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y-Hemolysins are bicomponent (-barrel pore forming toxins produced by Staphylococcus aureus as water-
soluble monomers, which assemble into oligomeric pores on the surface of lipid bilayers. Here, after investi-
gating the oligomeric structure of y-hemolysins on supported lipid bilayers (SLBs) by atomic force microsco-
py (AFM), we studied the effect produced by this toxin on the structure of SLBs. We found that oligomeric

structures with different number of monomers can assemble on the lipid bilayer being the octameric form
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the stablest one. Moreover, in this membrane model we found that y-hemolysins can form clusters of oligo-
mers inducing a curvature in the lipid bilayer, which could probably enhance the aggressiveness of these
toxins at high concentrations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Membrane proteins and lipid bilayers mutually interact to accom-
plish many biologically relevant tasks [1-3]. It is well known that the
lipid environment can modulate the functional activity of membrane
proteins in several ways: i) through specific interactions between the
lipids and the proteins [4]; ii) affecting the mechanical properties of
the lipid bilayer, considered as a structurally organized continuum me-
dium, and affecting conformational transitions of membrane proteins
[5]; iii) mediating membrane proteins aggregation by elastic interac-
tions [6]. The last proposed mechanism is often related to the 2D spatial
organization of membrane proteins. On the other hand, the lateral orga-
nization of transmembrane proteins can lead to a re-shaping of the
membrane geometry [7]. This can be accomplished by both the forma-
tion of protein scaffolds, such as in the case of BAR domains, and the
shape and oligomerization of integral membrane proteins [8]. A typical
case of protein-induced membrane re-shaping is represented by the
chromatophores of photosyntethic purple bacteria [9].

Pore-forming-toxins (PFTs) can be considered insightful model sys-
tems to study the interaction between lipid bilayers and membrane-
interacting proteins. PFTs are released in the medium as soluble mono-
mers able to reach the surface of a lipid bilayer and to oligomerize in
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complex structures which span the target lipid bilayer punching holes
through the target membrane [10-14]. Among the different lipid
model systems that can be exploited to study the assembly and the in-
teraction of PFTs within lipid bilayers, solid supported lipid bilayers
(SLBs) provide the great advantage of being prone to be investigated
by imaging surface sensitive techniques such as atomic force microsco-
py (AFM) [15]. With regards to PFTs and membrane/protein interaction,
AFM is potentially useful to study the dynamics of the oligomer forma-
tion, the subunit composition of the oligomer and the interaction of the
oligomer with the membrane. All these investigations can be performed
in liquid without any prior fixation or staining procedure, providing a
unique physiologic-like environment.

In this work we study by AFM the assembling and the effect on the
membrane of y-hemolysins ('yHLs) oligomers exploiting SLBs in nearly
physiological conditions as model membranes. y-Hemolysin ('yHL) rep-
resents one of the several B-barrel pore-forming toxins (3-PFTs) pro-
duced by Staphylococcus aureus [10]. At variance with the well-known
homoeptameric a-hemolysin (aHL) [16], YHL is a bicomponent struc-
ture that requires the assembly of two different polypeptides belonging
to the class F and class S component. Whereas the crystal structure of
the oligomeric aHL is known since many years [17], only recently a
crystal structure of the yHL pore in a membrane-mimicking environ-
ment has been obtained [18], providing the first case of a 3-PFT for
which both the soluble monomers [19-21] and pore structure have
been determined by X-ray crystallography. The case of bicomponent
toxins involves also the problem of the stoichiometry of the two class
components in the pore structure besides the number of subunits com-
posing the pore. The obtained crystal structure points to a pore
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composed by eight subunits, instead of the seven subunits involved in
the atHL structure, with a 4:4 stoichiometry of the class S and class F
subunits. In previous investigations different subunit compositions
with varying stoichiometry were obtained [22,23]. Interestingly, in the
case of aHL the presence of both heptamers [17] and hexamers [24]
in different membranes was shown. As a matter of fact, the presence
of yHL octameric stable structures does not exclude the possibility of
other eventually less stable subunit compositions that may occur in
physiological conditions. Nonetheless, functional data clearly show
that only oligomers with an equal composition of the F and S compo-
nent lead to functional species [23,25], leaning towards an even stoichi-
ometry of the pore. In general, the presence of a different number of
HIgA or HigB subunits might depend on the physico-chemical proper-
ties of the bilayer or on metastabilities of the complex but, more impor-
tantly, might unravel still unknown intermediates or non-functional
oligomers along the full pore formation process.

