
Exploring the organisation of complex systems through the dynamical interactions
among their relevant subsets

Alessandro Filisetti1,2, Marco Villani4, Andrea Roli5, Marco Fiorucci3 and Roberto Serra4
1European Centre for Living Technology, Venice

2Explora s.r.l, Rome, Italy
3Department of Environmental Sciences (DAIS), Università Ca’ Foscari
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Abstract

Complex systems often show forms of organisation where a
clear-cut hierarchy of levels with a well-defined direction of
information flow cannot be found. In this paper we propose
an information-theoretic method aimed at identifying the dy-
namically relevant parts of a system along with their rela-
tionships, interpreting in such a way the system’s dynamical
organisation. The analysis is quite general and can be applied
to many dynamical systems. We show here its application
to two relevant biological examples, the case of mammalian
cell cycle network and of Mitogen Activated Protein Kinase
(MAPK) cascade. The result of our analysis shows that the
elements of the mammalian cell cycle network act as a single
compact group, whereas the MAPK system can be decom-
posed into two dynamically distinct parts, with asymmetric
information flows.

Introduction
Complex systems often show forms of organisation that can-
not be understood by referring to simple hierarchical models
(like e.g. a tree). In most interesting cases one is faced with
complicated situations, sometimes referred to as “tangled
hierarchies”, where a clear-cut hierarchy of levels, with a
unique well-defined direction of information flow cannot be
found.

In previous work (Villani et al., 2013; Villani and Serra,
2013; Villani et al., 2015) we have introduced the Dynami-
cal Cluster Index method (shortly DCI1), which makes use
of a measure based on information theory that appears well
suited to explore the organisation of such complex sys-
tems. The DCI makes it possible to identify Candidate Rel-
evant Subsets of variables (CRS) that show an integrated be-
haviour, while interacting more weakly with the rest of the
system. The DCI has been applied with interesting results to
several systems: some of them were artificially designed in
order to test the effectiveness of the technique, while others
refer to interesting chemical or biological systems (Filisetti
et al., 2011; Sarma and Ghosh, 2012; Chaos et al., 2006;
Farmer and Kauffman, 1986). Moreover, ongoing and yet

1When clear from the context, the same acronym ‘DCI’ will be
used either to denote the index or the method using it.

unpublished work is also showing promising results in the
study of social systems such as the detection of dynamical
communities in regional innovation projects studied within
the “Emergence by Design”2 European project, the Tuscany
innovation system and the UK consumer price indices.

In many cases, though, the identified CRS have an in-
tricate nested structure, so that it might not be clear which
groups of variables are really important. To overcome this
problem, a filtering algorithm is needed, which should be
able to select those CRS responsible for the dynamics of the
system. To this aim, in this paper we introduce a sieving
procedure able to extract, from the set of candidate CRS,
a smaller number of disjoint or partially overlapping sets,
that capture the basic features of the groups of integrated
variables, thus reducing the need for user intervention in the
interpretation of the outcomes of the method.

In this work we also introduce a further improvement by
considering the flow of information among the identified
subsets of variables (i.e. relevant subsets RS) that is esti-
mated on the basis of transfer entropy (Schreiber, 2000). In
this way it is possible to determine whether there is an infor-
mation flow from set A to set B, and vice-versa. Moreover,
also the direction of the net information flow is defined. We
use this method to analyse some artificially designed cases
and also two biological models.

The paper is structured as in the following. In the sub-
sequent sections we summarise the theoretical background
and describe the sieving procedure and the technique used
to detect the information flow among RS. Then, several case
studies are presented, while in the final section conclusions
and further developments are discussed.

The Dynamical Cluster Index method
In this section we summarise the main features of the DCI,
as presented in (Villani et al., 2013, 2015). The DCI is an
extension of the Functional Cluster Index (CI) introduced by
Edelman and Tononi in 1998 (Tononi et al., 1998) and aimed
at detecting functional clusters in brain regions. In our work,
we relaxed the stationary constraint and extended the CI to
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actual dynamical systems, so as to apply it to a wide range
of system classes, from abstract models to biological and
socio-economic models.

