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Dipartimento di Fisica, Università di Bologna, and INFN, Sezione di Bologna

Via Irnerio, 46 - Bologna I-40126, Italy

E-mail: bastianelli@bo.infn.it, corradini@bo.infn.it

Pablo A. G. Pisani

IFLP, Departamento de F́ısica, Facultad de Ciencias Exactas

UNLP, C.C. 67 (1900), La Plata, Argentina

E-mail: pisani@obelix.fisica.unlp.edu.ar

Abstract: We study a worldline approach to quantum field theories on flat manifolds

with boundaries. We consider the concrete case of a scalar field propagating on R+×R
D−1

which leads us to study the associated heat kernel through a one dimensional (worldline)

path integral. To calculate the latter we map it onto an auxiliary path integral on the full

R
D using an image charge. The main technical difficulty lies in the fact that a smooth

potential on R+×R
D−1 extends to a potential which generically fails to be smooth on R

D.

This implies that standard perturbative methods fail and must be improved. We propose a

method to deal with this situation. As a result we recover the known heat kernel coefficients

on a flat manifold with geodesic boundary, and compute two additional ones, A3 and A 7
2
.

The calculation becomes sensibly harder as the perturbative order increases, and we are

able to identify the complete A 7
2

with the help of a suitable toy model. Our findings show

that the worldline approach is viable on manifolds with boundaries. Certainly, it would

be desirable to improve our method of implementing the worldline approach to further

simplify the perturbative calculations that arise in the presence of non-smooth potentials.
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1. Introduction

The worldline approach to quantum field theory (QFT) has been extensively used to sim-

plify calculations of many physical quantities like amplitudes, anomalies and effective ac-

tions, see [1] for a review. Recently this method has been extended to include the couplings

of particles of spin 0, 1/2 and 1 to external gravity [2 – 4] together with some new appli-

cations [5]. Extensions to higher spin fields is also under study [6]. In this paper we

investigate the possibility of using a worldline approach to quantum field theories defined

on manifolds with boundaries. Previous investigations of the worldline path integral ap-

proach on manifolds with boundaries have already been carried out by using numerical

Monte Carlo simulations and successfully applied to Casimir energy calculations [7, 8].

QFTs on manifolds with boundaries have always attracted a certain interest, with ap-

plications ranging from Casimir energies to critical phenomena near boundaries, including

worldsheet approaches to open strings. More recently, they have drawn attention in the

context of the Horava-Witten theory [9] and in the brane world scenarios, as for example

in [10]. Thus, it seems useful to investigate and develop new calculational tools that may

be used to study the properties of QFT with boundaries.

We investigate here an analytical approach based on first quantization, where a path

integral over the coordinates of the field quanta is introduced. To reach directly the heart

of the problem, we consider the case of a scalar field φ defined on a flat space with geodesic

boundary, the D-dimensional manifold M = R+ × R
D−1. We use euclidean conventions

and consider a generic potential U(φ). The QFT action is given by

SQFT[φ] =

∫

M
dDx

(

1

2
∂µφ∂µφ + U(φ)

)

(1.1)
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Figure 1: Quantum paths from the initial

point A to the final point B, in the flat space

M with boundary ∂M.

Figure 2: The image charge method: the

bouncing path of figure 1 is mapped onto the

path A → I(B).

and after specifying suitable boundary conditions (e.g. Dirichlet or Neumann) one may

compute the corresponding one-loop effective action, which can be represented as

Γ[φ] =− log Det−
1
2 [−¤ + U ′′(φ)] = −1

2

∫ ∞

0

dT

T
Tr e−T (−¤+U ′′(φ))

=−1

2

∫ ∞

0

dT

T

∫

PBC
Dx e−S[x] . (1.2)

The path integral in the last line is evaluated with periodic boundary conditions (PBC)

and contains the worldline action

S[x] =

∫ T

0
dτ

(

1

4
ẋµẋµ + U ′′(φ)

)

(1.3)

which produces the differential operator −¤ + U ′′(φ) as quantum hamiltonian. The scalar

field φ(x) is defined on M and, as a consequence, the paths xµ(τ) are restricted to lie on

M, see figure 1. Thus, one has to develop tools to calculate worldline path integrals with

such a restriction on the path integration variables.

General constructions of path integrals on target spaces with boundaries can be found

in several textbooks, see for example [11, 12]. However, the time slicing constructions

presented there do not seem to assist in practical perturbative calculations. One would

like to have a reliable scheme to perform perturbative calculations in the presence of the

boundary. For this purpose we find it convenient to introduce an image charge and map

the original problem to a new one defined on the full space R
D, see figure 2. The major

difficulty now arises from the fact that the potential extended on the full space may be non-

smooth at the fixed points of the Z2 identification that reintroduces the boundary. In this

paper we develop a scheme to deal with this situation, and use it to compute perturbatively

the matrix elements of the heat kernel 〈y|e−T (−¤+U ′′(φ))|x〉 together with its trace, which

appears in (1.2). The non-smooth part of the interaction potential on R
D is going to be

due to the presence of certain step functions. Our scheme implements these step functions,

which contain the quantum field and sit inside correlation functions, by transferring their

effect to the limits of integration of suitably inserted completeness relations.

