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Abstract

In this paper we present a novel algorithm to synthesize an optimal decision

tree from OR-decision tables, an extension of standard decision tables, com-

plete with the formal proof of optimality and computational cost analysis. As

many problems which require to recognize particular patterns can be modeled

with this formalism, we select two common binary image processing algorithms,

namely connected components labeling and thinning, to show how these can be

represented with decision tables, and the benefits of their implementation as

optimal decision trees in terms of reduced memory accesses. Experiments are

reported, to show the computational time improvements over state of the art

implementations.

Keywords: Decision trees; Decision tables; Connected components labeling;

Thinning.

1. Introduction1

Decision tables are a formalism used to describe the behavior of a system2

whose state can be represented by the outcome of testing certain conditions.3

Given a particular state, the system performs a set of actions. Each line of the4

table is a rule, which drives an action.5
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A large class of image processing algorithms naturally leads to a decision6

table specification, such as all those algorithms in which the output value for7

each image pixel is obtained from the value of the pixel itself and of some of its8

neighbors. We refer to this class as local algorithms. In particular for binary9

images, we can model local algorithms by means of decision tables, in which the10

pixels values are the conditions to be tested and the output is chosen by the11

action corresponding to the conditions outcome.12

Decision tables may be converted to decision trees in order to generate a13

compact procedure to select the action to perform. Different decision trees for14

the same decision table might lead to more or less tests to be performed, and15

therefore to a higher or lower execution cost. The optimal decision tree is the16

one that requires on average the minimum cost when deciding which action17

execute [1].18

In [2] we introduced a novel form of decision tables, namely OR-Decision Ta-19

bles, which allow to include the representation of equivalent actions for a single20

rule. An heuristic to derive a decision tree for such decision tables was given,21

without guarantees on how good the derived tree was. In this paper, we further22

develop that formalism by providing an exact dynamic programming algorithm23

to derive optimal decision trees for such decision tables. The algorithm comes24

with a formal proof of correctness and study of computational cost.25

2. Preliminaries and notation26

A decision table is a tabular form that presents a set of conditions which27

must be tested and a list of corresponding actions to be performed: each row28

corresponds to a particular outcome for the conditions and it is called rule, each29

column corresponds to a particular set of actions to be performed. Different30

rules might have different probability to occur and testing conditions might be31

more o less expensive to test. We will call a decision table an AND-decision32

table if all the actions in a row must be executed when the corresponding rule33

occurs, instead we will call it an OR-decision table if any of the actions in a row34
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might be executed.35

Schumacher et al. [1] proposed a bottom-up Dynamic Programming tech-36

nique which guarantees to find the optimal decision tree given an expanded37

limited entry (binary) decision table, in which each row contains only one non-38

zero value. Lew [3] gives a Dynamic Programming approach for the case of39

extended entry and compressed AND-decision tables. In this paper, we extend40

Schumacher’s approach to OR-decision tables. A preliminary version of this41

algorithm appeared in [4], where no proof of correctness was given.42

In the following we will think of the set of rules as an L-dimensional Boolean43

space denoted by R, where L ∈ N is the given number of conditions. Testing44

conditions will be represented by position indexes of vectors in R, i.e. indexes in45

[1 . . . L]. Given any vector in R, a weight wi is associated to each position index46

i ∈ [1 . . . L], representing the cost of testing the condition in that particular47

position. Each vector in r ∈ R has a given probability pr ≥ 0 to occur, such48

that
∑

r∈R pr = 1.49

We will call set K ⊆ R a k-cube if it is a cube in {0, 1}L of dimension k, and50

it will be represented as a L-vector containing k dashes (−) and L − k values51

0’s and 1’s. The set of positions in which the vector contains dashes will be52

denoted as DK . The occurrence probability of the k-cube K is the probability53

PK of any element in K to occur, i.e. PK =
∑

r∈K pr. The set of all k-cubes,54

for each k = 0, . . . , L, will be denoted with Kk.55

Definition 1 (Extended Limited Entry OR-Decision Table). Given a set56

of actions A, an extended limited entry OR-decision table is the description of57