Here we present an AFM investigation of the assembly of the two
YHL components on a SLB. The investigation shows the presence of
oligomers with different subunit composition. The advantage of our
approach is that we do not need a purification step after oligomer for-
mation as for X-ray crystallography and we can obtain information on
the native intermediate steps toward the formation of a complete and
most stable structure. Moreover, we studied how the YHL oligomer
formation process affects the stability of the lipid bilayer with respect
to other PFTs such as ocHL.

2. Materials and methods
2.1. Preparation of lipid vesicles

Large unilamellar vesicles (LUV) with two lipid compositions,
eggPC or eggPC:Chol (1:1 molar ratio), were prepared by extruding
multilamellar liposome preparations through polycarbonate filters
(carrying 100 nm holes). Liposomes for atomic force microscopy
measurements were prepared as a 3 mg/ml lipid suspension in
10 mM Tris/HCl, 20 mM Nacl, 0.1 mM EDTA pH 7.0.

2.2. Atomic force microscopy

Supported bilayers have been prepared on mica by the vesicle fusion
method at 25 °C [26]. The lipid composition most prone to perme-
abilization by y-hemolysin is PC:Chol (50:50 mol%) [27]. Thus, lipo-
somes of 100 nm diameter comprised of egg-PC:Chol (50:50 mol%)
and egg-PC (as control) were used. Briefly, a liposome suspension
(0.25 mg/ml) in 20 mM NaCl, 20 mM Hepes, 0.1 mM EDTA, pH 7 was
applied on freshly cleaved mica for 5 minutes. The sample was then
washed with the incubation buffer to remove excess of unbound lipo-
somes. 2 [l of solutions containing either of the two classes of protein
(HigA, HigB) were added to the supported bilayers (buffer: 20 mM
NaCl, 20 mM Hepes, 0.1 mM EDTA, pH 7 or PBS; protein concentration:
200 nM). The incubation time before gentle washing to remove un-
bound proteins was around 2 hours at room temperature. After two
hours the formation of the pores should be almost at the steady state
[25,28] even though intermediates can still be seen [23]. Samples
were observed with a Multimode Nanoscope Illa (Bruker Instruments)
microscope in Tapping-Mode (TM-AFM) using Oxide-sharpened Bruker
NP-20 tips with a nominal spring constant of 0.24 N/m. Typically, AFM
images were obtained at a scanning line speed of 1-3 Hz and the force
applied was kept at its smallest possible value enabling stable imaging.

2.3. Image averaging techniques

In order to increase the signal-to-noise ratio, AFM images were
processed by XMIPP software using averaging techniques [29]. Single
particle images of the pores were extracted manually from the AFM
micrographs. The images were then 2D aligned. Before performing

an average of the images, the oligomers were analyzed by classifica-
tion methods in order to identify structurally heterogeneous image
sets. The classification method we used is based on Self-Organizing-
Maps of the rotational spectra. This method allows identifying differ-
ent classes according to the rotational symmetry. The images corre-
sponding to each identified class were then rotationally aligned and
averaged.

2.4. Aggregation effects of yHL on liposomes by fluorescence resonance
energy transfer (FRET)

The ability of yHL or aHL to induce changes to the liposome struc-
ture was investigated by the probe mixing assay based on NBD-
rhodamine energy transfer. To discriminate between aggregation and
fusion effects, we checked the ability of each toxin to cause changes in
liposome fluorescence in a probe dilution assay [30,31]. In this case
a suspension of double-labeled and unlabeled liposomes were mixed
together (100 uM total lipid concentration) and subjected to toxin
action, both yHL (up to 100 nM) and oHL (up to 200 nM). Two
different protocols were used: 1) in the probe mixing assay, two
liposome preparations of eggPC/Chol in the molar ratio 1:1 and
containing either NBD-DOPE or rhodamine-DOPE (2% mol) as a
donor and acceptor couple for FRET, were prepared as previously de-
scribed; 2) In the probe dilution assay, a liposome preparation of
eggPC/Chol in the molar ratio 1:1 and containing both NBD-DOPE and
rhodamine-DOPE (0.6 mol %, each) was mixed with unlabelled lipo-
somes (eggPC/Chol, 1:1). After addition of nanomolar concentrations
of toxin to the liposome suspension (0.25 mM final lipid concentration)
the fluorescence emission of the donor was monitored at 535 nm for
13 min; the excitation wavelength was set to 460 nm.

