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Abstract

A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust 

and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal 

cord imaging, the current greatest challenges, and greatest needs for future development. This 

meeting was attended by a small group of invited experts spanning all aspects of spinal cord 

imaging from basic research to clinical practice. The greatest current challenges for spinal cord 

imaging were identified as arising from the imaging environment itself; difficult imaging 

environment created by the bone surrounding the spinal canal, physiological motion of the cord 

and adjacent tissues, and small cross-sectional dimensions of the spinal cord, exacerbated by 

metallic implants often present in injured patients. Challenges were also identified as a result of a 

lack of “critical mass” of researchers taking on the development of spinal cord imaging, affecting 

both the rate of progress in the field, and the demand for equipment and software to manufacturers 
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to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, 

discuss the underlying theory and challenges, and present the evidence for the current and 

potential power of these methods. In two review papers (part I and part II), we propose that the 

challenges can be overcome with advances in methods, improving availability and effectiveness of 

methods, and linking existing researchers to create the necessary scientific and clinical network to 

advance the rate of progress and impact of the research.
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Introduction

Non-invasive investigation of human spinal cord function, and the effects of spinal cord 

injury or disease, is significantly hampered by the inaccessibility of the spinal cord. In order 

to supplement current methods for assessing residual function, pain, and quality of life 

factors after spinal cord injury or disease, sensitive methods are needed to reveal changes in 

neurological function, and structure. Non-invasive imaging methods such as magnetic 

resonance imaging (MRI), positron emission tomography (PET), and computed tomography 

(CT), provide the only means of accessing the structure and function of the human spinal 

cord. As a result, there is currently a great need for development of these methods. While 

progress is being made, only a relatively small number of research labs in the world are 

actively working on spinal cord imaging methods, and these techniques have yet to be 

advanced into clinical use. The potential outcomes of advancing these methods are 

tremendous, enhancing our basic understanding of healthy human spinal cord function, and 

impacting our ability to accurately diagnose and treat injury and disease, and predict 

outcomes. In order to support the development of spinal cord imaging methods and advance 

the current technology, the objectives of this paper are:

1. to describe the current state-of-the-art of spinal cord imaging by reviewing current 

methodologies, and

2. to identify the current greatest challenges both innate to spinal cord imaging, and 

relative to hardware and software development.

This is the first of two papers, and is focussed on spinal cord imaging methods. X-ray based 

imaging methods such as plain film X-ray and CT demonstrate highly detailed images with 

contrast between soft tissues and boney structures and are already in routine clinical use for 

visualizing gross structural changes after trauma to the spine, and diseases of the 

intervertebral discs. Therefore only PET and MRI methods are described in this paper, with 

most of the attention on functional MRI (fMRI), diffusion-weighted imaging (DWI) and its 

extension to diffusion-tensor imaging (DTI), MR imaging based on magnetization transfer 

and identifying myelin water, and also MR spectroscopy. In a second paper, we will 

describe the current applications of these spinal cord imaging methods for assessing spinal 

cord injury, multiple-sclerosis, and pain. The overall goal of this work is to improve tools 
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for spinal cord research and clinical assessments by overcoming the current challenges for 

imaging and make full use of the potential of these non-invasive methods.

Background

The anatomy of the spinal cord and surrounding structures renders the cord inaccessible for 

human research, and non-invasive imaging methods are therefore essential. It is also this 

anatomical arrangement that creates most of the challenges of imaging the spinal cord.

The spinal cord lies within the spinal canal inside the spine, and is surrounded by a variable 

layer of cerebrospinal fluid (CSF), and then a thick layer of bone or cartilaginous discs 

between the vertebral bodies. At its widest point of the cervical enlargement it is only ~15 

mm across, and has an average length of approximately 45 cm in adult humans (Goto and 

Otsuka, 1997). The cerebrospinal fluid flows back and forth in the head–foot direction with 

each heart-beat, with a peak flow speak of roughly 3 cm/s, and with a general progression of 

movement down one side of the spinal cord and up the other (Feinberg and Mark, 1987; 

Matsuzaki et al., 1996). The pulsating CSF flow, and possibly arterial pulsation as well, 

cause the spinal cord to move within the spinal canal, with an amplitude that diminishes 

with greater distance from the head (Figley and Stroman, 2006, 2007). Given that the spinal 

cord ends at around the 12th thoracic vertebra (the exact location varies between 

individuals), the entire cord is relatively close to the heart and lungs.

The anatomical arrangement of the spinal cord is reversed from that of the brain, with the 

gray matter (largely nerve cell bodies, glial cells, and interneurons) within a characteristic 

butterfly-shape cross-section at the center of the cord, surrounded by white matter tracts. 

The main arteries supplying the cord lie along the cord surface, one above the anterior 

median fissure and two along the posterior side of the cord, and these are connected by 

lateral branches (Thron, 1988). The anterior artery sends branches into the anterior median 

fissure with further branching to supply the gray matter from the center outward. Venules 

and small veins carry blood radially from the gray matter to the cord surface.

MR methods, challenges and strengths

Imaging of the spinal cord presents inherent challenges that are common to all MR imaging 

and spectroscopy applications. Specifically, these are 1) the spatially non-uniform 

(inhomogeneous) magnetic field environment when in an MRI system, 2) the small physical 

dimensions of the cord cross-section, and 3) physiological motion. For non-MRI 

applications, such as PET and SPECT, the latter two of these challenges also apply. Here we 

discuss these key challenges for spinal cord imaging, and describe their characteristics, and 

methods that have been developed to overcome these challenges both generally, and in later 

sections, for specific methods such as fMRI, DTI, anatomical imaging, and spectroscopy.

Inhomogeneous magnetic field

The greatest challenge for acquiring MR images in the spinal cord is the inhomogeneous 

magnetic field in this region. Differences in magnetic susceptibility between bone, soft 

tissues, and air, result in image distortion and a loss of signal intensity. In this respect, the 
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spinal cord is one of the worst environments for using MR in the human body. Most current 

MRI systems provide the option of shimming the magnetic field (i.e., making the field more 

uniform), for each volume of the body to be scanned, and increasingly, the ability to 

optimize the shimming only within the spinal cord. However, while volume shimming 

improves the field homogeneity, it is limited to smooth variations across space and cannot 

fully compensate for small, localized, field variations, such as at cartilaginous discs between 

vertebral bodies.

The geometry of the field inhomogeneity must be considered in order to avoid its effects. 

Images obtained transverse to the spine can provide better image quality than sagittal or 

coronal slices, because there is less field variation across the slice thickness. This is 

particularly effective when the slices are aligned with either the intervertebral discs or the 

centers of the vertebral bodies (Stroman and Ryner, 2001), but this choice of slice 

orientation and positioning can limit the anatomical coverage of the images.