a function DT : R → 2A \ {∅}, meaning that any action in DT (r) might be58

executed when r ∈ R occurs.59

Given an OR-Decision Table DT and a k-cube K ∈ R, set AK denotes60

the actions (if any) that are common to all rules in K according to DT ; i.e.61

AK = ∩r∈KDT (r) (might be an empty set) .62

Definition 2 (Decision Tree). Given an OR-Decision Table DT and a k-63

cube K ⊆ R, a Decision Tree for K, according to DT , is a binary tree T with64
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the following properties:65

1. Each leaf ` corresponds to a k-cube, denoted by K`, that is a subset of K.66

The cubes associated to the set of leaves of the tree are a partition of K.67

Each leaf ` is associated to a non empty set of actions AK`
, associated68

to cube K` by function DT . Each internal node is labeled with an index69

i ∈ DK (i.e. there is a dash at position i in the vector representation of70

K) and is weighted by wi. Left (resp. right) outgoing edges are labeled71

with 0 (resp. 1).72

2. Two distinct nodes on the same root-leaf path can not have the same label.73

Root-leaf paths univocally identify, by means of nodes and edges labels, the74

(vector representation of the) cubes associated to leaves: positions labeling75

nodes on the path must be set to the value of the label on the corresponding76

outgoing edges, the remaining positions are set to a dash.77

When using decision tables to determine which action to execute, we need78

to know the value assumed by exactly L conditions to identify the row of the79

table that corresponds to the occurred rule. On the contrary, when we use a80

decision tree (derived form the decision table) we only have to know the values81

assumed by the conditions whose indexes label the root-leaf path leading to a82

leaf associated to the cube that contains the occurred rule. This path might be83

shorter than L, therefore using the tree we avoid to test the conditions that are84

not on the root-leaf path. The sum of the weights of the missing conditions gives85

an indication of the gain that we have, concerning that particular rule, in using86

the tree instead of the table. On average, the gain in making a decision is given87

by the sum of the gains given by rules in leaves, weighted by the probability88

that the rules associated to leaves occur; for this reason, the gain of a tree is a89

measure of the weights of the conditions that, on the average, we do not have90

to test in order to decide which actions to take when rules occur.91

Definition 3 (Gain of a Decision Tree). Given a k-cube K and a decision92
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tree T for K, the gain of T is defined in the following way:93

gain(T ) =
∑
`∈L

PK`

∑
i∈DK`

wi

 , (1)

where L is the set of leaves of the tree, DK`
⊆ DK ⊆ [1 . . . L] is the set of position94

in which cube K` have dashes and the wis are their corresponding weights. An95

Optimal Decision Tree for k-cube K is a decision tree for the cube with maximum96

gain (might not be unique).97

Observation 1. Given the definition of gain, we observe that:98

1. If PK = 0 for cube K, any decision tree for K has gain equal to zero as no99

element of the cube will ever occur. Moreover, a single leaf is the smallest100

possible tree representation of such a cube.101

2. If a tree is a leaf `, the gain of a leaf is well defined, as the summation in102

Eq. 1 has exactly one term, and K = K` .103

3. If a leaf ` corresponds to a 0-cube K` (meaning that all conditions must be104

tested), then the summation over indexes in DK`
is empty (being |DK`

| =105

0) and the gain of the leaf is zero.106

4. If a leaf has probability zero to occur, the gain is zero again. This makes107

sense, as there is no possible gain coming from rules that will never occur.108

3. Optimal Decision Tree Generation from OR-Decision Tables109

In order to derive a decision tree for a k-cube K it is possible to recursively110

proceed in the following way: select an index j ∈ DK (i.e. that is set to a dash)111

and make the root of the tree a node labeled with index j. Partition the cube K112

into two cubes Kj,0 and Kj,1 such that dash in position j is set to zero in Kj,0113

and to one in Kj,1. Recursively build decision trees for the two cubes of the114

partition, then make them the left and right children of the root, respectively.115

