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quantization. In this paper we discuss how spinning particles with gauged O(N) super-

symmetries on the worldline can be consistently coupled to conformally flat spacetimes,

both at the classical and at the quantum level. In particular, we consider canonical quan-

tization on flat and on (A)dS backgrounds, and discuss in detail how the constraints due

to the worldline gauge symmetries produce geometrical equations for higher spin fields,

i.e. equations written in terms of generalized curvatures. On flat space the algebra of

constraints is linear, and one can integrate part of the constraints by introducing gauge

potentials. This way the equivalence of the geometrical formulation with the standard

formulation in terms of gauge potentials is made manifest. On (A)dS backgrounds the al-

gebra of constraints becomes quadratic, nevertheless one can use it to extend much of the

previous analysis to this case. In particular, we derive general formulas for expressing the

curvatures in terms of gauge potentials and discuss explicitly the cases of spin 2, 3 and 4.
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1. Introduction

In a previous paper [1] we have discussed the worldline quantization of massless higher spin

fields, considering in particular those fields that are described by spinning particle models

with gauged O(N) supersymmetries on the worldline [2 – 4] (which include all D = 4 higher

spin fields). We calculated the one-loop effective action in flat space, that contains the in-

formation on the number of physical degrees of freedom propagating in the loop. This result

was achieved by computing the path integral of the O(N) spinning particle on the circle.

To obtain more information on the quantum theory of higher spin fields in a first

quantized approach, it is desirable to couple the spinning particles to more general back-

grounds other than flat spacetime or, equivalently, to introduce suitable vertex operators
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to describe couplings to external particles. However, this program has to face with the

notorious difficulty of introducing interactions for higher spin fields.1 This difficulty is ev-

ident also from the sigma model point of view. In fact, it was shown in [3] that for N > 2

standard supersymmetry transformation rules leave the spinning particle action invariant

only if the target spacetime is flat. The standard supersymmetry transformation rules for

the worldline supergravity multiplet used in [3] were purely geometrical, and assumed that

they would not involve the particle coordinates and corresponding fermionic partners. The

situation was improved in [8], where it was realized how to couple the spinning particle

to maximally symmetric spaces, namely (A)dS spaces. The construction presented in [8]

made use of the conformal invariance of the spinning particle which was discovered by

Siegel, who embedded the model in a flat target space with two extra dimensions to keep

conformal invariance manifest [9] (this embedding had already been used by Marnelius for

the case of N = 0, 1 [10]). This construction implied that the susy transformation rule

of the supergravity multiplet had to be more general than the one used in [3], and could

include the particle coordinates and the corresponding fermionic partners.

In this paper we perform a canonical analysis to study the couplings to curved spaces,

and we are able to extend the known results to include couplings to arbitrary conformally

flat spaces. This finding can be understood in a simple way: noticing that the spinning

particle action is invariant under a Weyl rescaling of the background target space metric is

sufficient to guarantee consistent propagation on conformally flat manifolds. The couplings

to this class of curved spaces, even if mild, is presumably not negligible, as one may expect

some kind of conformal anomaly to give rise to a nontrivial one loop effective action (more

general than the one computed in [1]). With this future application in mind, we proceed

to study the canonical quantization of the model. A canonical analysis is needed also

to provide sufficient data for fixing the counterterms that may arise when computing the

corresponding path integral in curved spaces [11, 12], see in particular [13 – 15] for the

N = 0, 1, 2 spinning particle cases, respectively.

Canonical quantization allows to identify the correct field equations one is describing in

first quantization. In the present case it allows to make contact with the classical description

of higher spin fields in the so-called geometrical formulation, dynamical equations originally

proposed in [16, 17] which make use of the higher spin curvatures constructed in [18, 19]

(see [5] for reviews). This relation is seen by recalling that gauge symmetries give rise to

first class constraints that select physical states from the Hilbert space. In flat space the

constraints of the O(N) spinning particle produce equations of motion written in terms of

tensors that are interpreted as generalized curvatures describing higher spin fields. Gauge

potentials can be introduced by integrating a subset of these equations (those corresponding

to the Bianchi identities). This way one sees how the worldline approach reproduces and

unifies various constructions that have appeared in the recent literature on higher spin

fields, like the use of compensators to relax trace constraints [17, 20] or the use of generalized

Poincaré lemmas to integrate the Bianchi identities [21 – 24] and prove the equivalence with

1See for example [5] for a general introduction to the classical theory of higher spin fields, and [6] which

reviews and studies the problem of coupling spin 2 to higher spin particles in four dimensions (see also [7]

for a recent analysis).
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the standard formulation of Fronsdal and Labastida [25, 26] (see [5] for a list of references

and discussions of related works). We present the analysis in arbitrary dimensions D, but

only for the case of even N , i.e. for particles with integer spin s = N
2 . Extension to the

odd N case should proceed in a similar fashion.