The image quality can be further optimized by a suitable choice of pulse sequence. With few 

exceptions, MR imaging methods are either based on a gradient-echo, or a spin echo pulse 

sequence. As echo times increase, these sequences become progressively T2*- and T2-

weighted respectively. The key difference between them is that the spin-echo employs a 

refocusing pulse (typically producing a 180° rotation of the magnetization in the tissues) in 

order to reverse the effects of static field inhomogeneity for a brief instant of time. The MR 

signal at the peak of the spin-echo is effectively free of the deleterious effects of the 

inhomogeneous magnetic field, and thus spin-echo imaging provides significant advantages 

for imaging the spinal cord. Nonetheless, there are situations, as described in later sections, 

in which either T2*-weighting or faster data acquisition is desired in spite of the 

disadvantages of gradient echo acquisitions.

Small cross-sectional dimensions

The second challenge for MRI of the spinal cord arises from its small physical dimensions. 

To reliably depict anatomical details, an in-plane spatial resolution of 1 mm × 1 mm, and 

relatively thin imaging slices (1–2 mm) is fairly typical in many spinal cord applications of 

MR. Imaging slices transverse to the spinal cord anatomy is therefore favorable for several 

reasons. First, this orientation places the highest spatial resolution in the plane of the spinal 

cord cross-section, where the anatomy is more varied, and the greatest resolution is needed. 

It also allows the choice of phase-encoding in the right/left direction, so that motion artifacts 

from the heart, lungs, throat, etc. do not spread across the spinal cord in the resulting images. 

With a right–left phase encoding direction however, the field-of-view must either span the 

full width of the body, or spatial suppression pulses must be applied to eliminate the signal 

from regions outside the FOV. Otherwise, aliasing will occur and the shoulders and arms 

will appear to wrap around inside the image, potentially obscuring the spinal cord. An 

unavoidable disadvantage of axial slices is that a large number of imaging slices need to be 

acquired to view a large rostral–caudal extent of the cord, and this can be time consuming.

The natural alternative to axial slices is to use sagittal slices to take advantage of the small 

dimensions and typically low curvature of the spinal cord in the right–left direction. The 

anterior–posterior dimensions of the chest are typically much smaller than the right–left 
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dimensions, and aliasing is more easily avoided with sagittal slices. Spatial suppression 

pulses can be applied anterior to the spine in order to reduce the effects of motion artifacts 

from the heart, lungs, throat, etc.

Physiological motion

MR imaging of the spinal cord is hampered by the fact that the spinal cord moves within the 

spinal canal together with the flow of cerebrospinal fluid (CSF). As described above, the 

pulsation of CSF flow diminishes with distance away from the head, and correspondingly 

the lumbar spinal cord moves very little, if at all (Figley and Stroman, 2006, 2007). In 

addition, the entire spine can move slightly with respiration, depending on posture, and, as 

mentioned above, the entire spinal cord is near the heart, lungs, and visceral organs which 

also undergo periodic movements.

The effects of periodic physiological motion can be reduced or even eliminated by 

synchronizing the acquisition with the cardiac and respiratory cycles (i.e., “gating”). The 

drawbacks of this method are that it can increase the acquisition time by a factor of 2 or 3 

times, and can result in a variable repetition time (TR).

Image artifacts produced by motion are distributed across the image in the phase-encoding 

direction. Thus, choosing the phase encoding direction such that artifacts do not spread 

across the spinal cord from the CSF, heart, or lungs, can improve spinal cord depiction in the 

resulting images. “Motion compensating” gradients and averaging the signal across multiple 

phases of motion can also be applied to reduce motion artifacts. In the specific case of 

functional MRI, however, signal averaging and gating are not practical options because of 

the loss of temporal resolution and potential for variable T1-weighting if TR values vary.

Current state-of-the-art, and how challenges are being addressed

Functional MRI

In functional MRI, anatomical images are acquired quickly and repeatedly over time in 

order to detect changes corresponding to tasks or sensory stimuli. Subtle changes can be 

detected in these images as a result of the coupling between the supply of oxygenated blood 

and metabolic demand of the tissues. Oxygenated hemoglobin has different magnetic 

properties than de-oxygenated hemoglobin and therefore behaves as an endogenous MR 

contrast agent related to the amount of oxygen being carried by the blood. The MR signal 

relaxation times (T2 and T2*), and consequently the image signal intensity, therefore vary 

subtly between regions, depending on the metabolic activity, with blood oxygenation-level 

dependent (BOLD) contrast.

The use of fMRI in the spinal cord has required adaptation from the methods that are well-

established for brain fMRI in order to address the challenges discussed above. Some of the 

earliest papers published on functional MRI of the spinal cord sought to address the 

technical challenges, and to confirm that the BOLD contrast mechanism could indeed be 

detected in the spinal cord (Stroman and Ryner, 2001). To this end, fMRI data were 

acquired with both spin-echo and gradient-echo imaging methods. This allowed 

comparisons to be made with previous brain fMRI studies which showed that signal changes 
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with BOLD contrast are roughly 3.5 times larger with T2*-weighted imaging than with T2-

weighting, at the same echo time. While both imaging methods demonstrated signal changes 

in the spinal cord during the performance of a one-hand motor task, and with a sensory 

stimulus, the magnitudes of the responses with T2*- and T2-weighted imaging methods were 

similar at roughly 5–6%. The conclusions from this paper were that the BOLD response had 

been detected in the spinal cord, and a series of studies followed investigating the apparent 

departure from the known properties of BOLD (Figley et al., 2010; Figley and Stroman, 

2011; Jochimsen et al., 2005; Stroman et al., 2001a, b, 2002a,b, 2003a, b, 2005a,b, 2008). 

The primary outcome of these studies was the proposal of a second MRI contrast 

mechanism that occurs due to changes in tissue water content, termed “signal enhancement 

by extravascular water protons”, or “SEEP”. The higher BOLD sensitivity of gradient-echo 

methods was also found to be offset by lower image quality and signal-to-noise ratio than 

can be obtained with spin-echo imaging of the spinal cord. This established spin-echo 

methods as a suitable option for spinal cord fMRI.

