though it
is a total derivative in four dimensions (in particular, it is the four-dimensional Euler invariant), it is non-trivial in
higher dimensions. Nonetheless, when expanded around a flat Minkowski metric, the Gauss–Bonnet term does not
give rise to corrections to the propagator, so that ghost are not introduced. Another feature of the Gauss–Bonnet
combination is that it can be supersymmetrized.

Thus, even though it is a special combination of higher curvature terms, studying domain walls with localized
gravity in the presence of the Gauss–Bonnet term gives some insight into the higher curvature effects on such
domain walls. Thus, for instance, we point out that the presence of the Gauss–Bonnet term doesnot allow flat
solutions with localized gravity that violate the weak energy condition (that is, the analog of thec-theorem [23]).
We also point out that in the presence of the Gauss–Bonnet term infinite tension flat domain walls violate positivity.
In fact, for flat solutions unitarity requires that (on the solution) the scalar potential be bounded below.

The rest of this Letter, which is essentially a generalization of [16], is organized as follows. In Section 2 we
describe the setup within which we will discuss solutions with localized gravity. In Section 3 we discuss solutions
with vanishing(D − 1)-dimensional cosmological constant. Section 4 contains concluding remarks.

2. Setup

In this section we discuss the setup within which we will discuss solutions with localized gravity. Thus, consider
a single real scalar fieldφ coupled to gravity with the following action:2

(1)S =MD−2
P

∫
dDx
√−G [R + λ(R2− 4RMNRMN +RMNRSRMNRS

)− 4

D − 2
(∇φ)2− V (φ)],

whereMP is theD-dimensional (reduced) Planck mass, and the term multiplied by a free parameterλ is the
Gauss–Bonnet combination.3 The equations of motion read:

(2)
8

D − 2
∇2φ = Vφ,

RMN − 1

2
GMNR − 1

2
λGMN

(
R2− 4RMNRMN +RMNRSRMNRS

)
+ 2λ

(
RRMN − 2RMSR

S
N +RMRST RRSTN − 2RRSRMRNS

)
1 Discontinuous domain walls (that is, domain walls withδ-function-like brane sources with non-zero tension which explicitly break

diffeomorphism invariance) in the presence of bulk Gauss–Bonnet term were discussed in [19–21]. In this Letter we will not discuss such
domain walls (and, therefore, we will not have to deal with the issues recently pointed out in [22]). Rather, we will focus on smooth domain
walls (without anyδ-function brane sources) which break diffeomorphisms spontaneously.

2 Here we focus on the case with one scalar field for the sake of simplicity. In particular, in this case we can absorb a (non-singular) metric
Z(φ) in the (∇φ)2 term by a non-linear field redefinition. This cannot generically be done in the case of multiple scalar fieldsφi , where one
must therefore also consider the metricZij (φ).

3 We are using the conventionsRMNRS = ΓMNR,S − ΓMNS,R + ΓMRT Γ TNS −ΓMST Γ TNR , andRMN =RPMPN .
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(3)= 4

D − 2

[
∇Mφ∇Nφ − 1

2
GMN(∇φ)2

]
− 1

2
GMNV.

The subscriptφ in Vφ denotes derivative w.r.t.φ.
In the following we will be interested in solutions to the above equations of motion with the warped [14] metric

of the following form:

(4)ds2= exp(2A)ds̃ 2+ dy2,

wherey ≡ xD, the warp factorA, which is a function ofy, is independent of the coordinatesxµ,µ= 1, . . . ,D−1,
and the(D − 1)-dimensional interval is given by

(5)ds̃ 2= g̃µν dxµ dxν,
with the(D − 1)-dimensional metric̃gµν independent ofy.