The DCI is an information theoretical measure based on
the well-know Shannon Entropy (Cover and Thomas, 2006).
The entropy H(X) of a random variable X is computed as:

H(X) = −
∑

x

p(x)log p(x) (1)

The joint entropy of a pair of variables H(X,Y ) as:

H(X,Y ) = −
∑

x

∑

y

p(x, y)log p(x, y) (2)

where Y assumes values y. Note that eq. 2 can be natu-
rally extended to sets of k elements. As in our work we rely
on observational data, probabilities are estimated by the rela-
tive frequencies of the values observed for each variable. Let
us now consider a system U composed of K variables (e.g.
agents, chemicals, genes, artificial entities) and suppose that
Sk is a subset composed of k elements, with k < K. The
valueDCI(Sk) is defined as the ratio between two measures
based on the aforementioned entropy: the integration (I) and
the Mutual Information (MI). I(Sk) measures the statistical
independence of the k elements in Sk and is defined as:

I(Sk) =
∑

s∈Sk

H(s)−H(Sk) (3)

Then mutual information MI(Sk;U\Sk) measures the
mutual dependence between subset Sk and the rest of the
system U\Sk and it is defined as:

MI(Sk;U\Sk) = H(Sk) +H(U\Sk)−H(Sk, U\Sk)
(4)

hence, the DCI,

DCI(Sk) =
I(Sk)

MI(Sk;U\Sk)
(5)

The value of DCI is not defined if MI(Sk;U\Sk) = 0.
However, a vanishing mutual information is a sign of sepa-
ration of the investigated subset from the rest of the system,
and therefore the subset must be studied separately. It is
worth noting that the DCI scales with the subset size. In Vil-
lani et al. (2015) we show a procedure to normalize it, nev-
ertheless a better approach is that of assessing the statistical
significance of the DCI of Sk by means of a statistical sig-
nificance index:3

tc(Sk) =
DCI(Sk)− 〈DCIh〉

σ(DCIh)
=
νDCI − ν 〈DCIh〉

νσ(DCIh)
(6)

3Introduced in (Tononi et al., 1998).

where 〈DCIh〉 and σ(DCIh) are respectively the average
and the standard deviation of the DCI of a sample of subsets
of size k extracted from a reference system Uh randomly
generated according to the frequency of each single state in
U and ν = 〈MIh〉 / 〈Ih〉 is the normalisation constant. It
is worth noting that the aim of the reference system is that
of quantify the finite size effects affecting the information
theoretical measures on a random instance of a system with
finite dimensions.

A list of CRS can be in principle obtained by computing
the DCI of every possible subset of variables in U and rank-
ing the subsets by DCI values. The subsets occupying the
first positions are most likely to play a relevant role in system
dynamics. For large-size systems, exhaustive enumeration is
computationally impractical as it requires to enumerate the
power set of U . In this case, we resort to heuristic algo-
rithms, such as genetic algorithms. However, since in this
work we are interested in uncovering some properties con-
cerning the information exchanged among RS, only small
systems suitable for an exhaustive assessment will be tack-
led, postponing to a future contribution the presentation of
the application of the DCI to large-size systems.
Finally, random perturbations are applied to the dynamical
system in order to observe their dynamical feedbacks also in
case of stable situations.

Sieving the candidate subsets
The list of CRS can be ranked according to the significance
of their DCI. In previous works we directly used this ranking
to identify by hand the CRS relevant for the dynamics of the
system. Nevertheless, in many cases this analysis might re-
turn a huge list of entangled CRS, so that a direct inspection
is required for explaining their relevance. To this aim, we
present a DCI analysis post-processing sieving algorithm to
reduce the overall number of CRS to manually tackle. The
main assumption of the algorithm is that if a CRS A is a
proper subset of CRS B, i.e. A ⊂ B, then only the subset
with the higher DCI is maintained between the two. Thus,
only disjoint or partially overlapping CRSs are retained: the
used assumption implies that the remaining CRSs are not
further decomposable, forming in such a way the “building
blocks” of the dynamical organisation of the system. The
pseudo-code of the algorithm is presented in Algorithm 1.