The distinction between gradient-echo and spin-echo methods has particular relevance in the 

spinal cord because the superficial draining veins are separated from the gray matter of the 

spinal cord by the white matter tracts. It has been well-recognized in brain fMRI studies that 

gradient echo sequences are sensitive to BOLD changes in these veins and so may be prone 

to dissociation between the site of signal change and the site of neuronal activity (Bandettini 

et al., 1994; Gati et al., 1997). This is given further support by a hypercapnia challenge study 

that showed the gradient echo BOLD response to be dominated by signal changes at the 

spinal cord surface (Cohen-Adad et al., 2010). While masking to include only the spinal 

cord can be used to avoid this effect, spin-echo scans are intrinsically less sensitive to the 

contribution from draining veins and therefore may provide greater spatial precision for 

detecting neural activity (Bandettini et al., 1994; Gati et al., 1997).

Choice of imaging method—For functional MRI of the spinal cord, as with any fMRI 

method, fast imaging is essential, but the echo-planar spatial encoding schemes, typically 

used for brain fMRI, are highly prone to distortions in and around the spinal cord due to 

magnetic field inhomogeneities (Fig. 1). Fast spin-echo schemes on the other hand, in 

particular the single-shot fast spin-echo, can produce images relatively free of distortion 

while maintaining a short acquisition time. For this reason, the majority of spinal cord fMRI 

studies carried out to date have employed spin-echo imaging methods.

The fast spin-echo has one drawback for fMRI due to the large number of radio-frequency 

(RF) refocusing pulses (typically 180° pulses) that must be applied to create a train of spin-

echoes (Stroman, 2010). The amount of energy that is deposited in the tissues (the specific 

absorption ratio, SAR) can exceed acceptable levels, particularly at higher field strengths. 

Partial-Fourier acquisitions are an option to reduce the number of RF pulses that need to be 

applied, and therefore reduce the energy deposition and the acquisition time. However, 

partial-Fourier acquisitions can be more sensitive to motion artifacts and have a lower 

signal-to-noise ratio (SNR) due to the lower number of data points sampled to produce the 

image (Murphy et al., 2007). In order to deposit less energy, an alternative is to use lower 

flip angle pulses for refocusing. Again, the trade-off is lower SNR, but without the expense 

of more sensitivity to motion. Longer TE values provide the advantage of enabling 

Stroman et al. Page 6

Neuroimage. Author manuscript; available in PMC 2015 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acquisition of more lines of data on both sides of the center of k-space which contributes to 

improving the SNR, and can help reduce sensitivity to motion (Stroman, 2010). The 

theoretical optimal TE for BOLD contrast with spin-echo scans would equal the T2 value of 

the tissues (approximately 75 ms) or the T2* (~30 ms at 3 T) for gradient echo scans (Smith 

et al., 2008). Accordingly, a recent study (Stroman et al., 2012a) indicates that spin-echo 

BOLD fMRI with TE = 75 ms may provide the optimal combination of sensitivity and 

contrast for spinal fMRI. Limitations on the minimum TE typically result in a pure SEEP 

contrast being unachievable for single-shot fast spin-echo acquisitions. The TE value that 

will provide the highest sensitivity for a combination of BOLD and SEEP contrast in spinal 

fMRI is, as yet however, undetermined. In practice, the echo time in most published reports 

is greater than 30 ms with the partial-Fourier single-shot fast spin-echo, resulting in a 

combination of BOLD and SEEP contrast (Fig. 2).

To summarize (including the methods described in the section MR methods, challenges and 

strengths), for the purposes of studying the effects of spinal cord injury or disease the 

optimal parameters appear to be those listed in Table 1.

Diffusion tensor imaging

Background—Conventional MRI exploits interactions between protons in water and their 

molecular environments which modulate relaxation times, and therefore the MRI signal 

intensity, to provide image contrast that is useful for detecting pathological changes. In 

fibrous structures such as the white matter or muscles, water will diffuse further along the 

fibrous structure than across it, in a given interval of time. In the spinal cord, the 

microstructure is highly organized and anisotropic, particularly for the white matter tracts 

that consist of tightly packed bundles of myelinated axons running largely in the rostral–

caudal direction. The MRI signal can be made to be sensitive to the slight displacement of 

water as a result of diffusion by means of strong linear gradients in the magnetic field 

(Stejskal and Tanner, 1965). An MR image that has been sensitized to water diffusion in this 

manner can provide information about the microstructural composition of tissues (Horsfield 

and Jones, 2002). Indices calculated from diffusion MRI experiments (mean diffusivity, 

axial and radial diffusivity, and fractional anisotropy) have been reported to be sensitive to 

changes in microstructural integrity, demyelination, axonal loss, and inflammation. We are 

now in a phase of discovery as to how diffusion experiments performed in the spinal cord 

can provide a deeper understanding of the changes to tissue structure in a variety of diseases 

and syndromes.

Methods for encoding diffusion sensitivity into the MRI signal have been well-developed 

for studying the brain, and the same principles apply for imaging the spinal cord (Beaulieu, 

2002; Stejskal and Tanner, 1965). Key concepts are that magnetic field gradients are applied 

to induce diffusion sensitivity in a specific direction for each measurement, with the degree 

of diffusion sensitivity characterized by the “b” value. The diffusion-weighted MR signal 

can be expressed as (Stejskal and Tanner, 1965):

(1)
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where S and S0 are the signals obtained with and without applied diffusion gradients, 

respectively, and D is the diffusion constant, also called the apparent diffusion constant 

(ADC). There are three main types of diffusion experiments: 1) apparent diffusion 

coefficient (ADC) imaging, 2) diffusion tensor imaging (DTI), and 3) q-space. It should be 

pointed out, however, that other advanced methods exist (Q-ball, diffusion spectrum 

imaging, kurtosis), but are beyond the scope of this manuscript. Here, we focus on DTI as it 

is the most widely used approach in the spinal cord, where the technical complexity of 

advanced methods increases compared to the brain.

Acquisition parameters—By acquiring MR images with diffusion-weighting applied in 

each of several directions, it is possible to compute a parametric model representing the 

main diffusion direction for each voxel (Basser and Pierpaoli, 1996). This model is 

described by a tensor (3 × 3 matrix) and is usually represented graphically as a 3D ellipsoid. 

To estimate the diffusion tensor, at least 6 diffusion measurements must be acquired along 

non-coplanar directions at a given b-value (typically between 700 and 1500 s/mm2). One 

measurement at a very low b-value (0–100 s/mm2) is also required (S0 in Eq. (1)). From an 

estimate of the diffusion tensor, it is possible to estimate the amount of diffusion, and the 

directions, along three principal axes. The direction of greatest diffusion is defined as the 

primary axis, and is also called the “principal eigenvector”, or “PEV”. The direction of the 

PEV is typically related to the primary orientation of the fibers within the voxel. In 

conjunction with the FA, this value serves as the basis for many fiber tractography 

algorithms that attempt to reconstruct white matter pathways (Fig. 3) (Jones et al., 2002).