With the above ansatz, we have:

(6)Rµν = R̃µν − exp(2A)
[
A′′ + (D − 1)(A′)2

]
g̃µν,

(7)RDD =−(D − 1)
[
A′′ + (A′)2],

(8)RµD = 0,

(9)Rµνρσ = R̃µνρσ + (A′)2 exp(2A)
[
δµσ g̃ρν − δµρ g̃νσ

]
,

(10)RDνρσ = 0,

(11)RDνDσ =−exp(2A)
[
A′′ + (A′)2]g̃νσ ,

where prime denotes derivative w.r.t.y. Also, the(D−1)-dimensional (“tilded”) quantities such as̃Rµν andR̃µνστ
are calculated w.r.t. the(D − 1)-dimensional metric̃gµν .

In the following we will be interested in solutions whereφ depends non-trivially ony. From the above equations
it then follows thatφ is independent ofxµ. The equations of motion forφ andA then become:

(12)
8

D − 2

[
φ′′ + (D− 1)A′φ′

]− Vφ = 0,

(D − 1)(D− 2)(A′)2
[
1− (D − 3)(D− 4)λ(A′)2

]− 4

D − 2
(φ′)2+ V

(13)− D − 1

D − 3
Λ̃exp(−2A)

[
1− 2(D− 3)(D− 4)λ(A′)2

]− λχ̃ exp(−4A)= 0,

(D − 2)A′′
[
1− 2(D− 3)(D − 4)λ(A′)2+ 2

D− 4

D− 2
λΛ̃exp(−2A)

]
+ 4

D − 2
(φ′)2

(14)+ 1

D − 3
Λ̃exp(−2A)

[
1− 2(D− 3)(D− 4)λ(A′)2

]+ 2λ

D − 1
χ̃ exp(−4A)= 0.

The first equation is the dilaton equation of motion, the second equation is the(DD) component of (3), and the
third equation is a linear combination of the latter and the(µν) component of (3). In fact, the(µν) component of
(3) implies thatΛ̃ is a constant, and is nothing but the cosmological constant of the(D−1)-dimensional manifold,
which is therefore an Einstein manifold, described by the metricg̃µν . Our normalization ofΛ̃ is such that the
(D − 1)-dimensional metric̃gµν satisfies Einstein’s equations

(15)R̃µν − 1

2
g̃µνR̃ =−1

2
g̃µνΛ̃.

Moreover, the quantity

(16)χ̃ ≡ R̃ 2− 4R̃ 2
µν + R̃ 2

µνστ
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is also a constant (forλ 6= 0).4 Note that forD − 1= 4 the quantitỹχ is the Euler invariant for the(D − 1)-
dimensional manifold described by the metricg̃µν . Finally, the aforementioned(D − 1)-dimensional Einstein
manifold must be such that

(17)R̃µρστ R̃
ρστ
ν = 1

D − 1
R̃ 2
αβρσ g̃µν.

This condition is automatically satisfied for maximally symmetric Einstein manifolds.
Note that we have only two fieldsφ andA, yet we have three Eqs. (12), (13) and (14). However, only two of

these equations are independent. This can be seen as follows. Using the second equation one can expressφ′ (A′)
via A′ (φ′) andV . One can then computeφ′′ (A′′) and plug it in the first (third) equation. This equation can then
be seen to be automatically satisfied as long as the third (first) equation is satisfied. As usual, this is a consequence
of Bianchi identities.

3. Solutions with (D − 1)-dimensional Poincaré invariance

In this section we discuss solutions of the aforementioned equations withΛ̃ = 0 andχ̃ = 0. In this case the
equations of motion read:

(18)(D − 1)(D− 2)(A′)2
[
1− (D − 3)(D− 4)λ(A′)2

]− 4

D − 2
(φ′)2+ V = 0,

(19)(D − 2)A′′
[
1− 2(D− 3)(D− 4)λ(A′)2

]+ 4

D − 2
(φ′)2= 0.

As in theλ= 0 case, we can rewrite these equations in terms of the following first order equations

(20)φ′ = αWφ

(
1− λκW2),

(21)A′ = βW,
where

(22)α ≡ ε
√
D − 2

2
,

(23)β ≡−ε 2

(D − 2)3/2
,

(24)κ ≡ 2(D− 2)(D − 3)β2,

andε =±1. Moreover, the scalar potentialV is related to the functionW =W(φ) via

(25)V = [W2
φ + η

](
1− λκW2)2− η,

where

(26)η≡ (D − 1)(D− 2)

4λ(D − 3)(D− 4)
.