Recursion stops when the set of actions associated to a cube is non empty (i.e.116

AK 6= {∅}).117
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The gain of the obtained tree is strongly affected by the order used to select118

the index that determines the cube partition. A tree-compatible partition is119

a partition of cube K done according to an index j in DK , in which index120

j distinguishes between Kj,0 and Kj,1. There are k distinct tree-compatible121

partition for any k-cube K, one for each different index in DK . Moreover, each122

subcube of the partition has dashes in the same positions given by set DK \{j}.123

All rules of one subcube have condition in position j set to zero, while those in124

the other subcube have that condition set to one.125

Proposition 1. Given a k-cube K and any tree-compatible partition {Kj,0,Kj,1}126

for K we have127

PK = PKj,0 + PKj,1 and AK = AKj,0 ∩AKj,1 . (2)

Proof. The proof follows directly from the fact that {Kj,0,Kj,1} is a partition128

of K and from definitions of PK and Ak. �129

Observe that not all cube partitions are suitable for decision tree construc-130

tion, only tree-compatible ones are. Consider, for example, cube K = {00, 01, 10, 11}131

and the non tree-compatible partition K ′ = {00},K ′′ = {01, 10, 11}. As-132

sume that the intersection of actions associated to the cubes is empty (i.e.133

AK′ ∩ AK′′ = {∅}). Hence, the decision tree must have at least one internal134

node. Assume we label the node with index i = 1. To satisfy decision trees135

properties, rules of K ′ are to be placed in the subtree reached by following the136

outgoing arc labeled with zero, while rules of K ′′ should be placed in the subtree137

reached by following the outgoing arc labeled with one. But this is not possible138

as rule 01 ∈ K ′′ would be misplaced (it should be reached by following the out-139

going arc labeled with one). Analogously, assume we label the node with index140

i = 2, then rules of K ′ belong to the subtrees reached by following the outgoing141

arc labeled with zero to satisfy decision trees property, and hence rules in K ′′142

are to be placed in the subtree reached by following the outgoing arc labeled143

with one. Again, this is impossible, as rule 10 ∈ K ′′ is misplaced.144
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3.1. Dynamic Programming Algorithm145

An optimal decision tree can be computed using a generalization of the146

Dynamic Programming strategy introduced by Schumacher et al. [1]: starting147

from 0-cubes and for increasing dimension of cubes, the algorithm computes the148

gain of all possible trees for all cubes and keeps track only of the ones having149

maximum gain. The pseudo-code is given in Algorithm 1.150

To prove the algorithm correctness we first concentrate on leaves, than we151

move forward to trees with internal nodes.152

Lemma 1. Given an OR-Decision Table DT and a k-cube K (for some 0 ≤153

k ≤ L), let AK be the set of actions associated by DT to cube K. If PK 6= 0 and154

AK 6= {∅}, then the optimal decision tree for K is unique and it is composed of155

only one node (a leaf).156

Proof. Assume, by contradiction, that there exist an optimal decision tree T157

for K with more than one node and such that gain(T ) = OPT is optimal.158

Then, there must exist two sibling leaves `0 and `1 such that:159

1. P`0 > 0 or P`1 > 0 (if such a pair does not exist, then it must be PK = 0,160

contradiction);161

2. dashes of their corresponding cubes are in positions in set D ⊆ DK (being162

siblings, the set of positions is the same) such that |D| = |DK | − 1;163

3. their parent is node v, labeled with i, for some 1 ≤ i ≤ L and i 6∈ D;164

4. A`0 ∩A`1 ⊇ AK 6= {∅}.165

Build a new decision tree T ′ for K by replacing node v in T with a new leaf `166

corresponding to the cube K`0∪K`1 , and associate set of actions A`0∩A`1 6= {∅}.167

The set of leaves of the new tree T ′ is given by ((L \ (`0 ∪ `1)) ∪ {`}) and the168
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Algorithm 1 MGDT - Maximum Gain Decision Tree for OR-Decision Tables