Assessing the temporal correlation among the
subsets: the D index

Although by the application of the DCI, CRS are detected,
this measure does not provide indications neither on the
quantity nor on the direction of the entropy, i.e. the informa-
tion flowing among subsets. To this aim we applied the di-
rectionality index proposed by Lautier and Raynaud (2014).

Let X and Y be two random variables—or, equivalently,
two sets of variables. We can define the entropy rate of X
as the average number of bits needed to encode a successive
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Algorithm 1 Sieving algorithm
Input: The array C of all the CRS ranked by their
tc(DCI)
Output: A subset RS ∈ CRS
RS ← ∅
n← |CRS|
Initialize auxiliary array Del[k]← {0 for k in 1 . . . n}
for i = 1 to n− 1 do

for j = i+ 1 to n do
if Del[i] 6= 1 ∧ Del[j] 6= 1 then

if C[i] ⊂ C[j] ∨ C[j] ⊂ C[i] then
Del[j]← 1

end if
end if

end for
end for
for i = 1 to n do

if D[i] = 0 then
RS ← RS ∪ {C[i]}

end if
end for

state of X if all the previous states are known, considering
that the value of X at t + 1 depends either on X and Y at
time t, eq. 7a, or just on the value of X at time t, eq. 7b.4

h1 = −
∑

X,Y

p(xt+1, xt, yt)log p(xt+1|xt, yt) (7a)

h2 = −
∑

X,Y

p(xt+1, xt, yt)log p(xt+1|xt) (7b)

then, the transfer entropy T is defined as the difference
between the aforementioned entropy rates. T describes how
the uncertainty of X is reduced by knowing the previous
states of Y and X itself, eq. 8.

TY→X = h2 − h1

=
∑

X,Y

p(xt+1, xt, yt) log
p(xt+1|xt, yt)
p(xt+1|xt) ,

(8)

Thus, TY→X can be described in term of entropy as:

TY→X = H(Xt+1|Xt)−H(Xt+1|Y t, Xt), (9)
4Note that the temporal dependency is not necessarily of unitary

lag, i.e. t − 1 → t. For a complete assessment of the statistical
dependency of X on Y one should sum over t−1, t−2, . . . , t−T ,
where T is the observation time limit. Nevertheless, note that (i) in
this paper we are analysing Markovian systems, whose behaviour
depends only from the immediately previous step and (ii) although
TE is not a direct measure of causal effect, the use of short history
length alters the character of the measure towards inferring causal
effect (Lizier and Prokopenko, 2010).

and, since the TY→X describes the information moving
from Y to X , and the transfer entropy is not symmetric,
the information from X to Y is computed as well, eq. 10.

TX→Y = H(Y t+1|Y t)−H(Y t+1|Xt, Y t), (10)

Once that TY→X and TX→Y are known, the direction-
ality D of the information flow between X and Y can be
measured as:

DX→Y =

{
0, if TX→Y = TY→X

TX→Y −TY →X

TX→Y +TY →X
∈ [−1, 1], otherwise

(11)

where DX→Y = 1 indicates that all the information
moves from X to Y , i.e. absence of information flow from
Y to X and, conversely, DX→Y = −1 indicates that X ,
with respect to Y , is just an information receiver and not an
information sender.
It is worthwhile to notice that D does not provide any indi-
cation about the amount of information exchanged between
the variables, but it only provides suitable indications on the
direction of the information flow.

