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Abstract

We investigate the role of backward reactions in a stochastic
model of catalytic reaction network, with specific regard to
the influence on the emergence of autocatalytic sets (ACSs),
which are supposed to be one of the pre-requisites in the tran-
sition between non-living to living matter.
In particular, we analyse the impact that a variation in the ki-
netic rates of forward and backward reactions may have on
the overall dynamics.
Significant effects are indeed observed, provided that the in-
tensity of backward reactions is sufficiently high. In spite of
an invariant activity of the system in terms of production of
new species, as backward reactions are intensified, the emer-
gence of ACSs becomes more likely and an increase in their
number, as well as in the proportion of species belonging to
them, is observed. Furthermore, ACSs appear to be more
robust to fluctuations than in the usual settings with no back-
ward reaction.
This outcome may rely not only on the higher average con-
nectivity of the reaction graph, but also on the distinguishing
property of backward reactions of recreating the substrates of
the corresponding forward reactions.

Introduction
Models of catalytic reaction networks have been widely
investigated in the last decades, with different goals and pur-
poses, yet mostly in regard to the broad theme of the origin
of life and with the design of artificial protocells (Carletti
et al., 2008; Filisetti et al., 2010; Rasmussen et al., 2004;
Serra et al., 2007; Szostak et al., 2001).
In particular, in the quest for a reasonable theory de-
scribing the transition from non-living to living matter,
many frameworks have been proposed, among others the
metabolic-first scenario (Dyson, 1985; Smith and Mo-
rowitz, 2004; Wächtershäuser, 1990; de Duve, 1982), the
protein-first hypothesis (Oparin, 1924; Fox, 1974; Lee et al.,
1996, 1997; Issac and Chmielewski, 2002), the compart-
mentalization (Bachmann et al., 1992), the compositional
approach (Segré et al., 1999; Segre et al., 1998; Segré and
Lancet, 2000) and the gene-first hypothesis included in
the RNA world theory (Gilbert, 1986; Müller, 2006; De
Lucrezia et al., 2007; Anastasi et al., 2007; Talini et al.,

2009; Rios and Tor, 2009; Budin and Szostak, 2010). Even
if the dispute is far from being concluded (Cornish-Bowden
and Cárdenas, 2008; Stano and Luisi, 2010; Schrum et al.,
2010; Budin and Szostak, 2010), one of the underlying key
requirements in most of these theories is that the production
of the molecular species involved in the transition relies on
robust reaction pathways.
In this regard, some theories account for linear chemical
pathways capable of producing the sufficient amount of
species at energy-rich sites, e.g. hydrothermal vents (Oga-
sawara et al., 2000) or under plausible prebiotic condi-
tions (Costanzo et al., 2009). Nevertheless, in most of the
cases the emergence of sets of collectively self-replicating
molecules, i.e. autocatalytic cycles (or autocatalytic sets,
ACSs from now on)1 appears to be an essential requirement
to achieve the self-sustenance and the evolvability of
the system. Indeed, there are many examples of ACSs
in current biological systems, which are the outcome of
billions of years of evolution. Therefore, the investigation
of the generic properties of catalytic reaction networks,
with particular respect to the sufficient conditions for
the emergence of ACSs and the characterisation of their
dynamical properties, is fundamental2.

1A classical definition of ACS is that of a subset of chemicals
in which the production of each element is catalysed by at least
another elements belonging to the subset (Kauffman, 1986). Here-
inafter, a more formal definition with specific regard to our model
will be provided.