– 2 –
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Several methods for computing the trace of the heat kernel on manifolds with bound-

aries have been studied and used in the literature, as for example in [13 – 19]. For a

review and additional references one may consult [20]. The method which is closer to the

present one is presumably that developed by McAvity and Osborn [17], where the DeWitt

ansatz [21] for the heat kernel is generalized to the case with boundaries. The novelty

of our approach is that we use a path integral to calculate directly the heat kernel. An

advantage of the path integral method is that it is quite intuitive and flexible, allowing to

study the complete heat kernel and more general correlation functions, though we shall not

investigate the latter here. Originally we also expected it to be quite an efficient method,

but we find that this expectation is not fully realized, and presumably it can be improved

by devising alternative and more efficient ways of calculating the perturbative expansion.

Nevertheless, in this paper we are able to reach higher perturbative orders for the trace

of the heat kernel than those we could find in the literature [18, 20], namely A3 and A 7
2
,

see eqs. (3.27) and (3.28), but to identify the full A 7
2

we needed to use the result of a

suitable toy model. In general, higher orders of the perturbative expansion produce multi-

ple integrals that are difficult to compute explicitly, even though they could be computed

numerically, perhaps using the methods of refs. [7, 8]. We use the toy model to identify

precisely the value of one of these integrals.

After reviewing in section 2 the path integral approach to the heat kernel on flat spaces

without boundaries, we discuss in section 3 the case with a geodesic boundary, presenting

first a brief description of our method and then its application to the half line and to

R+ × R
D−1. We give the heat kernel coefficients An with n integer and half integer up to

n = 7
2 . We use a toy model to identify the value of a numerical coefficient entering the

complete expression for A 7
2
. Finally we present our conclusions and an outlook in section

4.

2. Heat kernel and path integrals

Let us start reviewing the standard definition of the heat kernel and the way a path integral

can be used to compute it. This will also serve to define our notations.

Given the differential operator corresponding to the hamiltonian of a nonrelativistic

particle with unit mass

Hx = −1

2
∇2

x + V (x) (2.1)

where ∇2
x is the laplacian in the cartesian coordinates xµ of flat space R

D and V (x) an

arbitrary potential, the heat kernel K(x, y;β) is the solution of the Schrödinger equation

in euclidean time (the heat equation) with a particular boundary condition at time β = 0

− ∂

∂β
K(x, y;β) = HxK(x, y;β)

K(x, y; 0) = δD(x − y) . (2.2)

The heat kernel is formally given by the matrix element of the evolution operator e−βH ,

which in the Dirac bracket notation reads

K(x, y;β) = 〈y|e−βH |x〉 (2.3)

– 3 –
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and corresponds to the transition amplitude for the quantum system to start at point xµ

and reach point yµ in an euclidean time β. After setting β = it it gives the transition

amplitude corresponding to the Schrödinger equation in real minkowskian time t, but we

prefer to use the Wick rotated version with euclidean time.1

Various methods for computing the heat kernel from the Schrödinger equation with

arbitrary potentials V (x) have been developed in the literature. One of the most useful is

the path integral approach which produces K(x, y;β) as a sum over all paths xµ(t) linking

the initial point xµ to the final point yµ in a time β

K(x, y;β) =

∫ x(β)=y

x(0)=x
Dx e−S[x] (2.4)

where the euclidean action S[x] in the exponent is the one leading to the hamiltonian Hx,

i.e.

S[x] =

∫ β

0
dt

(

1

2
δµν ẋµẋν + V (x)

)

. (2.5)

The symbol Dx indicates the path integral measure

Dx =
∏

0<t<β

dDx(t) (2.6)

where the range of xµ(t) is the full R
D for any t.