As introduced above, these considerations are also valid
for groups of variables; however, the number of available
observations limits the number of joint variables that may
be analyzed (e.g. see Kraskov et al. (2004)): this is because
spurious correlations are more frequently “detected” as this
limit is approached, increasing the error in measurement. In
order to avoid as much as possible this effect, each pertur-
bation of the following analyses is introduced after the sys-
tem has recovered a stable dynamical condition. Finally, the
small size of the relevant subsets presented in this work al-
lows a direct use of transfer entropy; in case of bigger sub-
sets it is nevertheless possible to use sampling techniques,
as in Lizier et al. (2011).

Analysis on test cases
In order to test the presented methodology, in the follow-
ing we analyse several cases whose dynamical mechanisms
are precisely known. We consider here boolean networks, a
modelling framework that despite its apparent simplicity has
obtained remarkable results in simulating real gene regula-
tory networks (Serra et al., 2004; Shmulevich et al., 2005;
Serra et al., 2007; Villani et al., 2011). In particular, we
present a system composed of 12 boolean nodes updated on
the basis to either a boolean function or a random boolean
value generator. Nodes update their state in parallel and syn-
chronously. We illustrate the results of five instances of this
network, defined in Table 1.5

5Note that the size of these systems allows for an exhaustive
enumeration of all the possible groups, allowing their complete as-
sessment. It is worth remarking that each perturbation is introduced
after the system has recovered a stable dynamical situation.
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The five instances share a common structure but differ in
specific dynamical organizations of some nodes. In case 1,
we consider two integrated groups of three nodes (namely,
group A and group B), by assigning at each node the XOR
function of the other two nodes in the group. In this case the
sieving algorithm filtered the 94% of the evaluated CRS,
making it possible to easily identify the subsets responsible
for the dynamical organization of the system. Only the two
correct CRSs have high tc values, whereas all the other ones
have tc values lower of more than 2 orders of magnitude.
Moreover, no information exchange takes place between
group A and group B, as they are structurally independent.

Case 2 derives from case 1 by introducing in the first
node of group B a further dependence from the last node
of group A, hence introducing information transfer from
group A to group B. The combination of the DCI analysis
and the sieving algorithm correctly recalls the dynamical
organization of the system—i.e. group A influences the
behaviour of (a part of) group B. We observe that the whole
group B (Figure 1b) was anyway ranked high w.r.t. its DCI
significance, but it was discarded by the sieving algorithm
because the dynamics of its first node is influenced also
by group A and so the assessment of the whole group B is
weakened. In general, the amount of this difference depends
on the strength of the forces that influence the interface
nodes and the elements interfacing different CRS can be
detected by a simple comparison between the DCI analysis
and the sieving algorithm outputs.

Case 3 derives from case 2 by introducing a further
dependence of the first node of group A from the last
node of group B: again, the combination of the DCI and
the sieving algorithm detects the interface nodes and the
underlining dynamical system organization. Note that the
asymmetry in transfer entropies (and therefore in D index)
are due to differences in the initial conditions of the boolean
network trajectories: a shift in initial conditions can change
the direction of this asymmetry.6

In case 4 five heterogeneously linked nodes are influenced
by a triplet identical to that of groupA. The combination of
the dynamical rules of the nodes and their initial condition
makes the dynamical behaviour of the sixth node always
in phase with the triplet, so our analysis individuates this
quartet as the most relevant CRS. The other dynamical
relations are not sufficiently strong to coordinate all the
8 nodes, nevertheless the method detects their influence
by returning some masks7 having high tc values, partially

6The interesting study of this effect is out of the scope of this
paper and is subject of future work; in any case, a brief exploration
of a limited set of initial conditions supports this preliminary claim
(data not shown).

7CRSs can be represented by rows, where entries corresponding

overlapped with the leading quartet. The overlap of these
masks indirectly indicates the presence of a greater group
with respect to the winning quartet, but having a less evident
dynamical presence (see Figure 1b).