Then we analyze the constraint equations in the case of (A)dS spaces. The algebra of

constraints is again first class, but the algebra closes only quadratically. It is interesting

to note that this algebra coincides with the zero mode sector of the Bershadsky-Knizhnik

SO(N)-extended superconformal algebra in two dimensions [27, 28]. The constraints pro-

duce again geometrical equations of motion for the higher spin curvatures on (A)dS spaces.

Quadratic closure complicates the algebraic structure, which nevertheless remains of valu-

able help. In fact, we use it to express the curvatures in terms of higher spin gauge

potentials. Then, we consider in detail the cases of spin s = 2, 3, 4, with the s = 2 case cor-

responding to the familiar case of the graviton if D = 4. Quadratic algebras have appeared

before in the description of higher spin fields, see for example [29, 20].

Though not discussed in this paper, one may find in the literature other particle models

related to higher spin fields, like the twistor-like particle of refs. [30, 31, 24] or particles

that could be constructed using the OSp quantum mechanics of ref. [32]. The same BRST

approach of refs. [33] used to describe higher spin field equations can perhaps be related

to a particle model. In the following we shall structure our paper as indicated in the table

of content.

2. The O(N) spinning particle

In this section we first review the classical formulation of the spinning particle propagating

in Minkowski space. Then, we proceed to describe the coupling to conformally flat spaces.

2.1 Minkowski space

It will be useful to present the O(N) spinning particle action directly in phase space. The

dynamical variables are given by: the cartesian coordinates xµ of the particle moving in

a D dimensional Minkowski space, their conjugate momenta pµ, and N real Grassmann

variables with spacetime vector indices ψµi (i = 1, . . . , N). The Minkowski metric ηµν ∼
(−,+, . . . ,+) is used to raise and lower spacetime indices. In addition, there is an O(N)-

extended supergravity on the worldline, whose gauge fields are given by the einbein e, the

gravitinos χi, and the SO(N) gauge field aij. The action which defines the model is given by

S =

∫

dt

[

pµẋ
µ +

i

2
ψiµψ̇

µ
i − e

(
1

2
pµp

µ

)

︸ ︷︷ ︸

H

−iχi
(

pµψ
µ
i

)

︸ ︷︷ ︸

Qi

−1

2
aij

(

iψµi ψjµ

)

︸ ︷︷ ︸

Jij

]

(2.1)

where H,Qi, Jij denote the first class constraints gauged by the fields e, χi, aij . The ki-

netic term defines the phase space symplectic form and fixes the graded Poisson brackets:

{xµ, pν}PB
= δµν and {ψµi , ψνj }PB

= −iηµνδij . With these brackets one can easily compute

the constraint algebra at the classical level

{Qi, Qj}PB
= −2iδijH
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{Jij , Qk}PB
= δjkQi − δikQj

{Jij , Jkl}PB
= δjkJil − δikJjl − δjlJik + δilJjk (2.2)

which is first class and thus gauged consistently by the fields e, χi, aij . This algebra is

known as the O(N)-extended susy algebra: it has N susy charges Qi which close on the

Hamiltonian H and which transform in the vector representation of SO(N), whose Lie

algebra is described by the last line. We now discuss the various symmetries of the model.

The gauge symmetries are those of the O(N)-extended supergravity on the worldline,

whose infinitesimal gauge transformations with parameters ξ, ǫi, αij are given by

δxµ = {xµ, G}
PB

= ξpµ + iǫiψ
µ
i

δpµ = {pµ, G}PB
= 0

δψµi = {ψµi , G}PB
= −ǫipµ + αijψ

µ
j

δe = ξ̇ + 2iχiǫi

δχi = ǫ̇i − aijǫj + αijχj

δaij = α̇ij + αimamj + αjmaim (2.3)

where G ≡ ξH + iǫiQi + 1
2αijJij denotes the generator of gauge transformations. One

could add trivial symmetries proportional to the equations of motion to present the world-

line diffeomorphisms in the standard geometrical form, but this is not so natural in the

hamiltonian formalism.