In general, it is not known how to compute the path integral for arbitrary potentials

V (x). A standard approximation method, useful in many contexts, is to compute the

path integral in a perturbative expansion for small propagation time β and small distances

ξµ ≡ yµ − xµ. It is often useful to introduce a rescaled time τ = t/β and write the action

as

S[x] =
1

β

∫ 1

0
dτ

(

1

2
δµν ẋµẋν + β2V (x)

)

(2.7)

where the dots now refer to τ derivatives. Then one may split the action into a free part

plus an interacting one

S[x] = S0[x] + Sint[x]

S0[x] =
1

β

∫ 1

0
dτ

1

2
δµν ẋµẋν , Sint[x] =

1

β

∫ 1

0
dτ β2V (x) . (2.8)

The path integral for the free part S0[x] is exactly calculable, and the interaction part

can be treated as a perturbation. The terms generated by the interaction potential V (x),

assumed to be smooth, can be computed by Wick contracting the quantum fields and

evaluating the emerging Feynman diagrams. This method of computation gives an answer

of the form

K(x, y;β) =
1

(2πβ)
D
2

e−S0[x̄] Ω(x, y;β) (2.9)

1Substituting β → 2T and V (x) →
1
2 U(φ(x)) one finds the heat kernel needed for the scalar field φ

described in the introduction.
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where x̄µ(τ) = xµ + (yµ − xµ)τ is the classical trajectory of the free equations of motion

derived form S0[x], so that S0[x̄] = 1
2β (x−y)2. The term (2πβ)−

D
2 is the one loop correction

which gives the correct normalization of the free path integral, and Ω(x, y;β) contains the

perturbative corrections due to a nonvanishing potential V . The perturbative calculation

in terms of Feynman diagrams produces an answer of the form

Ω(x, y;β) ∼
∞
∑

n=0

an(x, y)βn (2.10)

where a0(x, y) = 1 in flat space. The coefficients an(x, y) are often called Seeley-DeWitt

coefficients and correspond to a (n + 1)-loop calculation on the worldline.2 Thus we see

that the DeWitt ansatz (2.9)–(2.10) for solving the heat equation emerges naturally from

the path integral.

For example, assuming a smooth potential V , one may compute perturbatively to order

β
7
2 (counting ξµ = yµ − xµ ∼

√
β) the transition amplitude

K(x, y;β) =
e−

ξ2

2β

(2πβ)
D
2

exp

[

−β
(

1+
1

2
ξ · ∂+

1

3!
(ξ · ∂)2+

1

4!
(ξ · ∂)3+

1

5!
(ξ · ∂)4+

1

6!
(ξ · ∂)5

)

V (x)

−2β2

4!

(

1 +
1

2
ξ · ∂ +

3

20
(ξ · ∂)2 +

1

30
(ξ · ∂)3

)

¤V (x)

+
β3

4!

(

1 +
1

2
ξ · ∂

)(

(∂µV (x))2 − 1

10
¤

2V (x)
)

+ · · ·
]

. (2.11)

We have given the result in an exponentiated form since it is simpler to compute the

connected worldline diagrams only. Note that in this compact notation one considers

[ξ, ∂] = 0. It is sometimes useful to present the result in a symmetrized form as follows

K(x, y;β) =
e
− ξ2

2β

(2πβ)
D
2

exp

[

β
(

− V +
1

12
ξµξν∂µ∂νV − 1

5!
ξµξνξαξβ∂µ∂ν∂α∂βV

)

+
β2

5!

(

− 10¤V + ξµξν∂µ∂ν¤V
)

+
β3

5!

(

5(∂µV )2 − 1

2
¤2V

)

+ · · ·
]

(2.12)

where we have introduced the notation V = 1
2(V (x) + V (y)), etc., so that the result is

written in a more compact form and the symmetry x ↔ y is manifest.

Expanding the exponent one reads off the expansion in ξ of the Seeley-DeWitt coeffi-

cients a0, a1, a2, a3

a0(x, y) = 1

a1(x, y) =−V +
1

12
ξµξν∂µ∂νV − 1

5!
ξµξνξαξβ∂µ∂ν∂α∂βV + O(ξ6)

a2(x, y) =
1

2
V

2 − 1

5!

(

10¤V − ξµξν∂µ∂ν¤V
)

− 1

12
ξµξνV ∂µ∂νV + O(ξ4)

a3(x, y) =− 1

3!
V

3
+

1

4!

(

(∂µV )2 + 2V ¤V − 1

10
¤2V

)

+ O(ξ2) . (2.13)

2This is generically true in curved space, as propagators go like β and vertices like β−1, with β considered

as the loop counting parameter. However in flat space the potential V is the only source of vertices and

contains an extra power of β2 which offsets this counting: each vertex with V increases the loop counting

by 2 because of the factor β2.
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Their values at coinciding points yµ = xµ (i.e. ξµ = 0) are easily obtained

a0(x, x) = 1

a1(x, x) =−V

a2(x, x) =
1

2
V 2 − 1

12
¤V

a3(x, x) =− 1

3!
V 3 +

1

4!

[

(∂µV )2 + 2V ¤V − 1

10
¤

2V
]

. (2.14)

As for higher orders, one may find in [22] the heat kernel coefficients an(x, x) (modulo

total derivatives) up to n = 8 included, a result which has been obtained using a worldline

approach.