DTI in the human spinal cord: methods—Although widely applied to the brain, 

acquiring diffusion-weighted images (DWI) of the spinal cord presents the same challenges 

as other MR methods as listed above. Physiological motion may bias ADC estimation 

(Kharbanda et al., 2006) and create ghosting artifacts (Clark et al., 2000). The small physical 

dimensions of the cord contribute to partial volume effects, which are accentuated in the 

cord by the proximity of white matter tracts to the surrounding cerebrospinal fluid (CSF) 

(Nunes et al., 2005). As with typical brain fMRI methods, standard DWI and DTI imaging 

sequences are based on echo-planar imaging (EPI), and are very sensitive to the poor 

magnetic field homogeneity in the spinal cord (Heidemann et al., 2003).

Although sagittal slices have been employed for DTI studies (Bammer et al., 2002; 

Cercignani et al., 2003; Jeong et al., 2005; Kharbanda et al., 2006; Shen et al., 2007; 

Spuentrup et al., 2003; Thurnher and Bammer, 2006), axial DTI of the spinal cord is 

generally favored as it can reveal more detailed information about specific fiber bundles 

(Cohen-Adad et al., 2011a; Ellingson et al., 2008; Elshafiey et al., 2002; Gullapalli et al., 

2006; Holder et al., 2000; Kim et al., 2007; Klawiter et al., 2011; Madi et al., 2005; Nevo et 

al., 2001; Ohgiya et al., 2007; Schwartz et al., 1999; Smith et al., 2010; Wheeler-Kingshott 

et al., 2002a; Wilm et al., 2009). Given the small cross-sectional size and cylindrical 

geometry of the spinal cord, most DTI studies have employed voxels that are elongated 

along the spinal cord, with higher in-plane resolution (e.g. 1 × 1 × 5 mm3). However, this is 

sub-optimal for tractography studies where isotropic voxels (e.g. 2 × 2 × 2 mm3) are 

preferred (Jones et al., 2002).
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The optimal b-value varies, depending on the tissues or pathology being studied, available 

gradient strength, and echo time achievable on each scanner. For example, to achieve a 

certain b-value (e.g. 700 s/mm2) older scanners with a maximum gradient strength of 22 mT 

m−1 must apply diffusion-sensitizing gradients for almost twice the duration needed in 

modern scanners equipped with 40 mT m−1 gradient sets. Using lower diffusion weightings 

has the advantage of a shorter echo time (TE) and therefore an increased SNR. Higher b-

values (>1000 s/mm2) provide more sensitivity for distinguishing degrees of restricted 

diffusion, and therefore more sensitivity to directional diffusion in white matter fibers, and 

are recommended when possible to probe microstructure. A balance therefore needs to be 

struck between diffusion sensitivity and SNR.

The recommended number of directions for robust DTI estimation is at least 20 icosahedral 

directions (Jones, 2004). The recommended ratio between non-diffusion-weighted data (b = 

0) and diffusion-weighted data is 1/8 (Jones et al., 1999). We note that while these numbers 

result from optimization studies done in the brain and are easily transposed to spinal cord 

imaging, some studies have argued that the axial symmetry of the cord allows for imaging 

with a reduced number of directions (Gulani et al., 1997; Schwartz et al., 2005).

Quantifying DTI metrics in the spinal cord

Tractography-based quantification consists of first reconstructing the underlying fiber 

bundles via tractography algorithms (as implemented in MedINRIA, Diffusion Toolkit, 

MRIStudio, Camino, FSL, etc.) (Fig. 3). Once the tracts are reconstructed, the DTI metrics 

within the tracts can be quantified (i.e., within the voxels that include the tracts) (Van Hecke 

et al., 2008). It is possible to pre-define seed points in various regions of the spinal cord for 

selective tract generation, and so quantify metrics in specific segments of the spinal cord 

(Ciccarelli et al., 2007; Cohen-Adad et al., 2011b). Tractography-based quantification is 

attractive because it can be relatively fast as tractography is a semi-automatic procedure; and 

it has relatively low operator bias. However, it requires data acquisition that is optimized for 

tractography, which is typically in a sagittal orientation with isotropic voxels, at the expense 

of cross-sectional resolution. Substantial inaccuracies can also occur due to partial volume 

effects, such as near nerve roots and in gray matter regions, or due to residual susceptibility 

distortions and pathological conditions (Cohen-Adad et al., 2009; Mohamed et al., 2011). 

An alternative approach is to use ROI-based quantification based on manually drawn ROIs 

to probe the integrity of specific tracts (Ciccarelli et al., 2007; Cohen-Adad et al., 2008; 

Klawiter et al., 2011; Lindberg et al., 2010; Onu et al., 2010; Qian et al., 2011). Advantages 

of this approach include better accuracy, because it requires the user to assess the quality of 

the ROI, and it can be performed on axial acquisitions with large gaps thereby providing 

high in-plane resolution. Conversely, the process is time-consuming and open to operator 

bias.

Spinal cord spectroscopy

Proton MR spectroscopy (MRS) provides useful information about the metabolic and 

biochemical status of a brain or spinal cord region by quantifying the concentrations of 

certain metabolites. As these represent potential surrogate markers for the underlying 

pathological processes, spinal cord MRS may provide information about the extent of 
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pathological involvement in patients with spinal cord injury, not quantifiable with 

conventional imaging. The metabolite that has been studied (and quantified) most in the 

spinal cord is N-Acetyl-aspartate (or total NAA, usually equal to NAA + NAA-glutamate) 

that, despite controversy about its metabolic and neurochemical functions, is one of the most 

specific in-vivo markers for neuronal health and integrity (Moffett et al., 2007).

Studies using spinal cord MRS have been carried out at 1.5, 2 and 3 T, and have 

demonstrated that this technique is feasible and that metabolite concentrations in the upper 

cervical cord can be quantified. The signal from the metabolites is particularly small and so 

loss of coherence due to magnetic field inhomogeneities, physiological and macroscopic 

motion, and the small voxel size needed to avoid partial volume effects, all contribute to 

making spinal cord MRS technically challenging. It is not surprising therefore, that reports 

on spinal cord MRS of healthy controls (Gomez-Anson et al., 2000; Marliani et al., 2007) 

and patients with cord tumors, multiple sclerosis, chronic cervical spondylotic myelopathy, 

chronic whiplash and spinal cord injury (Elliott et al., 2012; Ciccarelli et al., 2007; Holly et 

al., 2009; Kachramanoglou et al., 2013) have been scarce compared with brain MRS studies.