2It is very important to remark that the presence of ACSs only
is not sufficient to define life, which it is largely believed to require
also the presence of a container that separates the living system
from the environment, as well as a coupling between the replica-
tion rate of the internal molecules and the growth and division rate
of the container. This theme is at the centre of the research on pro-
tocells.
In previous works (Serra et al., 2007; Filisetti et al., 2008; Carletti
et al., 2008) we proved that, once that such a coupling is achieved,
the rates of the replication of the internal molecules and that of the
growth of the container tend to spontaneously synchronise through
successive divisions. This also leads to an exponential growth of
the population of protocells that, in turns, implies a Darwinian se-
lection process among them (Munteanu et al., 2006).
Furthermore, in Serra et al. (2013) we introduced the first known
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To this end, different models have been proposed by, e.g.,
Dyson (Dyson, 1985), Eigen and Schuster (Eigen and
Schuster, 1977; Eigen and Mccaskill, 1988; Eigen and
Schuster, 1978), Kauffman (Kauffman, 1986; Hordijk et al.,
2010; Hordijk and Steel, 2004; Mossel and Steel, 2005),
Jain and Khrishna (Jain and Krishna, 1998), Lancet (Segre
et al., 1998; Segré and Lancet, 2000), Kaneko (Kaneko,
2006) and Vasas and Fernando (Vasas et al., 2012). Despite
the theoretical differences, most of the models predict a
phase transition leading to the spontaneous emergences of
ACSs, after matching certain key conditions, either struc-
tural or dynamical according to the cases. Note that, given
that the presence of ACSs may eventually lead the system to
display remarkable discrepancies between the concentration
of the involved molecules from that of analogous systems
with no ACSs, this could be actually investigated through
wet-lab experiments.
Nonetheless, it is indeed difficult to detect the emergence of
ACSs in lab experiments and this could be due, on the one
hand, to the somehow drastic simplifications at the basis of
the theoretical models or, on the other hand, to the fact that
real experiments never matched the requirements suggested
by the theories.

In order to fill the gap between theories and experi-
ments and provide insights for further experimentation,
in Filisetti et al. (2011c) we introduced a novel model
of catalytic reaction network, based on a fully stochastic
framework and in which the system complexity can grow
according to the dynamics, through the creation of new
species and reactions. The model takes inspiration from the
works by Kauffman (Kauffman, 1986) and its subsequent
developments by others (Bagley et al., 1989; Bagley and
Farmer, 1992; Farmer and Kauffman, 1986; J.D.Farmer
et al., 1986).
The model considers abstracted entities accounting for
monomers and polymers (i.e. species) and simplified inter-
actions among them, in terms of cleavages (i.e. the cutting
of two species) and condensations (i.e. the concatenation of
two species). The key constraint of the model is that each
reaction must be catalysed in order to occur. In this regard,
any species in the system can be selected to be the catalyst
of any possible reaction with a certain probability. The
system’s dynamics is then stochastically simulated within
an open flow reactor. By using a stochastic framework, it
is possible to consider in a adequate way the relevance of
noise, random fluctuations and low-numbers-effects on the
overall dynamics, most of all when dealing with systems

stochastic model in which a catalytic reaction network is mod-
elled within a simplified model of protocell. Although a stochas-
tic description has been adopted also in Mavelli and Ruiz-Mirazo
(2013), our model of protocell deals with the capability to create
new molecular species by means of the reactions present in the
system.

close to the phase transition in which the emergence of
ACSs becomes plausible.
We remark that the focus of the model is not on the detailed
characterisation of the entities and reactions of a specific
chemical system, but rather on the investigation of the
dynamical behaviour that emerges from the interaction
of simple entities, with the final goal of deciphering the
generic (or universal) properties, that is, those that are
shared by a possibly broad range of different chemical
systems. In particular, we aim at determining the minimal
conditions for the emergence of ACSs and the sensitivity of
the phenomenon to variations in some key parameters.
In this regard, in our previous works we studied in depth the
influence that variations in some of the key parameters of
the system has on the overall dynamical behaviour and on
the production of ACSs.