3. Heat kernel and path integrals on a flat space with boundary

3.1 The method

Now let us consider the case of a space with a boundary. For definiteness we consider the

flat space M = R+×R
D−1 with coordinates xµ = (y, zi) where 0 ≤ y < ∞ and zi ∈ R

D−1.

This space has a boundary ∂M = R
D−1 located at y = 0, see figure 1. We wish to obtain

the heat kernel for the operator Hx again as a path integral

K(x1, x2;β) =

∫ x(1)=x2

x(0)=x1

Dx e−S[x] (3.1)

with the same action S[x] as in (2.7), but now summed over all paths xµ(τ) that lie in

M. In the presence of a boundary one must impose boundary conditions on ∂M, and for

simplicity we assume either Dirichlet boundary conditions, K(x, x2;β) = 0 for x ∈ ∂M, or

Neumann boundary conditions, ∂yK(x, x2;β) = 0 for x ∈ ∂M where ∂y is the derivative

normal to the boundary.

It is evident that on such a manifold the free action S0 has two local minima corre-

sponding to the straight classical path x̄1(τ) joining x1 to x2 and to the path x̄2(τ) which

bounces once at the boundary, see figure 3. The path integral can be computed by sum-

ming over all fluctuations around these two classical paths. This produces an answer of

the form

K(x1, x2;β) =
1

(2πβ)
D
2

(

e−S0[x̄1] Ω1(x1, x2;β) + γ e−S0[x̄2] Ω2(x1, x2;β)
)

(3.2)

where the Ωi(x1, x2;β) contain the perturbative loop corrections around the classical paths

x̄i(τ), and γ is a relative phase between these paths which depends on the boundary con-

ditions chosen on ∂M. This formula reproduces the generalized DeWitt ansatz introduced

by McAvity and Osborn to study the heat kernel on spaces with boundaries [17]. In the

following we describe a method for computing the path integral and obtain perturbatively

the functions Ωi(x1, x2;β). In particular we will focus on the calculations of the trace of

the heat kernel

Tr e−βH =

∫

M
dDxK(x, x;β) =

∫

PBC
Dx e−S[x] (3.3)

– 6 –
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2z  )x2         2
= (y ,
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~
   2  z )            2

= (−y ,

(0,z)

x(1)τ

x(0) 

Figure 3: Classical paths in the flat space

with boundary M. On the vertical axis we

have placed the time τ .

Figure 4: A bouncing quantum path and

its image on R
D.

where PBC denote periodic boundary conditions for the trajectories on M.

For evaluating the path integral over M it is convenient to use the method of images

and double the space to obtain the full R
D. Trajectories that bounce at the boundary are

traded for trajectories that continue off the boundary with a reflected path, see figure 4.

A trajectory extended on the full R
D (dashed line in figure 4) contributes the same weight

in the path integral as the original one (solid line), provided the potential is extended on

R
D as an even function under the reflection y → −y

V (x) → Ṽ (x) = θ(y)V (y, z) + θ(−y)V (−y, z) (3.4)

where θ is the Heaviside (step) function.

Dirichlet or Neumann boundary conditions are special cases of the generic ansatz (3.2):

they correspond to setting γ = −1 or γ = +1, respectively. Hence, the transition amplitude

for such cases may be expressed as

KM(x1, x2;β) = KRD(x1, x2;β) ∓ KRD(x1, x̃2;β) . (3.5)

The heuristic interpretation for γ = −1 is quite clear. In fact, notice that the second term

in (3.5) involves paths that cross the boundary at least once. Hence, it is easy to convince

oneself that – due to the symmetry of the potential — the only effect of such a term is

to cancel all those paths in the first term that hit the boundary. In fact, setting y2 = 0

(all paths now hit the boundary) leads to a vanishing kernel: therefore the wave function

evolved with the kernel

ψ(x2, β) =

∫

M
dx1 KM(x1, x2;β)ψ(x1, 0) (3.6)

satisfies Dirichlet boundary conditions. For γ = +1 we know of no simple heuristic in-

terpretation; however it is clear that differentiating (3.5) with respect to y2 and setting

– 7 –
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y2 = 0 leads to a vanishing result: the normal derivative of the wave function vanishes at

the boundary. Hence, γ = +1 corresponds to Neumann boundary conditions.

The problem has thus been reduced to a path integral computation on a boundaryless

manifold. However the path integral on R
D with the potential Ṽ is not easily computable

by Taylor expanding the potential and using Wick contractions because of the step func-

tion θ(y) contained in Ṽ . Even assuming that V (x) is smooth enough to admit a Taylor

expansion, Ṽ (x) in general is not.