From a methodological perspective, optimized protocols for quantitative, single voxel 1H-

MRS have been shown to provide reliable spectra especially for voxels placed in the upper 

cervical cord (Cooke et al., 2004). In general, voxels with a volume of about 2 ml and 

located between C1–C3 (Ciccarelli et al., 2007, 2010) and C2–C3 (Marliani et al., 2007, 

2010) have been used, although voxels positioned between C3 and C7 (Kendi et al., 2004) 

and between C6 and C7 (Henning et al., 2008), have been used. MRS in the lower cervical 

and thoracic cord is technically very difficult because receiver coils are generally less 

sensitive to these regions, the spinal cord is smaller, and the amount of vertebral bone is 

increased, causing further field inhomogeneities that make shimming challenging. In fact, 

only one study of the lower and thoracic cord has been reported and this made use of an 

optimized acquisition protocol, which included inner-volume saturated point-resolved 

spectroscopy sequence (PRESS) localization and advanced (or higher-order) shimming 

(Henning et al., 2008).

A limitation of single-voxel MRS is that it provides little information on the spatial 

distribution of metabolites in the spinal cord. Improvement on this method is possible 

through the use of spectroscopic imaging (MRSI) techniques. For example, 1D PRESS 

spectroscopy (1D-MRSI) has been used to selectively excite signal in five voxels extending 

from the pontomedullary junction to the level of the C3 vertebra (Edden et al., 2007). Two-

dimensional (2D)-MRSI of water and lipids in the spinal cord has been described (Lin et al., 

2000), but so far no study has been published with water-suppressed 2D-MRSI as is needed 

for detection and quantification of metabolites.

Recent developments at higher field strength (3 T) indicate the possibility to detect 

additional metabolite concentrations with spinal cord MRS, such as the glutamate/glutamine 

(Solanky ISMRM 2012). This has been possible with thanks to careful optimization of the 

acquisition protocol and positioning of the voxel of interest, the use of a cervical collar that 

reduces the macroscopic movement of the neck, triggered iterative shimming and optimized 

water suppression.
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Myelin water-fraction imaging

The various tissue environments that contribute to the MRI signal can be investigated based 

on their relaxation times (T1 and T2) in order to gain information about tissue changes at the 

cellular level. Detailed relaxation time studies of excised neural tissues (Whittall et al., 

1997) have distinguished three specific relaxation components. These have been identified 

as CSF, intracellular and extracellular water, and water trapped in myelin sheaths. Within 

each of these three components there are further sub-environments, but their relaxation times 

are too similar to be identified separately. In gray matter and white matter in the brain, the 

two main components are attributed to myelin water with a T2 of around 15 ms, and the 

other is attributed to intracellular and extracellular water with a T2 of approximately 80 ms. 

The difference is that gray matter derives roughly 3% of its signal from the faster relaxing 

component (T2 ≈ 15 ms) whereas about 11% of white matter signal comes from this 

component (Jones et al., 2004; Whittall et al., 1997).

The myelin water fraction, MWF, which represents the fraction of tissue water bound to the 

myelin sheath (Whittall et al., 1997), is a validated marker for myelination in central nervous 

system tissue in vivo (Laule et al., 2006). MWFs from normal spinal cord are larger than 

those measured from normal brain and have been found to decrease slightly with age 

(MacMillan et al., 2011; Wu et al., 2006). Two separate studies (Laule et al., 2010; Wu et 

al., 2006), have found a lower MWF in the cervical spine of MS patients than in healthy 

controls. In a longitudinal study on subjects with primary progressive MS (Laule et al., 

2010), MWF in the cervical spine was found to decline by 5% per year. Myelin water 

fraction imaging is a promising technique for the study of spinal cord changes in MS 

because it provides specific information about the myelination state of the tissue.

Magnetization transfer

Conventional MRI of the spinal cord focuses on T1 and T2-weighted (and variants such as 

the MPRAGE, STIR, and FLAIR) methods because these can reflect tissue changes such as 

inflammation, necrosis, atrophy and lesions. However, within tissue, there are protons 

associated with large macromolecules with extremely short T2 relaxation times (ms); too 

short to be imaged directly with T1- and T2-weighted MRI. However, these semi-solid 

protons communicate with surrounding bulk water and thus can be interrogated indirectly. 

Magnetization transfer (MT) is an umbrella term describing this communication, which can 

occur through dipole–dipole interactions, or direct chemical exchange (Henkelman et al., 

2001). While the MT effect can be seen with different pulse sequences, for brevity we will 

focus on the off-resonance saturation approach (Sled and Pike, 2000, 2001). Because the 

semi-solid protons have very short T2 values, their frequency distributions are broad (~100 

ppm). Thus, an RF irradiation at a frequency far from the water resonance can selectively 

saturate these protons without direct saturation of the water. Through spin diffusion and 

intra-/intermolecular energy exchange, the saturation is transferred to the surrounding water 

and results in observable signal attenuation (Graham and Henkelman, 1997). As a result, the 

MT effect is proportional to the relative amounts of water associated with macromolecules 

and in bulk water, and is therefore different in tissues and in CSF, and has been shown to be 

sensitive to the myelin concentration, including both loss and regeneration (Brown et al., 

2012; McCreary et al., 2009; Schmierer et al., 2004, 2007; Stanisz et al., 2005).
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There are two global challenges to saturation-based MT experiments. First, in addition to the 

sensitivity to macromolecular protons, the MT effect is also sensitive to relaxation times (T1 

and T2) of the two compartments, B0 and B1 field strengths, the amount of direct water 

saturation, and sequence parameters such as the duty cycle, and the amplitude, power, and 

bandwidth of the saturation pulse(s). Secondly, saturation-based MT experiments generally 

require either large saturation powers (>10 mT) or long RF pulses/pulse trains to generate a 

significant MT effect. Even at lower field strengths, the power deposition (or specific 

absorption rate, SAR) with body coil transmission is already near the limit for human 

studies, as specified by the Food and Drug Administration (FDA) in the United States. With 

the known benefits of higher field strengths, transitioning MT experiments to higher fields 

quadratically increases power deposition. However, at high field, the prolongation of T1 

values can be utilized to minimize the  by reducing the duty cycle 

(Smith et al., 2006). Since the benefit of increasing the TR linearly scales the SAR, while 

the increase in B0 has a quadratic relationship, attention has been turned to alternative 

methods for exploring MT at ultra-high field strengths, such as 7 T (Dortch et al., 2013; 

Mougin et al., 2010).

Quantification methods—The most prevalent method to quantify the MT effect is by 

using the magnetization transfer ratio (MTR) (Wolff and Balaban, 1989) where the MTR is 

defined as:

(2)

and S(Δω) and (S0) are the signals obtained in the presence or absence of an MT pre-pulse at 

offset frequency = Δω. The benefit of the MTR is that it removes the dependence on non-

MT-based sequence parameters such as the TR, TE, type of imaging sequence, etc. 