1: for K ∈ R do . Initialization of 0-cubes in R ∈ K0

2: Gain∗K ← 0
3: AK ← DT (K) . the set of actions associated to rule K by the OR-decision

table
4: PK ← pK . the occurrence probability of rule K
5: end for
6: for n ∈ [1, L] do . for all possible cube dimensions > 0
7: for K ∈ Kn do . for all possible cubes with n dashes

. compute current cube probability and set of actions by means of a
tree-compatible partition

8: PK ← PKj,0 + PKj,1 . where j is any index in DK

9: AK ← AKj,0 ∩AKj,1

10: if PK = 0 then
11: Gain∗K ← 0
12: else
13: if AK 6= ∅ then
14: Gain∗K ← wjPK +Gain∗Kj,0

+Gain∗Kj,1

15: else. compute gains obtained by tree-compatible partitions, one at the
time

16: for i ∈ DK do . for all positions set to a dash
17: GainK(i)← Gain∗Ki,0

+Gain∗Ki,1

18: end for
. keep the best gain and its index

19: i∗K ← argmaxi∈DK
GainK(i)

20: Gain∗K ← GainK(i∗K)
21: end if
22: end if
23: end for
24: end for
25: BuildTree(R) . recursively build tree on entire set of rules R ∈ KL

26: procedure BuildTree(K)
27: if PK = 0 or AK 6= ∅ then

. create leaf corresponding to cube K and associated to set of actions AK

28: CreateLeaf(AK)
29: else

. recursively build trees on subcubes given by tree-compatible partition
distinguished by index i∗K

30: left← BuildTree(Ki∗
K

,0)
31: right← BuildTree(Ki∗

K
,1)

. create internal node labeled by index i∗K , with subtrees build by recursive calls
32: CreateNode(i∗K , left, right)
33: end if
34: end procedure
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gain of T ′ might be computed in the following way:169

gain(T ′) = gain(T )− [gain(`0) + gain(`1)] + gain(`)

= OPT −

P`0

∑
j∈D

wj + P`1

∑
j∈D

wj

 +

+P`

∑
j∈D∪{i}

wj

= OPT + P`wi > OPT, (3)

as P` = P`0 + P`1 > 0 and wi > 0. Contradiction, T was supposed to have170

maximum gain. �171

Lemma 2. Given an OR-Decision Table DT and a k-cube K (for some 0 ≤172

k ≤ L), let AK be the set of actions associated by DT to cube K. If PK 6= 0173

and AK 6= {∅}, then algorithm MGDT associates to cube K a Gain∗K such that174

Gain∗K = PK

∑
i∈DK

wi. (4)

Proof. Proof is by induction on cube dimension. Base case: For 0-cubes we175

have (line 2) Gain∗K = 0 = PK

∑
i∈DK

wi, as DK = {∅}. Inductive hypothesis:176

assume they are true for cubes such that PK 6= 0 and AK 6= {∅}, having177

dimension up to k−1. Inductive step: Consider k-cube K such that k > 0, PK 6=178

0 and AK 6= {∅}. Then algorithm MGDT computes Gain∗K according to line 14.179

Observe that, for any j ∈ DK , the tree-compatible partition {Kj,0,Kj,1} has the180

following properties: (1) Kj,0 and Kj,1 are (k−1)-cubes; (2) PKj,0
+PKj,1

= PK181

and max{PKj,0
, PKj,1

} > 0; (3) AKj,0
, AKj,1

6= {∅} and (4) DKj,0
= DKj,1

=182

DK \ {j}.183

Suppose at first that PKj,0 , PKj,1 > 0, hence, inductive hypothesis applies to184

both Kj,0 and Kj,1 and185
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Gain∗K = wjPK + Gain∗Kj,0
+ Gain∗Kj,1

(line 14)

using the inductive hypotesis

= wjPK + PKj,0

∑
i∈DK\{j}

wi + PKj,1

∑
i∈DK\{j}

wi

= PK

∑
i∈DK

wi.