3. Results and discussion

The procedure for the assembly of the Supported Lipid Bilayer al-
lows the formation of bilayers completely covering the mica substrate.
Small defects may naturally occur, enabling the measure of bilayer
thickness (Fig. 1). Firstly we studied the organization features of the
complex formed by the addition of the two y-hemolysin components
(HIgB and HIgA) to an already formed SLB composed by eggPC and cho-
lesterol in the 50:50 (mol%) proportion. After incubation and washing
step to remove unbound proteins, circular structures appear on the
lipid bilayer (Fig. 2a) and at high resolution imaging (Fig. 2b,c), circular
structures emerge more evidently. The obtained signal-to-noise ratio
for each single structure clearly prevents the possibility of addressing
the number of subunits constituting the oligomer. As a consequence
we exploited averaging techniques to increase the signal-to-noise ratio.

Due to the circular shape of the structure of interest, the alignment
should include both a 2D lateral alignment according to the center of
mass and a rotational alignment according to the presence of an
n-fold symmetry. As a first check for the presence of oligomeric struc-
tures belonging to different classes, we measured the distribution of
the observed diameters. The pore diameter measured by AFM is as-
sumed to correspond to the largest distance between the two maxima
along each line intersecting the circular structure, as indicated by the
dashed line in Fig. 3a. The obtained value should fall between the in-
ternal and the external diameter of the oligomeric crystal structure.
The distribution of the measured diameters is reported in Fig. 3b,
where a total amount of 64 single images has been considered. The
distribution points out the presence of three oligomeric structures
characterized by a different number of subunits, as suggested by pre-
vious investigations for the yHL structure. In fact, according to differ-
ent techniques exploited to study the oligomeric structure of yHL,
hexameric [32], heptameric [33] and octameric [22] subunit stoichi-
ometries have been reported. According to these results, here we
found three classes of oligomeric organizations differing in the diam-
eter value. It is to be stressed that the presence of different classes can
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Fig. 1. AFM image of an eggPC:Cho (50:50 %mol) supported lipid bilayer obtained by
the vesicle fusion technique on mica from LUV. Defects in the bilayer allow measure
the thickness of the bilayer which was found to be about 6 nm.

Fig. 2. a) Tapping-mode AFM (TM-AFM) image after the addition of the two components
HIgA and HlgB to an eggPC:chol (50%:50%) supported bilayer; b) and c) TM-AFM images
at higher resolution of the circular structures observed in a).

be considered as a sign of the physiological dynamics towards the
final structure formation in which the complexes with a lower num-
ber of subunits are intermediate states on the way to the fully active
pore arrangement. Moreover, at variance with other structural analy-
sis techniques which require an initial selection of specific class of
structures, here we have the possibility of observing in the same sys-
tem and at the same time the presence of structures belonging to dif-
ferent classes. By AFM we cannot establish which one is the fully
active organization and therefore, we do not know if the structures
we observed represent a non-active pre-pore or the final and fully ac-
tive pore configuration of the toxin.

To further characterize the three classes of oligomers emerging from
Fig. 3b, we exploited the Self Organizing Map utility of the XMIPP soft-
ware. The implementation of the routine is based on the rotational
spectra of each single image and, in the case at issue, it shows the pres-
ence of two main classes. Next, after performing a rotational alignment
of the images corresponding to each class we averaged the images. The
results show that for one class both the average image and the average
rotational spectra do not show any specific symmetry. The second class
leads to the average image and the average rotational spectrum
reported in Fig. 3c. In this case, especially from the rotational spectrum,
the presence of an 8-fold symmetry is evident. Moreover, the diameter
of the structure reported in Fig. 3c corresponds to the class with the
largest diameter in the distribution of Fig. 3b. Fig. 3d shows an example
of a single oligomer in which, even without averaging, the presence of
seven subunits can be appreciated.

These results could be interpreted in the following way. The olig-
omers form via a sequential addition of monomers on the surface of
the lipid bilayer as already established by other techniques [34]. The
class with the highest number of subunits contains 8 subunits and it
should represent the molecular aggregate with the most stable
structure.