Additionally, the MTR minimizes sensitivity to T1, T2, and receiver gain over the length of 

the anatomy of interest. With this definition, white matter (WM) is bright, gray matter (GM) 

is less bright, and CSF is minimal with the dynamic range of the MTR being from 0 (no 

saturation), to 1 (full saturation). One of the appeals of the MTR is the simple nature of the 

acquisition and analysis, along with the speed with which each acquisition can be obtained.

However, there are potential drawbacks of MTR imaging in the spinal cord. First, because 

two images are required to determine the MTR, motion between the acquisitions must be 

corrected. In the spinal cord, high resolution is necessary, and thus motion becomes a 

significant challenge when calculating the MTR. Because conventional saturation-based MT 

experiments rely on the build-up of steady-state saturation, triggering methods such as 

cardiac or respiratory gating cannot be used, as the TR between the two acquisitions must 

remain constant. Secondly, the MTR is only pseudo-quantitative. That is, the MTR is only a 

relative measure of saturation, which can vary from vendor to vendor, across field strengths, 

and with different B0 shimming routines. Finally, since it is a ratio image, the SNR is 

decreased relative to a single acquisition method.

An alternative method, termed MTCSF, that is based on a single image, has been reported to 

overcome the SNR penalty and sensitivity to motion of the two images necessary to 
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construct the MTR (Fatemi et al., 2005; Smith et al., 2005). The MTCSF is the ratio between 

the signals obtained with the influence of an RF irradiation to produce MT contrast, S(Δω), 

and the signal from tissue regions known to have little or no MT effect, such as CSF (when 

Δω is greater than 1–1.5 kHz). In the case of the spinal cord, the MTCSF is calculated 

relative to the signal within a region of interest drawn in the CSF for each slice:

(3)

With this definition, WM is dark, GM less dark and CSF is bright. While the MTCSF does 

not remove dependencies on T1 and T2, the goal is rather to remove slice-wise variations in 

hardware sensitivity while maintaining information about the macromolecular protons of 

interest.

Both MTR and MTCSF suffer from the same drawback. Namely, they do not offer direct 

measurements of physiological parameters, and are sensitive to B1 and B0 inhomogeneity, 

pulse sequence parameters, T1, T2, and other non-physiological contributors. Quantitative 

MT (qMT) is a set of analysis and acquisition methods that seek to extract quantifiable, 

sequence independent, values that directly reflect physiology, such as the fraction of semi-

solid spins, the rate of MT exchange, or the relaxation constants of the bound spins. This 

approach is generally based on multiple images with varied acquisition parameters, and 

fitting to models to extract quantitative physiological information, and has demonstrated 

potential for brain imaging studies (Dortch et al., 2011, 2013; Gochberg and Gore, 2003; 

Sled and Pike, 2001; Smith et al., 2009; Mougin et al., 2010; Stanisz et al., 2005). To date, 

there have been only a few studies of qMT of the human spinal cord in vivo (Smith et al., 

2009).

Post-processing and analysis methods to overcome challenges for MRI

Physiological motion—Many of the challenges of functional MRI, DTI and anatomical 

imaging described above have been reduced with specialized post-processing and analysis 

methods, using approaches that have many common features across applications. A 

significant source of errors arises from physiological motion either directly through physical 

displacements or indirectly through motion-related image artifacts; both of which introduce 

“noise” in time series data for fMRI, or with repeated acquisitions for DTI, MTR, etc. As 

this motion is naturally periodic, the choice of aperiodic stimulation paradigms for fMRI is 

expected to produce results that are less sensitive to this noise. Significant recent advances 

have also been made in methods to reduce some sources of error prior to analysis, and to 

account for their contributions in general linear model analyses (GLM) for both spin-echo 

(Figley and Stroman, 2009) and gradient-echo imaging methods (Brooks et al., 2008b; Piché 

et al., 2009; Stroman, 2006).

The basis functions for GLM analysis of fMRI data typically consist of models of the 

stimulation paradigm, convolved with the tissue response function, and low-frequency terms 

(Stroman et al., 2005). Models of the 3 principle components of cardiac-related motion of 

the spinal cord (Figley and Stroman, 2009), can be generated based on the peripheral pulse, 
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and used as regressors in the GLM for spinal fMRI using fast spin-echo methods. For fMRI 

studies using gradient-echo imaging methods, signal fluctuations related to both cardiac and 

respiratory variations in the local magnetic field have been modeled as noise regressors in 

the GLM (Brooks et al., 2008a). Both the resulting basis sets can be used in the GLM 

analysis to reduce the variance from sources of non-interest.

Pulsatile flow of cerebrospinal fluid (CSF) has been identified as an important source of 

signal fluctuation through the introduction of phase errors in the k-space representation of 

the MRI data (Stroman et al., 2012b). These errors create an artificial displacement of CSF 

signal in the phase encoding direction of the resulting images, such that the CSF appears to 

be displaced depending on the phase of the cardiac cycle. Image correction methods have 

been developed to reduce the effects of this artifact (Stroman et al., 2012b).

Similarly, signal fluctuations between DTI acquisitions with different diffusion encoding 

directions, or different b-values, can result in significant errors in measured diffusion 

indices. It is therefore important to acquire DTI data in the quiescent part of the cardiac 

cycle, by means of peripheral gating or cardiac monitoring, with the appropriate delay set up 

for each case in order to perform data sampling during the diastole of the cardiac cycle 

(Fenyes and Narayana, 1999; Kim et al., 2007; Loy et al., 2007; Madi et al., 2005; 

Spuentrup et al., 2003; Summers et al., 2006). In order to reduce possible T1 effects on the 

signal amplitude (i.e., T1-induced signal variation due to variable repetition time), long 

repetition times should be employed when gating is used (typically TR > 5 s).

Each of these methods to correct for sources of errors and image artifacts prior to data 

analysis can be implemented automatically, if supporting data such as recordings of the 

pulse during data acquisition, are available. These methods could therefore be implemented 

in analysis software such as is commonly done for brain fMRI pre-processing methods, in 

order to make them useful in routine practice for spinal fMRI studies.