Note that forλ > 0 the potential (25) is bounded below [19]. Also note that in theλ→ 0 limit from (25) we recover
the familiar expressionV =W2

φ − γ 2W2, whereγ 2≡ 4(D− 1)/(D − 2)2.

4 If the corresponding Einstein manifold is maximally symmetric, then we haveR̃µνρσ = Λ̃(g̃µρg̃νσ − g̃µσ g̃νρ)/(D − 2)(D − 3), and
χ̃ = (D − 1)(D − 4)Λ̃2/(D− 2)(D − 3). Generally, however, this Einstein manifold need not be maximally symmetric.
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Note that (19) implies the following condition:

(27)A′′
[
1− 2(D − 3)(D− 4)λ(A′)2

]
6 0.

It then follows that, sinceA as well as its derivatives are continuous,A′′ cannot change sign. That is, we have the
following possibilities. Ifλ is negative, then we necessarily haveA′′ 6 0. If λ is positive, then we can haveA′′ 6 0
subject to the following additional requirement:(A′)26 β2/λκ . In this case gravity is localized as long asA goes
to −∞ at y→±∞ fast enough. Another possibility (forλ > 0) is thatA′′ > 0, and(A′)2 > β2/λκ . Note that in
this case gravity isnot localized (asA goes to+∞ at y→±∞). Thus, the presence of the Gauss–Bonnet term
doesnotallow flat solutions with localized gravity that violate the weak energy condition (that is, the analog of the
c-theorem [23]).

3.1. Non-singularity conditions

In this subsection we would like to discuss the conditions onW such that the corresponding solutions do not
blow up at finite values ofy. More precisely, in this section we will focus on solutions such thatφ is non-singular5

at finitey. To begin with note that ifV is non-singular, which we will assume in the following, thenW andWφ

should (generically) be non-singular as well. This then guarantees that solutions are continuous for finite values
of φ. However, a priori it is still possible thatφ blows up at finite values ofy.

The equation we would like to study here is

(28)φ′ = αYφ,
where

(29)Y ≡W − λκ
3
W3.

In the following we will be interested in the cases where gravity is localized. Then the functionY = Y (W) is
invertible. Indeed, ifλ 6 0, Y (W) is injective for anyW , while for λ > 0 it is injective forW2 6 1/λκ , that is,
(A′)26 β2/λκ . Thus, in these cases we can viewW andV as functions ofY .

Note that (28) arises in a non-gravitational theory described by the following action:

(30)S =
∫
dDx

[
− 4

D− 2
(∂φ)2− V

]
,

where

(31)V ≡ Y 2
φ .

Thus, a solution of (28) describes a BPS solution in the theory (30) which depends only ony. The tension of the
corresponding domain wall is given by

(32)T = 2

α

[
Y (y =+∞)− Y (y =−∞)].

If the theory is supersymmetric, then this (up to a normalization constant) also gives the corresponding central
charge, andY is interpreted as the superpotential.

Next, let us discuss the general condition for such domain walls to be non-singular. That is, we would like to
find the condition under whichφ does not blow up at finite values ofy. First, let as assume thatYφ does not vanish

5 We will refer to the corresponding domain walls as non-singular. However, some of such solutions are actually singular in the sense that
theD-dimensional Ricci scalarR blows up, but the singularities are located aty =±∞ (see below).
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for anyφ. Then for the domain wall to be non-singular, it is necessary and sufficient that the function

(33)F(φ)≡
∫
dφ

Yφ

is unbounded atφ→±∞. That is, the non-singularity condition reads:

• Y should not6 grow faster thanφ2 for φ→±∞, or, equivalently,
• W should not grow faster thanφ2/3 for φ→±∞.