It has been demonstrated in vitro that the formation of functional
transmembrane P-barrel displays specific energetic and structural
constrains for hydrogen bonds to be formed between the neighboring
3-hairpins [35,36]. Therefore, to overcome the energetic barrier for
the insertion of any p-barrel into the membrane, a minimum number
of monomers is required. Despite thermodynamic evaluations are not
available for the HigA/HIgB pore formation, it has been demonstrated,
by using chemical cross-linking of HIigA/HIgB cysteine mutants, that
concatenated dimers reproduce the WT cytolytic activity and electro-
physiological pore features [23]. Indeed, the analysis of the pore con-
ductances, after introducing exogenous negative charges within the
lumen of the pore, demonstrated that four copies of each component
(HIlgA/HIgB couple) form functional pores, being de facto octamers
[37]. These functional results together with our images corroborate
the hypothesis that the functional pore is an octamer that probably
represents the most suitable configuration for allowing a concerted
and thermodynamically favorable folding configuration leading to
the B-barrel insertion into the lipid bilayer

As steps towards the formation of the biggest oligomer, structures
with a number of subunits lower than 8 can be found. However, the in-
termediate oligomers are less stable than the final one. This is likely the
reason why the average image obtained from the other class identified
with the Self Organizing Map classification procedure is not able to re-
solve the presence of individual subunits in the oligomer. The less stable
structure, along with the disturbing effect of the AFM tip, could prevent
a good rotational alignment of the single images for the lower subunit
compositions. Even in the case of previous studies performed by trans-
mission electron microscopy the averaging procedure performed on
heptameric oligomers did not allow an increase of the signal-to-noise
ratio with respect to single images [22].

The geometrical parameters of the observed octamer are consistent
with the parameters extracted from the recently obtained crystal struc-
ture of the octamer. In Table 1 the geometrical parameters of the oligo-
meric structure obtained from AFM images in this study are reported
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Fig. 3. a) Scheme of the measurement of the diameter d of each y-hemolysin oligomer. The reported line section has been obtained along the dotted line shown in the inset;
b) histogram of the measured diameters with three Gaussian fits to the emerging populations; c) average image resulting from a family identified by the Self Organizing Map
routine together with the average rotational spectrum; d) example of an oligomer for which seven subunits can be identified.

and compared with the geometrical parameters of the heptameric
structure of the otHL pore.

Increasing the concentration of monomers in solution, the formation
of the yHL oligomers resulted in the subsequent assembling of small
clusters of oligomers as shown in Fig. 4a. The hexagonal symmetry of
the cluster allows establishing the distance between first neighbors in
the structure. This distance could be considered as a sort of upper
limit for the determination of the total diameter of the oligomeric struc-
ture. The obtained feature of 12 nm nicely agrees with the diameter
obtained from the crystal structure of the octameric pore.

The appearance of small clusters of YHL oligomers has been reported
in previous papers [22,38], consistently with our results. In particular,
Tomita et al. reported the formation of cluster-like structures of yHL
pores on the surface of erythrocyte membranes. In the same work the
authors showed the breakage of the membrane around the cluster
with the formation of large holes. In Fig. 4b the line section along the
dashed line in Fig. 4a is reported. It is evident that the central region
of the cluster is elevated with respect to the boundary region. This phe-
nomenon could be related to a sort of curvature-induced effect of the
oligomers on the lipid bilayer. In other regions of the bilayer, clusters
of circular oligomers are piled up to form almost hemispherical protru-
sions. In Fig. 4c an example showing an almost hemispherical structure
is presented. An interesting aspect is that oligomeric structures appear

Table 1
Structural parameter of YHL compared to those obtained on oHL by previous AFM
images.

Toxin Diameter Central Monomer- Height from  Central mass
(nm) pore (nm) monomer bilayer (nm) distance (nm)
distance (nm) (d in Fig. 3a)
aHL*  76+04 23403 27403 5.0+0.5 5
oHL® 89+06 32+02  28+03 - 6
YHL 12¢ 34 24401 49405 6.04+0.1

@ Czajkowsky, D. M., Sheng, S. T., and Shao, Z. F. (1998) ]J. Mol. Biol. 276, 325-330.

5 Fang, Y., Cheley, S., Bayley, H., and Yang, J. (1997) Biochemistry 36, 9518-9522.

¢ This is calculated from the 2D crystal images and represents the upper limit of the
pore diameter.

4 This parameter relates to the averaged pore in Fig. 3c.

in regions having a height from the unperturbed bilayer of more than
10 nm (see the cross-section in Fig. 4d relative to the dotted line in
Fig. 4c). The error-mode image reported in Fig. 4c (image on the
right) highlights the presence of ring structures even on what could
seem upstairs levels. Taking into account that oligomers can form only
after the monomers have reached the bilayer surface [28,39], we must
consider that all the oligomers have formed on the bilayer and then,
as a consequence of the formation of a cluster, they have been raised
by an induced blebbing of the lipid bilayer, as depicted in the scheme
of Fig. 5, leading also to the breakage of the membrane around the clus-
ter. The curvature measured by considering only the upper part of the
sections in Fig. 4b and d is 80 um ™' and 10 um ' respectively.