Case 5 derives from case 1 by adding two nodes whose
dynamical behaviour directly depends on nodes of both
group A and group B: these 8 nodes form therefore a group
clearly different from the remaining 4 random nodes, as
they are interdependent and ruled by deterministic functions.
This group is identified by the plain DCI method, but the
combination of DCI and sieving algorithm strikingly en-
lightens the interpretation of two triplets directly influencing
a couple of nodes (Figure 1a).

Gene regulatory networks
In this section we show the application of our method
to two models of regulatory networks: a model of
mammalian cell cycle network (MCC in the following),
as “booleanized” in Fauré et al. (2006)—see Table 2 for the
chosen boolean model—and a model of one of the major
cellular signal transduction pathways, known as the Mito-
gen Activated Protein Kinase (MAPK) cascade (Widmann
et al., 1999). In Fauré et al. (2006) the authors provides a
boolean dynamical model of the mammalian cell cycle, able
to reproduce the main characteristics of the succession of
molecular events leading to the reproduction of the genome
of a cell and its division into two daughter cells.
Mammalian cell division must be coordinated with the
overall growth of the organism; this coordination is
achieved through extra-cellular signals whose balance de-
cides whether a cell will divide or remain in a resting state.
The positive signals or growth factors ultimately elicit the
activation of Cyclin D (CycD) in the cell. In the proposed
model CycD thus represents the input and its activity is con-
sidered constant. By pointing the interested reader to (Fauré
et al., 2006) for the details, for now it is enough to say that
in absence of CycD the system presents a unique stable at-
tractor where only Rb, p27 and Cdh1 are active, whereas in
its presence E2F, CycE, CycA, Cdc20, Cdh1, UbcH10 and
CycB cycle with a period of length 7. We perturbed both
asymptotic states, obtaining in each case only one group
(composed of E2F, CycE, CycA, Cdc20, Cdh1, UbcH10 and
CycB in the first case, and of Rb, E2F, p27, Cdc20, UbcH10
and CycB in the second case). The leading groups of the
two situations are different, but in each case the other CRS
identified overlap with these groups and their sum cover the
whole system, indicating the presence of a single coordi-
nated pattern. So, the analysis indicates that the elements of
the mammalian cell cycle network act as a single compact
engine, see Figure2a.

to variables belonging to CRS are marked in black ( “masks” in the
following)
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Node Node Rule
Case 1 Case 2 Case 3 Case 4 Case 5

N01 Random(0.5) Random(0.5) Random(0.5) Random(0.5) Random(0.5)
N02 Random(0.5) Random(0.5) Random(0.5) Random(0.5) Random(0.5)
N03 (N04 ⊕ N05) (N04 ⊕ N05) N10∧(N04 ⊕ N05) (N04 ⊕ N05) (N04 ⊕ N05)
N04 (N03 ⊕ N05) (N03 ⊕ N05) (N03 ⊕ N05) (N03 ⊕ N05) (N03 ⊕ N05)
N05 (N03 ⊕ N04) (N03 ⊕ N04) (N03 ⊕ N04) (N03 ⊕ N04) (N03 ⊕ N04)
N06 Random(0.5) Random(0.5) Random(0.5) (N05 ⊕ N08) (N05 ⊕ N08)
N07 Random(0.5) Random(0.5) Random(0.5) (N07+N08+N09+N10) ≥ 2 ¬(N05 ⊕ N08)
N08 (N09 ⊕ N10) N05∧(N09 ⊕ N10) N05∧(N09 ⊕ N10) N03 ⊕ N05 N09 ⊕ N10
N09 (N08 ⊕ N10) (N08 ⊕ N10) (N08 ⊕ N10) (N04+N05+N07+N08)≤ 2 (N08 ⊕ N10)
N10 (N08 ⊕ N09) (N08 ⊕ N09) (N08 ⊕ N09) N06∧(N05 ⊕ N09) (N08 ⊕ N09)
N11 Random(0.5) Random(0.5) Random(0.5) Random(0.5) Random(0.5)
N12 Random(0.5) Random(0.5) Random(0.5) Random(0.5) Random(0.5)

Table 1: The update rules of the boolean networks discussed on the text. Random(0.5) denotes a Bernoulli distribution with
probability 0.5.