Without loss of generality, suppose now that PKj,0 = 0 and PKj,1 > 0, then186

inductive hypothesis applies only to Kj,1, PK = PKj,1
and Gain∗Kj,0

= 0 (lines187

10-11). We have188

Gain∗K = wjPK + Gain∗Kj,1
(line 14)

using the inductive hypothesis

= wjPK + PK

∑
i∈DK\{j}

wi

= PK

∑
i∈DK

wi.

�189

Corollary 1. If PK = 0 or AK 6= {∅}, procedure BuildTree(K) computes an190

optimal decision tree for K with only one leaf.191

Proof. If PK = 0, the algorithm associates to K a gain equal to zero (lines192

10-11) and builds a tree that is a single leaf (line 28), optimal by definition and193

observation 1.1.194

If AK 6= {∅} and PK 6= 0, then by Lemma 1 the optimal tree must be a195

leaf. The algorithm builds a tree that is a single leaf (line 28) to which it is196

associated the gain of Equation (4) that is the definition of gain in the case in197

which the tree is a leaf. �198
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Lemma 3. Given an OR-Decision Table DT and a k-cube K such that P 6= 0

and AK = 0, let T be a decision tree for K of height h ≥ 1 and let T0 and T1

be the subtrees of T . The gain of the tree might be recursively computed in the

following way:

gain(T ) = gain(T0) + gain(T1).

Proof. Let L (resp. L0,L1) be the set of leaves of T (resp. T0, T1). We have199

that L = L0 ∪ L1, regardless form the fact that T0 or T1 are leaves or proper200

subtrees. We have201

gain(T0) + gain(T1)

=
∑
`∈L0

PK`

∑
j∈D`

wj

 +
∑
`∈L1

PK`

∑
j∈D`

wj


=

∑
`∈{L0∪L1}

PK`

∑
j∈D`

wj

 = gain(T ).

�202

Corollary 2. The maximum gain achievable by a decision tree for K is203

max
i∈DK

(gain(Ki,0) + gain(Ki,1)). (5)

Corollary 3. If PK 6= 0 and AK = {∅}, procedure BuildTree(K) computes204

the optimal decision tree for K.205

Finally, we can conclude that206

Theorem 1. Given an expanded limited entry OR-Decision Table DT : {0, 1}L →207

2A \ {∅}, algorithm MGDT computes an optimal decision tree.208

3.2. Computational time209

The algorithm considers 3L cubes, one for all possible words of length L on210

the three letter alphabet {0, 1,−} (for cycles in lines 6 and 7). In the worst211
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case, for cube K of dimension n it computes: (1) the intersection of the actions212

associated to the cubes in one tree-compatible partition (line 9); this task can213

be accomplished, in the worst case, in time linear with the number of actions.214

(2) n gains, one for each index in DK (lines 16 - 18), each in constant time.215

The final recursive procedure for tree construction adds, in the worst case216

(in which a complete binary tree is constructed) an O(2L) term. Hence, the217

computational time of the algorithm is upper bounded by:218

3L · (L + |A|) + 2L ∈ O(3L ·max{L, |A|}). (6)

3.3. About different types of decision tables219

In literature other decision tables have been studied, representing functions220

having different domain or co-domain and different meaning.221

Decision tables considered in [1] are description of functions DT : R → A,222

meaning that exactly one action to execute when rules occur. Therefore, these223

are a special case of the OR-decision tables considered in this paper (as A ⊂ 2A)224

and our algorithm can be applied to those decision tables as well. In this case,225

however, the intersection of the set of actions can be accomplished in O(1)226

computational time, leading to a tighter upper bound of the total computational227

running time, i.e. O(3L · L).228

AND-decision tables describe functions DT : R→ 2A\{∅}, meaning that all229

actions in DT (r) must be executed when rule r occurs, contrarily to what hap-230

pens with OR-decision tables in which any action might be executed. Neverthe-231

less, our algorithm might be applied also in this case with a simple pre-processing232

of the decision table: build a new set of composed-actions A = {DT (r)|r ∈ R}233

and consider the OR-decision table that associates to rule r the composed-action234