It is to be stressed that even in the case of aHL pores the possibil-
ity of cluster formation has been reported [40]. It has been found that
the assembling of clusters of aaHLs can induce the development of
membrane blebs, which are released as microvesicles crowded with
pores. However, the creation of vesicles has been considered in this
case as a late event and not as the primary mode of membrane dam-
age, while we cannot exclude that high doses of yHLs could induce
membrane blebbing.

The proposed explanation for the observed structures could also
account for the breakage of the membrane around the clusters as ob-
served in previous works by electron microscopy [22].

Another interesting aspect of the AFM images after the incubation
with the toxin and the washing procedure is the appearance of many
spots in the lipid bilayer characterized by a depression of about 1 nm
with respect to neighboring regions (Fig. 6). The presence of these
clefts could be related to the formation of oligomers or small clusters
of oligomers, which have been removed by the washing procedure.
The removal of the toxins could leave a bilayer region with a lower
lipid density, appearing as a depression in the AFM image. Another in-
terpretation of the above phenomenon could be related to a lipid
phase segregation induced by the oligomer formation. Both interpre-
tations need future experiments to be discussed further.

The curvature of the lipid bilayer induced by the assembly of
transmembrane proteins has been thoroughly studied both theoreti-
cally [9,41] and experimentally [42]. The induced curvature was
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Fig. 4. a) TM-AFM image of a small cluster of yHL oligomers assembled on a supported lipid bilayer; b) cross-section of the protein cluster in a) along the dotted line; c) TM-AFM
image (left) and error-mode image (right) of a small cluster of oligomers. The arrows point to the visualization of the oligomers in the cluster; d) cross-section of the protein cluster
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Fig. 5. Scheme of the possible mechanism for the curvature induced by the formation of oligomer clusters.

Fig. 6. TM-AFM image of a supported lipid bilayer after the incubation with the toxins and
the washing step. The arrows point to the presence of small depression in the lipid bilayer.

found related to the degree of protein packing in a sort of self-
reinforcement mechanism. Monte Carlo simulations suggested that
asymmetry in protein size and shape represents a general driving
force for the blebbing of lipid bilayers [8]. Despite experimental stud-
ies on this mechanism have been performed by AFM, this technique is
usually applied on small membrane patches and the native 3D struc-
ture can be affected by alterations in the apparent membrane organi-
zation once it is transferred and forced on a flat surface [43]. In
particular, the role of the membrane curvature in determining protein
distribution or that of proteins in influencing the curvature may be
underestimated by AFM. Olsen et al. demonstrated that the adsorp-
tion of small membrane patches containing LH2 complexes on mica
can, in some cases, preserve the curvature that the patches had in so-
lution [43]. In our case we start with a planar lipid bilayer on the solid
support and we try to study whether the accumulation and clustering
of oligomeric structures lead to a curvature of the lipid bilayer. The
induced curvature could also explain the damage induced by yHLs
on the supported lipid bilayer. In fact, the lipid bilayer does not
have a reservoir of lipids and any budding configuration inevitably
leads to a destruction of the membrane. This damaging effect of
YHLs on the lipid bilayer is strictly related to the presence of
cholesterol in the lipid mixture composing the membrane. Accor-
dingly, in the presence of eggPC bilayer without cholesterol, both
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Fig. 7. Time course of liposome aggregation induced by 'YHL or HL as detected in a probe mixing assay. a. Effect of yHL (50 or 100 nM) or oHL (400 nM) on the fluorescence of the
donor. b. Effect of fixed amount of yHL on increasing quantity of liposomes. Other experimental conditions for both panels: buffer used was NaCl 20 mM, Tris-HCl 10 mM, EDTA
0.1 mM, pH 7.0. Observation wavelengths were set at 460 nm (excitation) and 535 nm (emission).

v-hemolysin and o-toxin do not destabilize the supported lipid
membrane (Figure S1 in the Supplementary Material). However, at
variance with yHLs, aHL does not destabilize the lipid bilayer with
cholesterol, being concentration conditions for the monomers
equal. This difference could be related to that in the 3-barrel confor-
mation for the two pores. In fact, a truncated-cone shaped trans-
membrane domain could favor a curvature in the hosting lipid
bilayer, whereas a cylindrical shape should not alter the curvature
of a flat bilayer. The crystal structures of the two pores (yYHL and
aHL) show no particular difference in this region of the complex.
It is however to be considered that in the crystal structure the mu-
tual interaction between the 3-barrel structure and the hydrophobic
core of the lipid bilayer is not taken into account. Moreover, the dif-
ferent behavior of the yHL pores in the presence or absence of cho-
lesterol suggests that also the lipid component may play a role in
organizing the pores in the lipid bilayer.