Nevertheless, as a test, one could try to insert Ṽ into (2.11), which was obtained by

assuming smoothness of the potential. Evaluating the derivatives contained in (2.11) on

Ṽ would then produce delta functions and derivatives thereof, which use seems rather

unwarranted and difficult to implement consistently.

Thus one has to study methods to compute perturbatively path integrals that contain

step functions of the quantum fields. A method to address this problem is the following

one. Whenever a step function containing the quantum field q(τ) appears inside correlation

function, such as 〈θ(q(τ1) − a)〉, one may split the path integral into two parts using a

completeness relation at time τ1 (namely I =
∫ ∞
−∞ dq1|q1〉〈q1|) to transfer the constraint

required by the step function into the limit of integration — namely
∫ ∞
a dq1. Each of the

two remaining parts are standard path integrals without step functions, but have boundary

conditions linked by the
∫ ∞
a dq1 integration.

Next we will exemplify this method to compute the heat kernel expansion for a particle

on the half line. This D = 1 case is enough for our purposes, since it contains the essential

information. At the end of the section we shall reconstruct the complete results for generic

D.

3.2 Particle on the half line

We consider here the heat kernel on the half line R+ and denote by x its single coordinate.

For Dirichlet/Neumann boundary conditions the expression for the transition amplitude

reads (in an obvious notation)

〈x2|e−βH |x1〉R+ = 〈x2, β|x1, 0〉R+ = 〈x2, β|x1, 0〉R ∓ 〈x̃2, β|x1, 0〉R (3.7)

where x̃2 = −x2 is the coordinate of the image charge. We now proceed to compute the

path integral for the two terms on the right hand side, as explained earlier.

As usual in path integral computations one splits the quantum paths into a classical

path xcl(τ), satisfying the equations of motion, and quantum fluctuations q(τ). We as-

sociate the boundary conditions with the classical path so that the quantum fluctuations

q(τ) have vanishing boundary conditions

x(τ) = xcl(τ) + q(τ) = x1 + (x2 − x1)τ + q(τ) , (3.8)

q(0) = q(1) = 0 . (3.9)

We treat the potential Ṽ as a perturbation for the free particle. Hence, the path integral

– 8 –
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1τq(  )

1τ
cl

q(0)

q(1)

0

0

τq(  )

−x  (  ) 1τ

1τq(  )

q(  )τ

cl 0

0

q(0)

q(1)

−x  (  )

Figure 5: Quantum paths constrained by

θ(xcl(τ1)+ q(τ1)). The time τ runs along the

vertical axis.

Figure 6: Quantum paths constrained by

θ(−xcl(τ1) − q(τ1)).

for the full line, appearing in (3.7), is given by

〈x2, β|x1, 0〉R = e−S0[xcl]

∫ q(1)=0

q(0)=0
Dq e−S0[q] exp

(

−β

∫ 1

0
dτ Ṽ (xcl(τ) + q(τ))

)

(3.10)

= e−
1
2β

(x2−x1)2
∫ q(1)=0

q(0)=0
Dq e−S0[q]

(

1 − β

∫ 1

0
dτ1 Ṽ (xcl(τ1) + q(τ1))

+
β2

2!

∫ 1

0
dτ1

∫ 1

0
dτ2 Ṽ (xcl(τ1) + q(τ1)) Ṽ (xcl(τ2) + q(τ2)) + O(Ṽ 3)

)

where S0 is the action for the free particle, Ṽ = 0. The first term in the expansion simply

yields the path integral normalization

∫ q(1)=0

q(0)=0
Dq e−S0[q] =

1

(2πβ)
1
2

,

whereas the rest contributes to the perturbative corrections to the heat kernel.

We have managed to compute the short-time perturbative expansion of the transition

amplitude up to order β
7
2 , considering x1 − x2 ∼ √

β. In the following we only give a

detailed description of the contributions coming from a single insertion of the perturbation

V , since this is enough to exemplify the method discussed previously. In principle this

method can be applied to all orders in V .

To compute the aforementioned contributions we first extract the integral over the

worldline (namely
∫ 1
0 dτ1) out of the path integral; we will perform it at the end. Then,

using (3.4), we have

∫ q(1)=0

q(0)=0
Dq e−S0[q]

[

θ(xcl(τ1) + q(τ1))V (xcl(τ1) + q(τ1))

+θ(−xcl(τ1) − q(τ1))V (−xcl(τ1) − q(τ1))

]

. (3.11)
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Note that the constraints for the quantum field q(τ), associated with the Heaviside func-

tions, are localized at time τ = τ1. Each of the two terms in (3.11) can thus be manipulated

by splitting the path integral into two parts, as follows. In the first term the constraint acts

as depicted in figure 5: we can thus compute the path integral as a convolution between a

free path integral with boundary conditions q(0) = 0, q(τ1) = y and a free path integral

with boundary conditions q(τ1) = y, q(1) = 0, where y is integrated over and satisfies the

constraint y ≥ −xcl(τ1) because of the step function. We thus have

∫ q(1)=0

q(0)=0
Dq e−S0[q] θ(xcl(τ1) + q(τ1)) V (xcl(τ1) + q(τ1))