DT (r). In in this case, the worst case computational running time is upper-235

bounded by O(2L · 2|A| + 3L · L), where the first term comes from the table236

pre-processing (once this is done, intersections of the set of actions might be237

accomplished in O(1) also in this case).238

Compressed OR-Decision tables DT : ∪i∈[0..L]Ki → 2A \ {∅} assign a set239
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of actions to cubes of rules. One might think that the algorithm might be240

used also in this case, by just making a leaf associated to all the rules in the241

cube that corresponds to a compressed rule. In Figure 1 we give a very simple242

example showing that, this approach, does not lead to the optimal decision tree.243

Hence, to derive a decision tree starting from a compressed table, we first have244

to expand the table (and might get a new table with size exponential in the size245

of the original one) or use a different approach.246

1
1 a2c2c1

0
0

0
1

1 x

x
x

x

Conditions Actions

c1

c2

c2
01

011

0001

Gain = 1/2

gain = 0 gain = 0 

gain = 1/2
actions: a , a

action: a2 action: a

2

1

01

1 0

Gain = 1

gain=1/2 gain=1/2
action: a2 action: a1

a

Figure 1: |L| = |A| = 2, wi = 1 for all conditions, pi = 1/4 for all rules, action a1 associated
to rule 01, actions {a1, a2} to rules 1−, action a2 to rule 00. The tree build by taking 1− as
a “block” has gain 1/2, if we split the block we get a greater gain of 1.

4. Decision Tables Applied to Image Processing Problems247

In this section we show how the described approach can be effectively applied248

to two common image processing tasks: connected components labeling and249

thinning. The former requires the use of OR-decision tables, while the latter250

only requires two mutually exclusive actions, thus implicitly leads to a single251

entry decision table. Anyway, both can be improved by the application of the252

proposed technique.253

4.1. Connected components labeling254

Labeling algorithms take care of the assignment of a unique identifier (an255

integer value, namely label) to every connected component of the image, in256

order to give the possibility to refer to it in the next processing steps. This is257

classically performed in 3 steps [5]: provisional labels assignment and collection258

of label equivalences, equivalences resolution, and final label assignment.259
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The procedure of collecting labels and solving equivalences may be described260

by a command execution metaphor : the current and neighboring pixels provide261

a binary command word, interpreting foreground pixels as 1s and background262

pixels as 0s. A different action must be taken based on the command received.263

We may identify four different types of actions: no action is performed if the264

current pixel does not belong to the foreground, a new label is created when265

the neighborhood is only composed of background pixels, an assign action gives266

the current pixel the label of a neighbor when no conflict occurs (either only267

one pixel is foreground or all pixels share the same label), and finally a merge268

action is performed to solve an equivalence between two or more classes and269

a representative is assigned to the current pixel. The relation between the270

commands and the corresponding actions may be conveniently described by271

means of a decision table.272

As shown in [6], we can notice that, in algorithms with online equivalences273

resolution, already processed 8-connected foreground pixels cannot have dif-274

ferent labels. This allows to remove merge operations between these pixels,275

substituting them with assignments of either of the involved pixels labels. Ex-276

tending the same considerations throughout the whole rule set, we obtain the277

decision table of Fig. 2. Most of the merge operations are avoided, obtaining278

an OR-decision table with multiple alternatives between assign operations, and279

only in a single case between merge operations.280

When using 8-connection, the pixels of a 2 × 2 square are all connected to281

each other and a 2× 2 square is the largest set of pixels in which this property282

holds. This implies that all foreground pixels in a the block will share the same283

label. For this reason, scanning the image moving on a 2× 2 pixel grid has the284

advantage to allow the labeling of four pixels at the same time.285

Employing all necessary pixels in the enlarged neighborhood, we deal with286

L = 16 pixels(thus conditions), for a total amount of 216 possible combinations.287