One first result we obtained was to detect that a varia-
tion in the composition of the set of molecules present at the
beginning of the simulation does not seem to remarkably
affect the dynamics of the systems, whereas modifications
in the incoming flux seem to deeply influence the overall
behaviour (Filisetti et al., 2011c).
For this reason, we focused our attention on the incoming
flux composition and diversity (Filisetti et al., 2011a). The
results of the analysis that we performed showed that the a
variation in the number of distinct species belonging to the
incoming flux influences the general activity of the system:
considering a fixed overall incoming flux concentration,
the larger the number of diverse species (regardless their
lower individual concentration), the higher the activity
of the system, in terms of overall number of species and
molecules, yielding a larger number of ACSs. On the
contrary, the length of the polymers belonging to the flux
seems not to be so relevant.
Another key parameter of the system, the average residence
time of the molecules within the reactor, was also analysed,
suggesting that the larger the residence time is, the higher
the probability of emergence of ACSs is.
In another work, presented at ECAL 2011 (Filisetti et al.,
2011b), we introduced some plausible energy constraints
associated to specific types of reactions, to investigate
whether and how the introduction of a form of energy
could affect the dynamics and the emergence of ACSs.
Preliminary analyses showed that there exists an optimal
combination of two key parameters, i.e. the incoming flux
of energy carriers and the energization kinetic constant
(which account for the amount of energy available for
endoergonic reactions) and that this combination ensures a
larger production of new species. Further research is needed
for a better understanding of the phenomenon.
Finally, one of the most important results was to highlight
the general fragility of the ACSs that have been observed. In
fact, their existence usually depends on same rare molecules
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and reactions, which may disappear because of random
fluctuations, hence preventing the autocatalytic closure
over a significant span of time. This outcome could pro-
vide one of the first possible explanations of the difficulty
in observing the emergence of ACSs in wet-lab experiments.

In line with this methodological approach, within this
work we carry on with the analysis of the key parameters
of the system, in order to provide a more complete and
coherent picture of the phenomenon.
In particular, we here relax one of the constraints of the
classical formulation of the model, that is, the exclusion of
backward reactions. In previous studies backward reactions
were neglected, by hypothesising that the Gibbs energy ∆G
for any reaction is large enough to maintain the system far
from the chemical equilibrium. Considering that backward
reactions do occur in nature, here we want to investigate
their role in the overall dynamics.
We define a cleavage (respectively, a condensation) as the
backward reaction of a specific condensation (respectively,
cleavage), i.e. the forward reaction, if:

• its products are the substrates of that condensation (re-
spectively, cleavage),

• its substrates are the products of that condensation (re-
spectively, cleavage).

The analysis has then been focused on the effects of the
relative strength of the rates of the forward and the backward
reactions.

In section II the model will be briefly outlined. In sec-
tion III results of the simulations with backward reactions
will be shown. Finally, in section IV the discussion and
some indications for future works will be presented.

The model
A detailed description of the model can be found in (Filisetti
et al., 2011a,c), here we will only outline the key features.
The model represents an open system in which monomer
and polymers, i.e. the species, are involved in catalysed re-
actions. Every species xi, i = 1, 2, ..., N is defined by an
ordered string of letters selected from an arbitrary alphabet
(e.g. A, B, C...) and its amount, either concentration or
quantity, i.e. number of molecules. The only allowed re-
action types are: i) cleavage, the splitting of two species
(e.g. AAAB → A + AAB) and the ii) condensation, i.e.
the concatenation of two species (e.g. BBAA + BA →
BBAABA), which requires an intermediate step involving
the formation of a temporary complex between the substrate
and the catalyst.
We neglect spontaneous reactions by assuming that there is a
sufficiently high activation energy for any reaction scheme.
Therefore, only catalysed reactions are allowed and every

species xi (longer than a specific threshold) can be selected
to be the catalyst of a given reaction with a certain (uniform)
probability pi = p, i = 1, 2, ..., N . Therefore, the reaction
scheme is defined in a probabilistic way, i.e. in different sim-
ulations the same species can be the catalyst of distinct reac-
tions. Besides, the initial reaction scheme can dynamically
evolve and increase in dimension because of the creation of
new species, which can be (probabilistically) involved in ei-
ther novel reactions as substrates, products or catalysts, pro-
vided that the coherence with the existent reaction scheme
is maintained. The set of couples {species, reaction} in
which the species catalyses the reaction defines the chem-
istry of the system, because it describes a coherent possi-
ble artificial world. Hence, it is possible to simulate distinct
chemistries or to keep the chemistry fixed and simulate dif-
ferent time histories.
In the classical formulation of the model, backward reac-
tions are also excluded, by hypothesising that the Gibbs en-
ergy ∆G for any reaction is large. The main goal of this
work is to investigate the implications of relaxing this con-
straint.
A possible example of each reaction type is shown:

• Cleavage: AB + C
Kcleav−−−−→ A+B + C

• Condensation: (whole reaction: A+B+C → AB+C)

Complex formation: A+ C
Kcomp−−−−→ A : C

Complex dissociation: A : C
Kdiss−−−→ A+ C

Final Condensation: A : C +B
Kcond−−−−→ AB + C

A and B are two random species standing for the sub-
strates of the specific reaction, C is the catalyst of that
reaction and A : C is the transient complex. Kcleav ,
Kcomp, Kdiss and Kcond respectively are the kinetic rates
of cleavage, complex formation, complex dissociation and
final condensation3. The outgoing flux is simulated by
assigning a common decay time Kout to each species and
complex. The incoming flux rate Kin is measured in moles
per second and the average residence time is given by
1/Kout.

The dynamics of the system is simulated through the
well-known Gillespie algorithm (Gillespie, 1977) for the
stochastic simulation of chemical reaction system, with the
key modification of allowing the creation of new species
and reactions that are not present in the initial conditions.
In particular, the system is modelled within a continuous
stirred-tank reactor (CSTR), which allows continuos

3Notice that a parameter sensitivity analysis of the model was
presented in Damiani et al. (2013). The main goal was to identify
those kinetic parameters that mainly influence the ability of the
system to increase the diversity of the species.
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ingoing and outgoing fluxes of molecules. In another
work (Serra et al., 2013) we introduced a semi-permeable
membrane to separate the catalytic reaction network from
the environment.

Two possible representations of the system are possi-
ble, which results in different graphs. The first concerns the
catalytic activity of the system: an edge from xc to xi is
drawn if species xc is the catalyst of the reaction in which
the species xi is one of the products. This leads to the
so-called catalyst-product graph. The second representation
regards the assembling activity: an edge from xj to xi

is drawn when xj is a substrate involved in a reaction in
which xi is one of the products. This allows to draw the
substrate-product graph.
Besides, the adoption of an asynchronous stochastic frame-
work implies the problem of detecting cycles in a univocal
way. We lastly decided to introduce a graph in which
every edge (either catalyst-product or product-substrate) is
maintained only if the specific reaction occurs within an
arbitrary temporal window, W. We call it the actual reaction
graph and can be applied to both the catalyst-product and
the substrate-product graphs. In this way, the influence of
very rare reactions is neglected and cycles can be coherently
detected.
In particular, in the context of our model, we define as ACS
a subset of species which belong to a strongly connected
component (SCC) in the catalyst-product actual reaction
graph4.

The introduction of backward reactions. The goal of
this work is to investigate whether and how the introduction
of backward reactions may influence the overall dynamics of
the system and, in particular, with respect to the emergence
of ACSs.
To this end, we define a backward reaction for any existing
reaction of the system (which will be defined as forward re-
action), relative to both cleavages and condensations (see the
definition of forward and backward reactions in the previous
section). In the example scheme above, the condensation
is the backward reaction of the cleavage (or the other way
round).
The analysis is then focused on the variation of a key param-
eter R, which accounts for the relationship between the for-
ward and the backward reactions kinetic rates, and is defined
as follows. Note that, given that in the current configuration
of the system we set Kcomp = Kcond for all the condensa-
tions, only Kcond will be included in the definition.
We distinguish two cases:

4See the footnote number 1 at page 1 for a more general defini-
tion

• if the forward reaction is a cleavage, given any Kcleav:

R =
2Kcleav

Kcond
→ Kcond =

2Kcleav

R
(1)

• if the forward reaction is a condensation, given any
Kcond:

R =
Kcond

2Kcleav
→ Kcleav =

Kcond

2R
(2)

Varying R it is possible to define different ratios between
the rates of forward and backward reactions and, accord-
ingly, given the kinetic rates of any forward reaction to de-
termine those of the corresponding backward reaction5.