=

∫ ∞

−xcl(τ1)
dy

(

∫ q(τ1)=y

q(0)=0
Dq e−S0[q]

)

V (xcl(τ1) + y)

(

∫ q(1)=0

q(τ1)=y
Dq e−S0[q]

)

=

∫ ∞

−xcl(τ1)
dy

e
− 1

2βτ1(1−τ1)
y2

2πβ
√

τ1(1 − τ1)
V (xcl(τ1) + y) . (3.12)

In a similar fashion, in the second term of (3.11) the constraint acts as depicted in

figure 6, and the path integral reads

∫ q(1)=0

q(0)=0
Dq e−S0[q] θ(−xcl(τ1) − q(τ1)) V (−xcl(τ1) − q(τ1))

=

∫ −xcl(τ1)

−∞
dy

e
− 1

2βτ1(1−τ1)
y2

2πβ
√

τ1(1 − τ1)
V (−xcl(τ1) − y) . (3.13)

Hence, the complete contribution of a single V insertion to the whole line path integral

can be written as

β
e
− 1

2β
(x2−x1)2

(2πβ)
1
2

∫ 1

0
dτ

1
√

2πβτ(1 − τ)

(

−
∫ +∞

−∞
dy e

− y2

2βτ(1−τ) V (xcl(τ) + y)

+

∫ −xcl(τ)

−∞
dy e

− y2

2βτ(1−τ)

[

V (xcl(τ) + y) − V (−xcl(τ) − y)

]

)

, (3.14)

where the constraint only sits in the integration limit of the second term. Higher order

contributions in V can analogously be split into one unconstrained part where the “quan-

tum field” y = q(τ) may run over the whole real axis, and parts that depend upon the

constraints: the latter are parity-odd. A few observations are in order.

• For an even potential V the parity-odd terms vanish identically. In such a case it

is possible to write the heat kernel as a power series in integer powers of β and

x2 − x1. In fact, upon Taylor expanding the potential about the initial point x1, the

unconstrained gaussian integral over y singles out only integer powers of β, and one

reproduces the expression (2.12), with x = x1, y = x2 and ξ = x2−x1, plus an image

charge contribution. We can thus write down the final expression for the heat kernel

– 10 –
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on the half line

〈x2, β|x1, 0〉R+ =
e−

ξ2

2β

(2πβ)
1
2

exp

[

−βV − β2

2 · 3!∂
2V

(

1 − ξ2/β
)

− β3

2 · 5!∂
4V

(

1 − 2ξ2/β + 2ξ4/β2
)

+
β3

4!
∂V

2
+ O(β4)

]

∓ e−
ξ̃2

2β

(2πβ)
1
2

exp

[

−βV − β2

2 · 3!∂
2V

(

1 − ξ̃2/β
)

− β3

2 · 5!∂
4V

(

1 − 2ξ̃2/β + 2ξ̃4/β2
)

+
β3

4!
∂V

2
+ O(β4)

]

(3.15)

where ξ̃ = −x2−x1. The expansion above clearly corresponds to the McAvity-Osborn

ansatz (3.2), with Ωi’s both expressed as integer power series in β. In the present

case with even potentials, it is clear that the heat kernel is also correctly reproduced

by the conventional perturbative calculation of the path integral through the Wick’s

theorem, as discussed in section 2.

• For a generic potential V , the constraint-independent part of the expansion yields

again the expression (3.15), except that now Ṽ = 1
2(V (−x2) + V (x1)) must appear

in the second exponential in place of V = 1
2 (V (x2) + V (x1)), and so on. However,

the constraint-dependent part now is not vanishing and does not seem to be naively

expressible as a power series in β and x2−x1, as the latter appears nontrivially in the

integration limits. This complication corresponds to the difficulty of giving a reliable

interpretation of the Taylor expansion of the Heaviside function, pointed out in the

previous section.

• The method described above allows to compute the perturbative expansion in β of

the partition function

Tr e−βĤ =

∫ ∞

0
dx 〈x, β|x, 0〉R+

=

∫ ∞

0
dx 〈x, β|x, 0〉R ∓

∫ ∞

0
dx 〈−x, β|x, 0〉R (3.16)

for which we need to specialize expression (3.14), and analogous higher-order contri-

butions, to:

(i) x1 = x2 = x =⇒ xcl(τ) = x

and

(ii) x1 = −x2 = x =⇒ xcl(τ) = x(1 − 2τ) .