Another interesting effect of the addition of Hlg to lipid bilayers is
that their ability to permeabilize calcein loaded liposomes is correlat-
ed to a concentration dependent increase of PC:chol liposome dimen-
sions, as estimated by dynamic light scattering (see Supporting
Material). A different result is obtained when adding oHL to the
same liposomes where no modification of liposome diameter occurs.
This result demonstrates once again that Hlg consistently disorganize
the homogeneity of liposomes, giving the impression that the effect
could be due either to a fusion or aggregation phenomenon. There-
fore, we used probe dilution and mixing assays with fluorescence

resonance energy transfer (FRET) and AFM to study the effect on lipo-
somes before and after incubation with different toxin concentra-
tions. After addition of increasing concentration of yHL, the probe-
mixing assay shows a decrease in the fluorescence intensity signal
due to the toxin ability to bring the two fluorophores in close proxim-
ity. This result means that both fusion and aggregation may occur
(Fig. 7a). The probe dilution assay (Fig. 7b) strongly indicates that
both toxins are indeed unable to induce liposome fusion in our exper-
imental conditions. Taken together these results provide evidences
for the ability of yHL to induce aggregation. On the other hand, aHL
does not induce any significant change in the detected fluorescence
intensity in neither of the assays.

The size distribution of LUV was measured with AFM exploiting
the vesicle fusion technique. Before and after toxin addition, liposome
diameter was estimated by rupturing vesicles on freshly cleaved mica
in order to form solid supported bilayers. Low concentration of lipids
(0.1 mg/ml) and short incubation time (30 s) were chosen to obtain
isolated bilayers ascribable to the rupturing of a single liposome.
Fig. 8a shows an example of single liposomes that have ruptured on
mica, forming isolated bilayer patches endowed with a quasi-
circular shape. The area of the bilayers produced by single liposomes
was measured and the radius of the corresponding circle of equal area
was calculated. According to the preservation of the bilayer area, the
corresponding liposomes in solution have a radius which is approxi-
mately half of that obtained by AFM. AFM analysis of unperturbed
LUV gives a size distribution with a maximum probability for a radius

Counts

L

80 100 120 140

"
Vesicle radius (nm)

Fig. 8. a) TM-AFM image of the small patches formed by the fusion on mica of single liposomes; b) TM-AFM image resulting from the rupturing on mica of liposomes which have
been exposed to HIg monomers at a concentration allowing to form pores on the bilayer; c¢) vesicle radius distribution reconstructed from many images as in a).
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of about 50 nm (Fig. 8c). The obtained value corresponds to what is
expected for LUV prepared by extrusion through a membrane with
100 nm diameter pore size, as also measured by DLS.

Upon liposomes incubation with yHL, the rupturing of the vesicles
on the mica surface results in completely different features (Fig. 8b).
Surface patches with no circular symmetry are formed and the area
of each structure is larger than the expected surface area for a single
LUV. The obtained structures could be the result of the aggregation
of liposomes in solution once YHL is added. According to the dilution
and mixing probe assays results, the formation of yHL on liposomes
in solution suggest a destabilization of the membrane and the forma-
tion of large aggregates.

We demonstrated that TM-AFM is able to identify the formation of
oligomeric structures once YHL monomers are added to a supported
lipid bilayer. High resolution imaging together with averaging tech-
niques established that the stablest structure of the oligomer is
most probably formed by eight subunits, consistently with a recently
established crystal structure, but oligomers with a lower number of
subunits also exist. These oligomers are probably intermediates to-
wards the assembly of the complete pore and are less stable. More-
over, many evidences prompt that yHLs destabilize lipid bilayers in
connection with their ability to form small clusters. The cluster for-
mation probably induces a curvature in the lipid bilayer leading ulti-
mately to vesicle budding and disruption of the membrane. The
biological meaning of the destabilizing effect of the proteins on the
lipid bilayer, obtained by a curvature effect resulting in the formation
of budding vesicles, needs further in depth examination. In conclu-
sion, our results suggest that pore forming toxins may be a conve-
nient tool for studying the interplay among crowding, protein
geometry, membrane domain formation and curvature.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.bbamem.2012.09.027.
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