Using the approach described in [2] leads to producing a decision tree containing288

210 nodes sparse over 14 levels, assuming all patterns occurred with the same289

probability and unitary cost for testing conditions. Instead, by using the algo-290
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of block based decision tree approach, from the initial proposal with heuristic selection be-
tween alternative rules (BBHDT ), further improved with the optimal decision tree generation
(BBOUDT ) and finally enhanced with a probabilistic weight of the rules (BBOPDT ).

rithm proposed in this work, under the same assumptions, we obtain a much291

more compressed tree with 136 nodes sparse over 14 levels: the complexity in292

terms of levels is the same, but the code footprint is much lighter. Moreover, the293

resulting tree is proven to be the optimal one (Fig. 4). To push the algorithm294

performances to its limits, it is possible to add an occurrence probability for295

each pattern (pr), which can be computed off-line as a preprocessing stage on a296

reference dataset.297

To test the performance of the optimal decision tree, we used a dataset of298

Otsu-binarized versions of 615 high resolution page images of the Holy Bible of299
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Figure 4: Optimal decision tree for BBOUDT method.

Borso d’Este, one of the most important Renaissance illuminated manuscript,300

composed by Gothic text, pictures and floral decorations. This dataset gives us301

the possibility to test the connected components labeling capabilities with very302

complex patterns at different sizes, with an average resolution of 10.4 megapixels303

and 35000 labels, providing a challenging dataset which heavily stresses the304

algorithms.305

We performed a comparison between the following approaches:306

• He et al. approach (He07 ), which highlights the benefits of the Union-Find307

algorithm for labels resolution and the use of a decision tree to optimize308

the memory access.309

• The block based approach with decision tree generated with heuristic se-310

lection between alternatives as previously proposed in [2] (BBHDT )311

• The block based approach with optimal decision tree generated with the312

procedure proposed in this work, assuming uniform distribution of pat-313

terns ( BBOUDT)314

• The block based approach with optimal decision tree with weighted pattern315

probabilities (BBOPDT )316

For each of these algorithms, the median time over five runs is kept in order to317

remove possible outliers due to other tasks performed by the operating system.318

All algorithms of course produced the same labeling on all images, and a uniform319
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cost is assumed for condition testing. The tests have been performed on a Intel320

Core 2 Duo E6420 processor, using a single core for the processing. The code321

is written in C++ and compiled on Windows 7 using Visual Studio 2008.322

As reported in Fig. 3, we confirm the significant performance speedup of the323

BBHDT, which shows a gain of roughly 29% over the previous state-of-the-art324

approach of He et al.. The optimal solution proposed in this work (BBODT)325

just slightly improves the performance of the algorithm. With the use of the326

probabilistic weight of the rules, in this case computed on the entire dataset, we327

can push the performance of the algorithm to its upper bound, showing that the328

optimal solution gains up to 3.4% of speedup over the original proposal. This329

last result, suggests that information about pattern occurrences should be used330

whenever available, or produced if possible.331

4.2. Image Thinning332

Thinning is a fundamental algorithm, often used in many computer vision333

tasks, such as document images understanding and OCR. A lot of algorithms334

have been detailed in literature to solve the problem, both in sequential or335

parallel fashion (according to the classification proposed by Lam et al. [7]).336

One the most famous algorithms was proposed by Zhang and Suen [8]. The337

algorithm (ZS) consists in a two subiterations procedure in which a foreground338

pixel is removed if a set of conditions is satisfied. Starting from the current339

pixel P1, the neighboring pixels are enumerated in clockwise order:340

P9 P2 P3

P8 P1 P4

P7 P6 P5

341

Let k = 0 during the first subiteration and k = 1 during the second one.342

Pixel P1 should be removed if the following conditions are true:343

a. 2 ≤ B(P1) ≤ 6344

b. A(P1) = 1345

c. P2 ∗ P4 ∗ P6 = 0 if k = 0346
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Figure 5: Decision trees for Zhang and Suen and Holt et al. thinning algorithms. The pixels
in the 4× 4 neighborhood are numbered in row major ordering, with current pixel being P5.