(a) (b)

Figure 1: (a) The dynamical organization of the systems described in the text; on the edges, the Transfer Entropy, and on the
nodes the D index. Group C in case 5 has two values for the D index, each value depicting the group C role in the relation with
group A and group B, respectively. (b) The CRS identified by the DCI only in some systems described in the text. Each row
denotes one CRS, composed of nodes whose entries are marked in black; on the right, the value of tc. Note that in case 2 the
third row is the correct identification of group B, and that in case 3 the third and fourth rows are group A and group B. For case
4 the output of the combination of the DCI analysis and sieving algorithm are presented; note that besides the correct group
formed by nodes N03–N06 other CRS have high tc values, highlighting the presence of a larger but less evident dynamical
group.

Product Logical Rule leading to an activity of product Legend
CycD CycD Cyclin D
Rb (CycD ∧ CycE ∧ CycA ∧ CycB) ∨ (p27 ∧ CycD ∧ CycB) Retinoblastoma Protein
E2F (rB ∧ CycA ∧ CycB) ∨ (p27 ∧ rB ∧ CycB) Transcription factors
CycE (E2F ∧ rB) Cyclin E
CycA (E2F ∧ rB ∧ Cdc20 ∧ Cdh1 ∧ Ubc) ∨ (CycA ∧RB ∧ Cdc20 ∧ Cdh1 ∧ Ubc) Cyclin A
p27 (CycD ∧ CycE ∧ CycA ∧ CycB) ∨ (p27 ∧ CycE ∧ CycA ∧ CycB ∧ CycD) p27 enzyme inhibitor

Cdc20 CycB Activators of the Anaphase
Promoting ComplexCdh1 (CycA ∧ CycB) ∨ (Cdc20) ∨ (p27 ∧ CycB)

Ubc (Cdh1) ∨ (Cdh1 ∧ Ubc ∧ (Cdc20 ∨ CycA ∨ CycB)) E2 ubiquitin conjungating
enzyme

CycB (Cdc20 ∧ Cdh1) Cyclin B

Table 2: Adapted from Fauré et al. (2006), the boolean regulatory network of mammalian cell cycle network and a short
description of each node of the system.
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Matabolic pathway MAPK
The MAPK pathway (evolutionarily conserved from yeasts
to humans) responds to a wide range of external stimuli, trig-
gering growth, cell division and proliferation (Sarma and
Ghosh, 2012). Sarma and Ghosh also introduce the mod-
els considered in our analysis. The basic model is composed
of reactions that are quite well-established from an experi-
mental viewpoint, and it has the hierarchical structure shown
in Figure 3a. The three chemicals identified as the core of
this three-layered system are the MAPKKK, MAPKK
and MAPK kinases (respectively M3K , M2K and MK
for short) (Widmann et al., 1999). M3K is activated by
means of a single phosphorylation whereas M2K and MK
are both activated by double phosphorylation. Parallel to
the phosphorylation by kinases, phosphatases present in the
cellular volume can dephosphorylate the phosphorylated ki-
nases (Figure 3a shows the schema of the MAPK cascade
where each layer of the cascade is dephosphorylated by a
specific phosphatase). Note that superimposed on the three-
layered structure of substrates-product reactions there is the
properly called MAPK signalling cascade, a linear chain
of catalysis (dashed lines in Figure 3a) that transmit the ex-
ternal signal from M3K∗ to MK∗∗.8