Thus we can proceed to compute the small time expansion of the partition function up to

order β
7
2 :

– 11 –
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(i) In this case, the constraint-independent parts of the potential insertions, such as the

first term of (3.14), yield bulk contributions, whereas the constraint-dependent parts,

after Taylor expanding the potential about the boundary, single out boundary terms.

Hence, after some tedious algebra, we have

∫ ∞

0
dx 〈x, β|x, 0〉R =

1

(2πβ)
1
2

[

∫ ∞

0
dx exp

(

−βV (x) − β2 ∂2V (x)

2 · 3! + β3 (∂V (x))2

4!

−β3 ∂4V (x)

2 · 5!

)

− β2 ∂V (0)

2 · 3! + β3

(

V ∂V (0)

2 · 3! − ∂3V (0)

2 · 5!

)

+

√

π

8
β

7
2

(∂V (0))2

26
+ O(β4)

]

. (3.17)

(ii) For such a case, the presence of the non trivial classical action S0[xcl] = 2x2/β allows

for a Taylor expansion of the potential about the boundary location: the integral

over the manifolds is convergent and gives

∫ ∞

0
dx 〈−x, β|x, 0〉R =

1

(2πβ)
1
2

{

√

πβ

8

[

1 − βV (0) +
β2

2

(

V 2(0) − ∂2V (0)

4

)

+β3

(

−V 3(0)

3!
+

3(∂V (0))2

24
− ∂4V (0)

27

)

]

− β2 ∂V (0)

4

+β3

(

V ∂V (0)

4
− ∂3V (0)

2 · 4!

)

+ O(β4)

}

. (3.18)

Combining (3.17) and (3.18) we get the final result

Tr e−βĤ =

∫ ∞

0
dx 〈x, β|x, 0〉R+ (3.19)

=
1

(2πβ)
1
2

[

∫ ∞

0
dx exp

(

−βV (x) − β2 ∂2V (x)

2 · 3! + β3 (∂V (x))2

4!

−β3 ∂4V (x)

2 · 5!

)

+

√

π

8
β

7
2

(∂V (0))2

26

∓
√

πβ

8

[

1 − βV (0) +
β2

2

(

V 2(0) − ∂2V (0)

4

)

+β3

(

−V 3(0)

3!
+

V ∂2V (0)

23
+

(∂V (0))2

4!
− ∂4V (0)

27

)

]

+β2

{

1

−2

}

∂V (0)

3!
+ β3

({

−1

2

}

V ∂V (0)

3!
+

{

2

−3

}

∂3V (0)

5!

)

+ O(β4)

]

.

– 12 –
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This is the expansion of the partition function with Dirichlet/Neumann boundary condi-

tions, valid up to order β
7
2 , where the upper coefficient in the symbol {:} refers to Dirichlet

boundary conditions, and the lower one to Neumann boundary conditions. At this point the

integrated heat kernel coefficients for the half line can be read off immediately. However,

it is not difficult to reconstruct such coefficients for arbitrary D. Defining

Tr e−βH ∼ 1

(2πβ)
D
2

∑

n∈N/2

Anβn . (3.20)

we obtain

A0 =

∫

M
1 (3.21)

A 1
2

= ∓
√

π

8

∫

∂M
1 (3.22)

A1 = −
∫

M
V (3.23)

A 3
2

= ±
√

π

8

∫

∂M
V (3.24)

A2 =

∫

M

(

V 2

2
− ¤V

12

)

+

{

1

−2

}

∫

∂M

∂yV

3!
(3.25)

A 5
2

= ∓
√

π

8

∫

∂M

[

V 2

2
−

(

∂2
y

8
+

∂2
i

12

)

V

]

(3.26)

A3 =

∫

M

(

−V 3

3!
+

(∂µV )2

4!
+

V ¤V

2 · 3! − ¤
2V

2 · 5!

)

+

∫

∂M

[{

−1

2

}

V ∂yV

3!
+

{

2

−3

}

∂3
yV

5!
+

{

3

−7

}

∂y∂
2
i V

2 · 5!

]

(3.27)

A 7
2

=

√

π

8

∫

∂M

[

∓
[

−V 3

3!
+

(∂iV )2

4!
+ V

(

∂2
y

23
+

∂2
i

12

)

V

−
(

∂4
y

27
+

∂2
y∂2

i

4 · 4! +
∂4

i

10 · 4!

)

V

]

+

{

−5

7

}

(∂yV )2

26

]

. (3.28)

Before concluding this subsection let us mention some caveats of our method. We have

found it increasingly harder to calculate explicitly the numerical value of some terms. On

the other hand our method allows to write all such numerical values in terms of multiple

integrals of finite functions over compact domains which could eventually be calculated

numerically. Since in the present manuscript we only encountered difficulties for one nu-

merical coefficient in A 7
2
, and precisely the one related to (∂yV )2, we decided to fix it by

using a toy model, which is discussed next.