Image distortion and co-registration

Imaging methods that employ echo-planar imaging (EPI) approaches for spatial encoding 

are particularly sensitive to image artifacts and spatial distortion. While some fMRI 

approaches avoid EPI methods, many examples of fMRI in the literature, and all DTI 

examples, still employ EPI methods. It is highly desirable to correct these distortions if one 

wants to perform tractography or overlay diffusion-weighted metrics or fMRI results on 

distortion-free anatomical images. Various correction methods exist, and consist of 

estimating a non-linear warping field constrained in the phase-encoding direction. This 

warping field can be estimated from a magnetic field map from the phase difference 

between two gradient-echo images acquired at slightly different echo times (TE) (Cusack et 

al., 2003; Schneider and Glover, 1991; Wilson et al., 2002). This method is widely used and 

is implemented in software such as FSL (www.fmrib.ox.ac.uk/fsl/) and SPM 

(www.fil.ion.ucl.ac.uk/spm/). Another method to correct for image distortion uses an 

additional EPI volume acquired with the same FOV and matrix, but with phase-encoding 

gradients in the opposite direction. The two sets of images will exhibit distortions in the 

opposite direction, allowing distortion corrections to be determined (Andersson et al., 2003; 

Reinsberg et al., 2005; Voss et al., 2006). Effects of respiratory motion can also cause 
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variations in local B0-field homogeneity that result in geometric distortions that change in 

time and are not corrected by gating, as describe above (Brosch et al., 2002; Raj et al., 2001; 

Van de Moortele et al., 2002). To circumvent this issue, dynamic shimming has been 

proposed (van Gelderen et al., 2007). Distortion correction methods that reduce the data 

acquisition requirements are preferred, to avoid the cost of longer acquisitions. In addition, 

by reducing the EPI readout duration, the impact of susceptibility differences is decreased, 

thereby reducing geometrical distortions (Griswold et al., 2002; Pruessmann et al., 1999). 

One such approach involves using a greatly reduced field of view or ZOOM (zonally 

magnified oblique multi-slice) sequence (Dowell et al., 2009; Finsterbusch, 2009; Wheeler-

Kingshott et al., 2002a,b). However, these methods remain largely “pre-clinical” and remain 

available only through research agreements with manufacturers, or as “in-house” 

modifications, in spite of being in use for research for over 10 years (e.g. Dowell et al., 

2009; Finsterbusch and Frahm, 1999; Wheeler-Kingshott et al., 2002a; Wilm et al., 2007). 

Parallel imaging methods similarly reduce the data requirements, but require the availability 

of multi-element coils with suitable geometries that allow reduced sampling (Pruessmann et 

al., 1999). The gain in sampling speed however is at the expense of lower SNR and 

increased potential for artifacts and motion sensitivity. Most standard neck coils are not built 

for this purpose and consequently the benefit of parallel imaging methods for distortion 

correction is available only to sites with the latest or custom-built coil technology (Cohen-

Adad et al., 2011c).

Motion correction

Motion correction consists of realigning all images acquired in one subject over the course 

of several minutes, during which time the subject may have moved. Typically for the brain, 

most methods consist of registering each image to a single target, which for DTI could be 

the b = 0 image or the average of the DW images, and for fMRI could be a high quality 

anatomical image, or one of the time-series image volumes. The registration is usually done 

by estimating an affine transformation matrix (which includes 3 rotations and 3 translations). 

Given that head motion is rigid (i.e., non-deformable structure) and that DW images of the 

brain usually contain >100,000 voxels, this procedure is usually robust and accurate. 

Unfortunately this does not hold for the spinal cord because (i) considerably fewer voxels 

are contained in the spinal cord, therefore estimating a transformation matrix might be less 

robust; (ii) motion is usually non-rigid due to the segmental structure of the spine associated 

with swallowing, neck readjustment and B0-variations inducing non-rigid image distortion 

close to the thoracic area (Brosch et al., 2002; Raj et al., 2001; Van de Moortele et al., 

2002). Several techniques can help optimizing motion correction procedure for the spinal 

cord. With axial acquisitions, it may be advantageous to correct each slice independently, to 

account for the non-rigid motion of structures across slices (mainly B0 fluctuations) (Cohen-

Adad et al., 2010). In some cases it is also useful to crop the area outside the spinal region 

(e.g. crop out the muscles surrounding the spine) in order to optimize the accuracy of the 

registration in the spinal cord (Cohen-Adad et al., 2010; Summers et al., 2010). It is also 

possible to intersperse b = 0 images throughout the acquisition of the diffusion-weighted 

data, and then estimate the motion corrections based on the b = 0 images. These are typically 

more robust to co-align, given that all b = 0 images have the same contrast and have higher 

SNR than diffusion-weighted images. A recent detailed analysis of post-processing methods 
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for DTI has demonstrated that slice-wise motion correction produces the most accurate 

results, and that in combination with eddy current correction, and robust diffusion tensor 

fitting methods, produces the highest contrast-to-noise ratio and least variation in FA maps 

(Mohammadi et al., 2013).

Positron-emission tomography (PET)

Positron emission tomography (PET) detects gamma ray emissions emitted by radioactive 

compounds. The choice of different injected tracers provides the potential for unique 

information regarding the injured spinal cord. PET imaging has at least two distinct uses in 

the evaluation of traumatic spinal cord injury: assessment of the metabolic activity within 

remaining tissue and monitoring the degree of axonal connectivity. With regard to the first 

use, 18F-labeled fluorodeoxyglucose (FDG) has been used to monitor nervous system 

function in a range of preclinical and clinical studies. For example, traumatic brain injury 

reduces glucose utilization detected by FDG-PET, and reduced uptake is associated with 

impaired outcome (Garcia-Panach et al., 2011; Kato et al., 2007). This technique has also 

been applied to compressive and radiation myelopathies of the cervical spinal cord (Floeth et 

al., 2011; Uchida et al., 2004, 2009a,b) as well as to one preclinical study of traumatic spinal 

cord injury (Nandoe Tewarie et al., 2010). For cervical compressive myelopathies, some 

lesions show locally reduced glucose utilization while other cases show increased glucose 

uptake (Uchida et al., 2004, 2009b). There is a positive correlation between preoperatively 

elevated uptake and later improvement after decompressive surgery in two studies (Floeth et 

al., 2011; Uchida et al., 2009b). In one study, the PET data were uncorrelated with magnetic 

resonance (MR) images (Uchida et al., 2009b), providing a distinct means to predict positive 

outcome from surgery. A challenge for spinal cord PET remains spatial resolution. Even 

with high-resolution scanners and computed tomography (CT) registration, the spatial 

resolution is one or more orders of magnitude less than structural MRI. Regional distinctions 

between zones of the spinal cord at one segmental level are not possible by PET imaging in 

axial projections.