On the other hand, ifYφ vanishes at one point,7 call it φ0, then we have non-singular domain walls interpolating
betweenφ = φ0 andφ = ±∞ as long as atφ =±∞ the above non-singularity condition is satisfied. Finally, if
Yφ vanishes for more then one value ofφ, then we have the usual non-singular domain walls of the kink type
interpolating between the adjacent values ofφ whereYφ vanishes. Note that such domain walls have finite tension.
In contrast, non-singular solutions whereY goes to±∞ have infinite tension. Such domain walls automatically
localize gravity (provided thatY = Y (W) is invertible) as long asW changes sign. On the other hand, for the kink
type of solutions to localize gravity it is also required thatW does not vanish at the edges of the domain wall (that
is, at the points whereYφ vanishes).

3.2. Positivity conditions

In this subsection we would like to discuss an additional consistency condition on domain wall solutions in the
presence of the Gauss–Bonnet term. Thus, since we are dealing with higher curvature terms, we must make sure
that unitarity is not violated in the corresponding warped backgrounds. As in the previous subsection, let us focus
on non-singular solutions that localize gravity.

Let us substitute the domain wall ansatz (withΛ̃ = χ̃ = 0) into the actionS given by (1). We then obtain the
following (D − 1)-dimensional action for the metric̃gµν(xσ ):

(34)
S̃

M̃D−3
P

=
∫
dD−1x

√−g̃ [R̃+ λ̃(R̃ 2− 4R̃ 2
µν + R̃ 2

µνρσ

)]
,

where we have dropped the boundary terms as they vanish for non-singular domain walls that localize gravity
(for such domain wallsA′ exp(A) andA′′ exp(2A) go to zero aty→±∞). In the last equation we are using the
following notations:

(35)M̃D−3
P ≡MD−2

P

∫
dy exp[(D − 3)A][1+ 2λ(D− 3)(D − 4)(A′)2

]
,

(36)λ̃≡ λM
D−2
P

M̃D−3
P

∫
dy exp[(D − 5)A].

The quantityM̃P is interpreted as the(D− 1)-dimensional Planck scale, andλ̃ is the(D− 1)-dimensional analog
of λ. Note that inD = 5 the quantityλ̃ is infinite. This, however, does not pose a problem as inD − 1= 4
dimensions the Gauss–Bonnet term is a total derivative, and if we drop the corresponding topological term, we
obtain the usual 4-dimensional Einstein–Hilbert action:

(37)S̃ = M̃2
P

∫
d4x

√−g̃ R̃.
6 More precisely, this is correct up to usual “logarithmic” factors (that is, log(φ), log(log(φ)), etc., or, more generally, the appropriate

products thereof). Thus, for instance, the non-singularity condition on (33) is satisfied forY = ξφ2 log(φ).
7 Here such a point can be at finiteφ or φ =±∞.
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ForD > 5 the Gauss–Bonnet term is no longer a total derivative, andλ̃ is finite. Note, however, that if we expand
the Gauss–Bonnet term around the flat Minkowski solution (and this is the(D − 1)-dimensional background we
must consider in accord with the original domain wall solution), it does not modify the graviton propagator (that
is, the terms quadratic in metric fluctuations arising from expanding the Gauss–Bonnet term combine into a total
derivative), so that unitarity is not violated [17,18]. Nonetheless, the Gauss–Bonnet term does non-trivially modify
the interactions.

The above observation, however, is insufficient to ensure positivity. Thus, the integrand in (36) is positive-definite
if λ > 0, but forλ < 0 it can become negative. This implies thatM̃D−3

P can in some cases be negative ifλ < 0. We
would then have negative-norm states, which violate unitarity. In fact, to ensure unitarity we should require that the
integrand in (36) is positive-definite for ally, indeed,

(38)exp[(D− 3)A][1+ 2λ(D − 3)(D− 4)(A′)2
]

is interpreted as the square of (they-dependent part of) the graviton wave-function. This then implies the following
positivity condition:

(39)(A′)26 β2/|λ|κ,
or, equivalently,

(40)W26 1/|λ|κ.
Note that forλ > 0 this is a necessary condition for a domain wall to localize gravity. On the other hand, forλ < 0
this condition ensures unitarity.