When the external signal and the concentrations of the
phosphatases are kept constant, a top-down reaction scheme
as the one described in Figure 3a leads to fixed-point solu-
tions. On the other hand, oscillations have been reported in
the MAPK cascade (Shin et al., 2009) and, in order to ac-
count for them, Sarma and Ghosh adopt a models with feed-
back, one of which is described in Figure 3b. This variant
(called S2 in the following) is characterized by a configura-
tion of the activating and inhibiting interactions among lay-
ers that alters the “layered” structure of the basic model,
which is no longer strictly hierarchical. This alternative
model is grounded on experimental data; we will not enter
here a discussion about the merits and limits of the model,
referring the interested reader to the original paper, but we
will take it “for granted” and we will apply our method to
test whether it can discover significant dynamical organiza-
tion, without any prior knowledge of the interactions, but on
the sole basis of the dynamics of concentrations. We sim-
ulated the Sarma and Ghosh models with the CellDesigner
software (Funahashi et al., 2008, 2003), keeping the P1, P2
and P3 phosphatases as constant (as they do) obtaining the
same asymptotic states shown by the authors. In order to ap-
ply our method we perturbed the asymptotic states of these
models: in particular, we focused our analysis on kinases
perturbations.9 The stable situations that are reached can

8The symbol “∗” indicates the phophorylated version of the
molecule.

9In particular we performed 10 perturbation cycles, each cycle
involving the perturbation of each single kinase and the successive
relaxing to a stable situation before the subsequent perturbation,
see Villani et al. (2015) for details.

Figure 4: The dynamical organization of MAPK system (ba-
sic model and S2 version). In italic the Transfer Entropy, in
bold the D index associated to the interested group within
the relation. M1 group involves the first layer of 3a; M2
group involves the second layer, whereas groups M2 3 and
M1 3 involve respectively the layers 2 and 3, and 1 and 3.

show both oscillating (S2 system) or constant concentrations
(basic system). Concentration changes are more significant
than their absolute values (it is important to monitor the vari-
ables that are changing in coordinate way); therefore the
continuous concentration values are represented according
to a three levels code related to the sign of the time deriva-
tives at time t ( “decreasing concentration”, “no significant
change”, “increasing concentration”).
The combination of DCI and sieving algorithm applied to
the basic MAPK model detects two dynamical groups: the
first including the first layer of Figure 3a and the second
including the other two layers. The two groups exchange in-
formation, the second transmitting more information to the
first one (see Figure 4). The introduction of the feedbacks
changes system dynamics: there are still two dynamically
relevant groups, now composed of the second layer and by
the other two layers, respectively. The analysis therefore
suggests that the MAPK system may be decomposed in two
dynamically distinct parts.

Conclusions

In this paper we have presented an improvement of a method
based on information-theoretical measures able to identify
the most relevant groups of variables that impact the dy-
namics of a system. We first introduced a sieving algorithm
which makes it possible to identify the groups of variable
that are responsible for system dynamics. Moreover, we
show that it is possible to recover the direction of informa-
tion flow among these groups, thus characterising the dy-
namical organisation of the system.

With respect to this, we noted that better normalisation
methods can be applied to improve the algorithms efficacy:
these methods are subject of ongoing work.

Finally, the effectiveness of this combination of tech-
niques has been validated on test cases and subsequently
applied to two prominent biological models, i.e. the mam-
malian cell cycle network and of Mitogen Activated Protein
Kinase (MAPK) cascade.
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Figure 2: The masks identify by the combination of the DCI and the sieving algorithm for (a) the Mitogen Activated Protein
Kinase (MAPK) cascade and (b) the two dynamical conditions of the mammalian cell cycle network. In each situation only the
masks having significantly high tC values are represented.