– 13 –
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3.3 Toy model: V (x) = ax

The asymptotic expansion of e−βH for small β can also be obtained from the large-λ

asymptotic expansion of the resolvent (H + λ)−1. Indeed, since the trace of the resolvent

is the Laplace transform of the heat kernel trace, it admits the following representation for

large λ [20]

Tr (H + λ)−1 ∼ 1√
2π

∑

n∈N/2

Γ

(

n +
1

2

)

An λ−n− 1
2 . (3.29)

We use such an expansion to compute the (∂yV )2 term in the coefficient A 7
2
, considering

a toy model that can be explicitly solved in the half line, namely the one-dimensional

Schrödinger operator H = −1
2∂2

x +ax with x ∈ R
+ and a a real constant. We can compute

the contribution to A 7
2

proportional to (∂yV )2 from the order λ−4 term of the asymptotic

expansion, since the complete A 7
2

for the linear potential reduces to

A 7
2

= k

√

π

8

(∂yV )2

26
(3.30)

with (∂yV )2 = a2 for a constant k which has to be fixed.

From the eigenfunctions of H one obtains a simple expression for the kernel G(x, x′, λ)

of the resolvent (H + λ)−1

G(x, x′, λ) = − 2

W

{

θ(x′ − x)L(x)R(x′) + θ(x − x′)L(x′)R(x)
}

(3.31)

where R(x) can be written in terms of the modified Bessel function Kν(z)

R(x) =
√

ax + λ K1/3

(

[2(ax + λ)]3/2

3a

)

(3.32)

and L(x) is given by

L(x) =
√

ax + λ
{

K1/3

(

(2λ)3/2

3a

)

I1/3

(

[2(ax+λ)]3/2

3a

)

−

− I1/3

(

(2λ)3/2

3a

)

K1/3

(

[2(ax+λ)]3/2

3a

)]}

(3.33)

for Dirichlet boundary conditions at x = 0, and

L(x) =
√

ax + λ
{√

2λ
[

K ′
1/3

(

(2λ)3/2

3a

)

I1/3

(

[2(ax+λ)]3/2

3a

)

−

− I ′1/3

(

(2λ)3/2

3a

)

K1/3

(

[2(ax+λ)]3/2

3a

)]

+

+ a
2
√

λ

[

K1/3

(

(2λ)3/2

3a

)

I1/3

(

[2(ax+λ)]3/2

3a

)

−

− I1/3

(

(2λ)3/2

3a

)

K1/3

(

[2(ax+λ)]3/2

3a

)]}

(3.34)
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for Neumann boundary conditions at x = 0. W is the Wronskian between the corresponding

L(x) and R(x).

From these expressions one can obtain the bulk and boundary contributions to the

asymptotic expansion of the resolvent trace

Tr (H + λ)−1 =

∫ ∞

0
dx G(x, x, λ) . (3.35)

From the asymptotic behavior of the modified Bessel functions for large values of their

arguments, it is simple to see that the boundary contributions of order λ−4 and propor-

tional to a2 are given by − 15
128a2 λ−4 for Dirichlet boundary conditions, and 21

128a2 λ−4 for

Neumann boundary conditions. Comparing these values with (3.29) and (3.30), we obtain

k = −5 for Dirichlet boundary conditions, and k = 7 for Neumann boundary conditions.

These are the explicit numerical values of some multiple integrals, produced by our general

method, that we were not able to evaluate directly.

4. Conclusions

We have developed a path integral method to generalize the worldline formalism to man-

ifolds with boundaries. We considered the flat manifold R+ × R
D−1 and made use of an

image charge to extend the problem to R
D. Smooth potentials on R+ × R

D−1 extend

to potentials on R
D which are generically not smooth at y = 0. Our proposal to deal

with this situation is in principle applicable to any perturbative order, but the explicit

calculations become increasingly harder as the perturbative order increases. It could be

useful to develop simpler strategies to evaluate the path integral in the presence of non-

smooth potentials. This would make it easier to extend the method to curved manifolds

with boundaries. Nevertheless we have been able to show the feasibility of the worldline

formalism in the presence of boundaries, and used it to calculate two new coefficients, A3

and A 7
2
, for a flat space hamiltonian with a generic scalar potential. On top of using curved

manifolds, one could try to extend the worldline formalism on spaces with boundaries to

include fields with spin and use more generic boundary conditions.
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support from UNLP (Subsidio a Jóvenes Investigadores and Proj. 11/X381) and from

Coimbra Group. PAGP would also like to thank the Dipartimento di Fisica dell’Università
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