c’. P2 ∗ P4 ∗ P8 = 0 if k = 1347

d. P4 ∗ P6 ∗ P8 = 0 if k = 0348

d’. P2 ∗ P6 ∗ P8 = 0 if k = 1349

where A(P1) is the number of 01 patterns in clockwise order and B(P1) is the350

number of non zero neighbors of P1.351

Holt et al. [9] algorithm (HSCP) is built on the ZS algorithm by defining352

an edge function E(P ) which returns true if, browsing the neighborhood in353

clockwise order, there are one or more 00 patterns, one or more 11 patterns and354

exactly one 01 pattern. The algorithm thus has a single type of iteration which355

removes a foreground pixel if the following conditions are true:356
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1. E(P1) = 1357

2. E(P4) ∗ P2 ∗ P6 = 0358

3. E(P6) ∗ P8 ∗ P4 = 0359

4. E(P4) ∗ E(P5) ∗ E(P6) = 0360

It should be noted that the edge function requires checking all neighbors of the361

analyzed pixel, thus the window used by the HSCP algorithm has a size of 4×4.362

This algorithm reduces the number of iterations required, but the need to access363

more pixels makes it slower when implemented on sequential machines [10]364

These thinning techniques can be modeled as decision tables in which the365

conditions are given by the fact that a neighboring pixel belongs to the fore-366

ground, and the only two possible actions are removing the current pixel or not.367

The ZS algorithm has also another condition, that is the value of subiteration368

index k. This results in a 9 conditions decision table for the ZS algorithm (512369

rules) and 16 conditions (the pixels of a 4 × 4 window) for HSCP algorithm370

(65536 rules). We ran the dynamic programming algorithm obtaining the two371

optimal decision trees shown in Fig. 5. We ignored patterns probabilities in this372

test. These trees represent the best access order for the neighborhood of each373

pixel. The leaves of the trees are the two actions: 1 means “do nothing”, while374

2 means “remove”. The left branch should be taken if the pixel referred in a375

node is background, otherwise the algorithm should follow the right one.376

We compared the original ZS and HSCP with their version based on optimal377

decision trees. The procedures were used to thin a set of binary document im-378

ages, composed by 6105 high resolution scans of books taken from the Gutenberg379

Project [11], with an average amount of 1.3 millions of pixels. This is a typical380

application of document analysis and character recognition where thinning is a381

commonly employed preprocessing step.382

The results of the comparison are reported in Table 1. The use of the decision383

trees significantly improves the performance of both ZS and HSCP algorithms.384

A second important result is that on average HSCP, despite being slower then385

ZS on sequential machines, becomes the fastest approach when the memory386

19



Table 1: Comparison of the different thinning strategies and algorithms

Average ms fastest
ZS 1633 0%
ZS+Tree 1495 9%
HSCP 2493 0%
HSCP+Tree 1371 91%

access is optimized with our proposal. In fact in 91% of the cases, it turns387

out to be the fastest solution, mainly because the overall cost of an iteration is388

strongly reduced, thus the low number of iterations becomes the key factor in389

its success. With respect to the original ZS technique, the tree based version is390

around 10% faster, while HSCP is improved of around a 45%. This is supported391

by the observation that the larger the window, the higher the saving can be.392

HSCP+Tree is around 20% faster than the original ZS approach.393

5. Conclusions394

In this paper we presented a general modeling approach for local image395

processing problems, such as connected components labeling and thinning, by396

means of decision tables and decision trees. In particular, we leverage on OR-397

decision tables to formalize the situation in which multiple alternative actions398

could be performed, and proposed an algorithm to generate an optimal deci-399

sion tree from the decision table with a formal proof of optimality. The ex-400

perimental section evidence how our approach can lead to faster results than401

other techniques proposed in literature, and more importantly suggests how this402

methodology can be successfully applied to a lot of similar problems.403
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