There is growing clinical trial activity focused on therapeutic strategies intended to promote 

axonal growth, regeneration, sprouting and repair. PET tracers with neurotransmitter 

specificity have the potential for tracking the degree of damage and repair for specific fiber 

tracts. Thus, PET ligands may function as biomarkers in the development of new repair 

strategies. The potential utility of this approach has been demonstrated in one preclinical 

study (Wang et al., 2011). The raphespinal system is the only serotonergic system in the 

spinal cord; therefore, all presynaptic serotonin markers depend on the continuity of 

descending fibers. PET tracers, such as 11C-labeled 2-[2-(dimethylaminomethyl) 

phenylthio]-5-fluoromethylphenylamine (AFM), that bind to the presynaptic serotonin re-

uptake sites have been developed (Huang et al., 2002; Williams et al., 2008; Zhu et al., 

2004). In rats, the spinal cord has a clearly defined specific AFM uptake which is lost caudal 

to a complete spinal cord transection. With moderate spinal cord contusion, there is partial 

loss of caudal AFM signal. Most critically, treatment with an axon regenerative therapy, 

namely Nogo receptor (NgR1-Fc) decoy protein, promotes an increase in caudal AFM signal 

after chronic spinal cord contusion (Wang et al., 2011). This increased signal is correlated 

with behavioral improvement and matches post-mortem histological evidence of serotonin 
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fiber regrowth. In this case, a neurotransmitter-specific PET tracer is a radiological marker 

for the extent of axonal connectivity across a lesion site and reports the degree of axonal 

repair with treatment. Use of tracers specific to presynaptic markers of different long tracts 

in the spinal cord may extend the anatomical specificity of this technique. PET measurement 

of fiber regrowth does not depend, as does diffusion tensor imaging (DTI)-MR 

measurements, on highly ordered fasciculated fiber tracts. This is critical because the 

majority of preclinical studies in which interventions promote some fiber regeneration show 

that new fiber growth is highly branched and irregular. Thus, PET may provide an imaging 

modality to detect regenerative growth in proof-of-concept clinical trials.

Future directions

The technical challenges common to spinal cord imaging methods have been clearly 

identified as being: 1) magnetic susceptibility differences, 2) physiological motion, and 3) 

small cross-sectional dimensions of the spinal cord. These properties of the imaging 

environment in the human spinal cord will not change, and so future advances require 

development of better methods to overcome these challenges. Improvements in imaging 

methods are needed to simultaneously increase the signal-to-noise ratio and the spatial 

resolution. For imaging methods such as PET and CT this may be obtained with 

improvements in detector technology, and similarly for MRI may be provided by advances 

in radio-frequency coil design. Improvements in MR imaging and spectroscopy methods are 

also needed to reduce sensitivity to magnetic field inhomogeneity. This may be achieved 

with improvements in localized magnetic field shimming methods, and changes in data 

sampling schemes to trade off shorter data sampling periods with more sampling periods. 

Trade-offs in image sampling are possible if pulse-sequence designs are optimized for the 

spinal cord environment, such as has been done for DTI (Dowell et al., 2009; Finsterbusch 

and Frahm, 1999; Wheeler-Kingshott et al., 2002a; Wilm et al., 2007). Such advances in 

methods were realized with the advent of brain fMRI, and research groups, software 

developers, and MRI system manufacturers responded to these demands. The future 

development of spinal cord imaging methods similarly requires researchers to engage with 

equipment manufacturers and software developers to communicate needs and encourage a 

two-way sharing of methods and technology. Researchers developing the methods need 

MRI and PET system manufacturers to make the methods more widely accessible, and in 

particular, accessible to clinical environments.

The future development of spinal cord imaging methods into clinical and research tools is 

also hindered by the relatively low number of researchers working to develop them, which 

results in a lack of data and technical resources. This short-fall may be alleviated by greater 

coordination between existing research groups and implementation of methods/processes to 

facilitate wide-spread sharing of methods and data. A freely accessible repository of 

methods, such as NITRC (http://www.nitrc.org/), could be established for spinal cord 

imaging software and methods, or an existing repository could be used. Similarly, methods 

that have already been established for sharing brain imaging data could be adopted for 

sharing spinal cord imaging data. Finally, but certainly not least in importance, an annual 

meeting dedicated to communicating results and new developments related to spinal cord 

imaging, is needed.
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Fig. 1. 
Spatial distortions caused by bone/tissue interfaces in the spine with A) a half-Fourier 

single-shot fast spin-echo (HASTE), B) a spin-echo EPI, and C) a gradient-echo EPI 

imaging sequence.
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Fig. 2. 
An example of spinal cord and brainstem fMRI results obtained from a group of healthy 

participants, with thermal stimulation of the right and left hands. The left panel shows the 

approximate rostral–caudal locations of the axial slices on the right side of the figure. 

Results are shown for selected contiguous 1-mm thick transverse slices through the C8 

spinal cord segment and the rostral medulla. Areas of activity are displayed in axial slices 

from spatially normalized functional MRI data, with colors corresponding to the T-value 

determined with a GLM analysis. The results are shown separately for analyses with 

paradigms corresponding to right-hand stimulation and left-hand stimulation, and 

demonstrate spatial specificity.

Stroman et al. Page 27

Neuroimage. Author manuscript; available in PMC 2015 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The panel on the left shows a color-coded representation of diffusion parameters in an axial 

plane through the level of the medulla oblongata, as well as a selective reconstruction of the 

corticospinal tracts in a healthy participant. The panel on the right shows the reconstructed 

fiber tracts overlaid on a sagittal reference image. The decussation of the corticospinal tracts 

in the medulla is clearly identified in this example.
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Table 1

Summary of imaging parameters used for spinal cord fMRI.

Imaging method
Single-shot fast spin-echo (also called SSFSE, HASTE, or SShTSE, 
depending on the manufacturer) Gradient-echo EPI

Spatial resolution 1.5 mm × 1.5 mm × 2 mm
Contiguous slices

1.5 mm × 1.5 mm × 5 mm
Contiguous or spaced to vertebral 
bodies

Orientation Sagittal Axial

Echo time, TE Minimum possible for SEEP (b20 ms)
Moderate for a combination of BOLD and SEEP (~30–40 ms)
Longer to optimize contrast from BOLD (~75 ms predicted from theory)

25–40 ms

Repetition time, TR Longest practical, considering the temporal resolution needed for fMRI <3 s

Receiver bandwidth Balance speed and SNR (typical values: 790 Hz/pixel or about 150 kHz) Highest possible

Imaging options Flow compensation in H/F direction,
Spatial suppression pulses to eliminate signal anterior to the spine
Acquire as many phase-encoded lines as possible in the available time and 
SAR constraints

Flow compensation in H/F direction
Spatial suppression pulses to eliminate 
aliasing
Localized shimming

SSFSE: single-shot fast spin-echo, HASTE: half-Fourier single-shot turbo spin-echo, SShTSE: single-shot turbo spin-echo.
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