The simulations
The benchmark for this kind of analysis is the case in which
no backward reactions are considered and that will be
indicated with NOREV from now on. We then considered
4 values of R = 1, 10, 100, 1000.
We created 10 different chemistries and for each of them
we varied the value of R only (simulating 10 different
histories, for a total of 500 distinct simulations), in order to
disentangle the effect of its variation on the dynamics. The
details of the simulations can be found in the caption of Fig.
1.

In Fig. 1 we display the (average) number of distinct
species present in at least one copy in time. No remarkable
differences are detectable in the number of different species,
which reaches an asymptotic value around 60 after a tran-
sient whose length is around 300 seconds, in all the cases.
Notice that the number of distinct species (which somehow
accounts for the diversity of the system) does not depend on
the flux dynamics only, but on the general capability of the
system of generating new species and reactions. Hence, this
outcome suggests that the overall activity of the system, in
terms of production of new species, is not enhanced by the
introduction of backward reactions.
Moreover, a relatively moderate variation is observed also
with regard to the asymptotic total number of molecules in
the system, which is around 30.000 for all the distinct cases
(not shown here).

The (average) number of molecules and that of species
belonging to ACSs are shown in Fig. 2. We here have a
indeed remarkable result: in correspondence of the lowest
values of R (i.e. proportionally faster backward reactions)
we observe a clear increase of the percentage of both
molecules and species belonging to ACS, starting from the

5Notice that the factor 2 in Eq. 1 and 2 was chosen, in accor-
dance with our previous works (Fuchslin et al., 2010), to roughly
balance the speed of the cleavage, which is a one-step reaction,
with that of the condensation, which is a 2-steps reaction.
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Figure 1: Variation of the average number of species present
in the system in time. The five lines represent the case
with no backward reactions (NOREV ) and those of sys-
tems characterised by values of R = 1, 10, 100 and 1000.
The x axis represents time (in seconds). The values are av-
eraged over 100 different simulations for each value of R.
The bars represent the standard error.
The settings of the simulations are the following.
Alphabet: [A,B]; probability of catalysis, p: 0.00097;
volume of the reactor: 1e−18L; overall concentration =
1e−4M ; set of species in the influx: all the species up to
length 4; minimum polymer length to have catalytic activ-
ity: 2; baseline Kcond = 50M−1sec−1, baseline Kcomp =
50M−1sec−1, baseline Kcleav = 25M−1sec−1, baseline
Kdiss = 1e−6sec−1; influx rate = 1e−21mol/sec; simula-
tion time: 1000 sec. 10 different chemistries are created,
for each chemistry 5 different systems are created: with no
backward reactions, with R = 1, 10, 100 and 1000; for each
system 10 different histories are simulated. The number of
simulations is so 500.

benchmark case of no backward reactions, in which less
than 5% of the molecules and of the species belong to ACSs
(and analogously for slower backward reactions, i.e. R =
100 and 1000), then the case of R = 10, in which around
20% of the molecules and of the species are in ACSs and
up to case in which R = 1, which involves around 40% of
the molecules and 45% of the species in the ACS dynamics.
This result hints at a very important consideration: the faster
the backward reactions are6, the more likely the emergence
of ACSs with a large number of molecules and species is. It
is even possible to hypothesise a threshold in R after which
the emergence of large ACS becomes very likely, which
would be, in this case, between R = 10 and and R = 100.

6Meaning proportionally faster with respect to forward reac-
tions.

Figure 2: Variation of the average percentage of molecules
(left) and species (right) belonging to ACSs in time, with
respect to the cases: NOREV , R = 1, 10, 100 and 100.
The x axis represents time (in second). The bars display the
standard error. The percentage is computed by looking at the
molecules and species present at any time step in the system.