Figure 3: (A) Basic model: the scheme of the three layers MAPK cascade reaction pathway is represented ( “*” stands for
the phosphorylation). The signal catalyzes the phosphorylation of M3K to M3K* that in turn catalyzes the phosphorylation of
M2K to M2K* and the successive phosphorylation of M2K* to M2K**. Finally M2K** performs the double phosphorylation
of MK in MK** that is the final output of the MAPK cascade. P1, P2 and P3 dephosphorylate M3K, M2K and MK kinases
respectively. V1-V10 stand for the involved reactions. Dashed lines with circle head represent catalysis; the figure highlights
the presence of the three “layers” described on the text. (B) Two distinct positive and negative feedbacks are added to the basic
model: the negative feedback goes from MK** to the second layer (M2K, M2K* and M2K**) while the positive feedback goes
from MK** to the first layer (M3, M3K*).
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Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Esti-
mating mutual information. Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, 69(6 2).

Lautier, D. and Raynaud, F. (2014). Information flows in the term
structure of commodity prices. Available at SSRN 2430168.

Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J. D., and
Prokopenko, M. (2011). Multivariate information-theoretic
measures reveal directed information structure and task rele-
vant changes in fMRI connectivity. Journal of Computational
Neuroscience, 30(1):85–107.

Lizier, J. T. and Prokopenko, M. (2010). Differentiating informa-
tion transfer and causal effect. European Physical Journal B,
73(4):605–615.

Sarma, U. and Ghosh, I. (2012). Oscillations in MAPK cascade
triggered by two distinct designs of coupled positive and neg-
ative feedback loops. BMC research notes, 5(1):287.

Schreiber, T. (2000). Measuring information transfer. Physical
review letters, 85(2):461–4.

Serra, R., Villani, M., Graudenzi, A., and Kauffman, S. A. (2007).
Why a simple model of genetic regulatory networks describes
the distribution of avalanches in gene expression data. J Theor
Biol, 246:449–460.

Serra, R., Villani, M., and Semeria, A. (2004). Genetic network
models and statistical properties of gene expression data in
knock-out experiments. J Theor Biol, 227:149–157.

Shin, S.-Y., Rath, O., Choo, S.-M., Fee, F., McFerran, B., Kolch,
W., and Cho, K.-H. (2009). Positive- and negative-feedback
regulations coordinate the dynamic behavior of the Ras-Raf-
MEK-ERK signal transduction pathway. Journal of cell
science, 122:425–435.

Shmulevich, I., Kauffman, S. A., and Aldana, M. (2005). Eukary-
otic cells are dynamically ordered or critical but not chaotic.
Proceedings of the National Academy of Sciences of the
United States of America, 102:13439–13444.

Tononi, G., McIntosh, a. R., Russell, D. P., and Edelman, G. M.
(1998). Functional clustering: identifying strongly interactive
brain regions in neuroimaging data. NeuroImage, 7(2):133–
49.

Villani, M., Barbieri, A., and Serra, R. (2011). A dynamical model
of genetic networks for cell differentiation. PLoS ONE, 6.

Villani, M., Filisetti, A., Benedettini, S., Roli, A., Lane, D., and
Serra, R. (2013). The detection of intermediate-level emer-
gent structures and patterns. In Advances in Artificial Life,
ECAL 2013, volume 12, pages 372–378. MIT Press.

Villani, M., Roli, A., Filisetti, A., Fiorucci, M., Poli, I., and Serra,
R. (2015). The search for candidate relevant subsets of vari-
ables in complex systems. In Press on Artificial Life.

Villani, M. and Serra, R. (2013). On the dynamical properties
of a model of cell differentiation. EURASIP journal on
bioinformatics & systems biology, 2013:4.

Widmann, C., Gibson, S., Jarpe, M. B., and Johnson, G. L. (1999).
Mitogen-activated protein kinase: conservation of a three-
kinase module from yeast to human. Physiological reviews,
79(1):143–80.

Alessandro Filisetti, Marco Villani, Andrea Roli, Marco Fiorucci, Roberto Serra (2015) Exploring the organisation of complex
systems through the dynamical interactions among their relevant subsets. Proceedings of the European Conference on
Artificial Life 2015, pp. 286-293