The above positivity condition has an important implication. Thus, it is not difficult to see that infinite
tension domain walls discussed in the previous subsection exist only forλ < 0, and they violate the positivity
condition (40). That is, as was already suspected in [16], infinite tension domain wall solutions are not completely
consistent once higher curvature terms are included. The reason for this is that such domain walls are actually
singular with the singularities (where the Ricci scalarR diverges) located aty = ±∞. In contrast, flat domain
walls with finite tension are non-singular everywhere, and as long as (40) is satisfied (on the solution), they do not
violate unitarity. This implies that (for bothλ < 0 andλ > 0) on the solution we have

(41)V >−|η|,
that is, the scalar potential is bounded below.

3.3. An example

For illustrative purposes let us end our discussion here with a simple example of a domain wall with finite
tension which satisfies the consistency conditions discussed in this section. Thus, letλ > 0, and letW = ζφ (for
definiteness let us assumeζ > 0). We then have

(42)Y = ζφ − λκ
3
ζ 3φ3.

The domain wall solution is then given by:

(43)φ(y)= 1

ζ
√
λκ

tanh
[
αζ 2
√
λκ (y − y0)

]
,

(44)A(y)= β

αζ 2λκ
ln
(
cosh

[
αζ 2
√
λκ (y − y0)

])+A0,

wherey0 andA0 are integration constants.
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4. Comments

In this section we would like to make a few concluding remarks. As we saw in the previous section, consistent
flat domain wall solutions in the presence of the Gauss–Bonnet term are of the kink type, and they interpolate
between adjacent AdS minima of the scalar potential. Here we should point out that such solutions always have
consistent curved deformations (that is, for such potentials there always exist consistent domain wall solutions with
non-vanishing(D− 1)-dimensional cosmological constant).

As we have already mentioned in introduction, one of the motivations for choosing the Gauss–Bonnet
combination is that, as was pointed out in [16], generic higher curvature terms actually delocalize gravity. Thus,
inclusion of higher derivative terms of, say, the form

ζ

∫
dDx
√−GRk

into the bulk action would produce terms of the form [16]

ζ

∫
dD−1x dy exp[(D − 2k− 1)A]√−g̃ R̃ k.

Assuming thatA goes to−∞ at y→±∞, for large enoughk the factor exp[(D − 2k − 1)A] diverges, so that at
the end of the day gravity is no longer localized. In fact, forD = 5 delocalization of gravity takes place already at
the four-derivative level once we include theR2, R2

MN andR2
MNRS terms with generic coefficients (with the only

exception being the Gauss–Bonnet combination).
A possible way around this difficulty might be that all the higher curvature terms should come in “topological”

combinations (corresponding to Euler invariants such as the Gauss–Bonnet term [17,18]) so that their presence
does not modify the(D− 1)-dimensional propagator for the bulk graviton modes. That is, even though such terms
are multiplied by diverging powers of the warp factor, they are still harmless. One could attempt to justify the fact
that higher curvature bulk terms must arise only in such combinations by the fact that otherwise the bulk theory
would be inconsistent to begin with due to the presence of ghosts. However, it is not completely obvious whether
it is necessary to have only such combinations to preserve unitarity. Thus, in a non-local theory such as string
theory unitarity might be preserved, even though at each higher derivative order there are non-unitary terms, due
to a non-trivial cancellation between an infinite tower of such terms.

We would like to end our discussion by pointing out that the aforementioned difficulty with higher curvature
terms does not arise in theories with infinite-volume non-compact extra dimensions [24–30]. However, in such
scenarios consistency of the coupling between bulk gravity and brane matter might give rise to additional
constraints. Thus, in some cases the brane world-volume theory must be conformal [29]. In such cases it would be
interesting to understand if there is a relation to [31].
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