In Fig. 3 we report the variation of the number of ACSs
(left) and that of percentage of species belonging to ACSs
(right) in time, with respect to all the different simulations.
Each row of the graph represents a distinct simulation,
so it is possible to follow the dynamical evolution of any
simulated system, with regard to these two key variables.
By looking at the left graphs, regarding the number of ACSs
in time, one first important result proves what stated above
by analysing the average values. In correspondence of lower
values of R a larger number of simulations is characterised
by: i) the emergence of at least one (usually robust in time)
ACS, ii) a larger number of distinct ACSs. Whereas for
systems with no or very slow backward reactions (e.g. R =
1000) in many case no ACSs emerge, when ACSs emerge
are often not persistent in time (showing an oscillatory
fashion) and the maximum number of observed ACSs is
around 4, for low values of R (R = 1 or R = 10) in almost all
the simulations at least one ACS is observed and we even
observe simulations which yield a indeed large number of
ACSs (up to 10 for R = 1). R = 100 seems to characterise an
intermediate condition, perhaps close to a phase transition
in which the emergence of ACSs becomes indeed likely.
Besides, given that the simulations are ordered in sets of 10
different histories for each one of the 10 chemistries, it is
possible to notice how some chemistries are actually more
efficient in producing ACSs, by looking at the large clearer
stripes (i.e. 10 rows, corresponding to 10 histories of the
same chemistry), e.g. for R = 10 or R = 1.
In the right panels it is possible to observe the percentage
of species belonging to ACSs in every simulation. For
the cases in which only one or a few ACSs emerge (no
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backward reactions or high R) the fraction of species
belonging to ACSs seems to show a strong correlation with
the number of ACSs itself. Nevertheless, in the cases in
which a larger number of ACSs emerge (low values of R)
we notice that this correlation is not always preserved and
there are, on the one hand, simulations in which a very large
percentage of species belong to a relatively low number of
(big) ACSs and, on the other hand, others in which a large
number of (small) ACSs involve a relatively low proportion
of the species. This outcome would suggest that systems
with relatively faster backward reactions display more
heterogeneous dynamical behaviours.
It is also important to remark that while in the case with no
or slow backward reaction at most 20/25% of the species
are involved in the ACS dynamics, for low values of R this
percentage increases dramatically, up to more than 70% for
some simulation with R = 1, in which the dynamics of the
system is monopolised by ACSs.

In Fig. 4 we show the percentage of molecules in ACSs at
the end of the simulation (i.e. time = 1000) as a function
of the average connectivity of the catalyst-product actual
reaction graph (at time 1000) for all the different cases.
One can first notice that the systems with lower R corre-
spond to higher average connectivities. This is a somehow
expected result, given that the introduction of backward
reactions implies an increase in the number of possible
reactions and also that the lower the value of R is, the
higher the probability of occurrence of these reactions is,
resulting in a actual reaction graph which is increasingly
more connected.
Besides, by looking at the line that interpolates the dots
relative to the distinct cases (from the case of no backward
reaction to the case of R = 1), one can detect an apparently
super-linear trend, which may underly some non-linear
phenomenon, possibly related to the intrinsic nature of
backward reactions. In fact, we here remark that the
introduction of backward reactions does not simply imply a
larger average connectivity for the system, as one of the the
features of backward reactions is to continuously recreate
(as products) the substrates of the corresponding forward
reactions. In particular, this action ensures the maintenance
of the chains of reactions that guarantee the continuous
flow of materials from the system’s input toward the ACS
structures. It is unlikely that the same reinforcement action
of the ACSs’ sustaining chains is provided simply because
of the doubling of the number of reactions. In order to avoid
the collapse, in fact, each ACS has to exactly guarantee
the presence of the materials it is consuming: randomly
created reactions have scarce chances to reinforce all the
needed chemical species, whereas backwards reactions are
automatically pointing toward the correct substrates. Given
the autocatalytic nature of the ACS, this action is supposed

to guarantee the presence of the needed catalysts7.
Therefore, even though further analyses are needed to
address this issue, we may suppose that this phenomenon
entails important implications on the dynamics and stability
of ACSs and, accordingly, to the percentage of molecules
belonging to them.

Conclusions and further developments
In this work we investigated the role of backward reactions
in a stochastic model of catalytic reaction network in an
open reactor.

The introduction of backward reactions involves sig-
nificant changes in the overall dynamics, with particular
regard to the emergence of ACSs, provided that their speed
(hence, frequency of occurrence) is sufficiently high, as
established by the kinetic rates and, in particular, by the
proportion between the kinetic rates of forward and back-
ward reactions. In other words, the intensity of backward
reactions is fundamental to observe remarkable differences
in the overall dynamics.
In detail, despite an observed substantial invariance in
the number of different species (i.e. the diversity of the
system) produced by the dynamics, as long as the relative
values of the rates for the forward and backward reaction
are decreased (i.e. the intensity of backward reactions is
increased), an always higher number of these species is
involved in an always larger number of different ACSs, in
an increasing number of different simulations.
Besides, when backward reactions gain intensity the ACSs
appear to be also more robust to variations and oscillations
in time. This could represent a very significant result,
mostly in regard with the dynamical fragility of ACSs that
was observed in our previous analyses of systems without
backward reactions.
It is also possible to hypothesize the presence of a threshold
above which the likelihood of emergence of resistant ACSs
dramatically increases.
One partial explanation of this general outcome is that back-
ward reactions indeed add new reactions to the chemistry,
leading to an increase of the average connectivity of the
reaction network, which has been considered one of the key
variables in regard to the emergence of ACSs (Filisetti et al.,
2011c; Farmer and Kauffman, 1986; Jain and Krishna,
1998).
Nonetheless, the key property of backward reactions of
recreating the substrates of the relative forward reactions
could be essential in influencing the process of emergence
of ACSs, not only because of the increase of the number
of possible reactions, but mostly because of their action of
reinforcement in favor of the supply chains supporting the

7Notice that we are currently designing experiments in order to
separate the effects of doubling the number of reactions from those
deriving by simple enabling the backward reactions.
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existence of ACS structures. Note that this reinforcement
action is stronger when the values of the reactions’ forward
and backward kinetic constants are closer, a circumstance
that may have deeply influenced the chemical composition
of the first historically functioning ACS structures. Analy-
ses underway are aimed at addressing this issue.
Furthermore, the phenomenon of competition for the same
catalyst between forward and backward reactions could be
another interesting phenomenon to investigate.

In another work (Serra et al., 2013) we introduced a
model of catalytic reaction network in protocell, by
considering the simplest possible architecture, that is a
semi-permeable membrane that selects the species that can
enter or exit the protocell.
Among the various results it was shown that protocells
display distinct asymptotic behaviours, according to differ-
ent variables, a property that has never been observed in
CSTRs.
Preliminary analyses on the introduction of backward
reactions in the protocell model would suggest that even
mildly intense backward reactions would lead the system
toward a more homogeneous dynamical behaviour. Even
if further investigations are ongoing, this outcome would
suggest another interesting role of backward reactions in
this kind of system, also hinting at possible differences in
the hypothesised threshold on the proportion among the
kinetic rates.
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Figure 3: Variation of the number of ACSs (left) and of
the percentage of species (on the total) belonging to ACSs
(right) for all the simulations, with respect to the cases (in
order from top to bottom): NOREV , R = 1000, 100, 10
and 1. Each row represents one distinct simulation, the x
axis represents time. The colours stand for the value of that
variable, as in the corresponding colour legend.

Figure 4: Phase diagram of the relation between the aver-
age connectivity of the system and the average percentage
of molecules belonging to ACSs at the end of the simula-
tion (i.e. time = 1000 seconds), with respect to the cases:
NOREV , R = 1, 10, 100 and 100. The x axis stand for
the average connectivity and the y axis for the percentage of
molecules in ACSs. The colors represent the different cases.
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