The rigid symmetries include transformations under the Poincaré group of target space,

which guarantees the relativistic invariance of model. They are given by

δxµ = ωµνx
ν + aµ , δpµ = ωµ

νpν , δψµi = ωµνψ
ν
i (2.4)

where ωµν and aµ specify infinitesimal Lorentz rotations and spacetime translations, re-

spectively. The worldline gauge fields are left invariant by these symmetries.

In addition, the model is conformal invariant. To prove this we first show that

the model has background symmetries2 corresponding to: (i) diffeomorphisms, (ii) local

Lorentz transformations, (iii) Weyl rescalings of the flat target space metric. Then, con-

formal Killing vectors, which by definition leave invariant the background metric, identify

rigid symmetries of the model. They generate the conformal group SO(D, 2).

To discuss these background symmetries we find it convenient to rewrite the action (2.1)

using arbitrary coordinates, denoted again by xµ. We also denote the Minkowski metric in

arbitrary coordinates by gµν . Then we introduce an orthonormal tangent frame specified

by the vielbein eµ
a and use ψai ≡ ψµi eµ

a(x) as independent variables. Given the vielbein

one may construct the unique spin connection ωµab, which enters the definition of the

covariant momenta

πµ = pµ −
i

2
ωµabψ

a
i ψ

b
i . (2.5)

2These are symmetries in which also the background fields, like the spacetime metric, transform.
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The coefficient in front of the spin connection is easily fixed by requiring the covariance con-

dition

{πµ, πν}PB
=
i

2
Rµνabψ

a
i ψ

b
i (2.6)

so that in flat space the covariant momenta commute. With these tools at hand the ac-

tion (2.1) can be rewritten in the form

S =

∫

dt

[

pµẋ
µ +

i

2
ψiaψ̇

a
i − e

(
1

2
gµνπµπν

)

︸ ︷︷ ︸

H

−iχi
(

ψai ea
µπµ

)

︸ ︷︷ ︸

Qi

−1

2
aij

(

iψai ψja

)

︸ ︷︷ ︸

Jij

]

. (2.7)

We are now ready to discuss its background symmetries:

(i) Diffeomorphisms of target space are identified quite easily. The coordinates transform

as usual, xµ → xµ′(x), the momenta as a 1-form, pµ → pµ
′ = pν

∂xν

∂xµ′ , and the

background fields gµν , eµ
a, ωµab as tensors as indicated by their coordinate indices.

The fermions ψai are left invariant, just like the supergravity gauge fields e, χi, aij .

These transformations are easily seen to be an invariance of the action.

(ii) Proving local Lorentz invariance is slightly more difficult. An infinitesimal local

Lorentz transformation is specified by the parameters λab(x) = −λba(x). It leaves

the coordinates xµ invariant and transforms the worldline fermions as vectors

δψai = λab(x)ψ
b
i . (2.8)

The symplectic term of the action is left invariant if one assigns to the momenta the

transformation rule

δpµ = − i

2
∂µλab(x)ψ

a
i ψ

b
i . (2.9)

The background fields gµν , eµ
a, ωµab transform as usual under local Lorentz trans-

formations, and in particular the spin connection transforms as the local Lorentz

gauge field

δωµ
ab = −∂µλab + λac ωµ

cb + λbc ωµ
ac . (2.10)

As a consequence the covariant momentum πµ is left invariant. Therefore the full

action is invariant.

(iii) Finally, let us prove invariance under Weyl rescalings of the target space metric. Un-

der an infinitesimal Weyl rescaling specified by the local parameter φ(x), which is a

function of target space, the background fields transform as

δgµν = 2φ gµν , δeµ
a = φ eµ

a , δωµ
ab = (eµ

aeν
b − eµ

beν
a)∇νφ . (2.11)

As a consequence the covariant momentum transforms as

δπµ = −iψµiψνi ∂νφ (2.12)
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and the constraints as

δQi = −φQi − Jijψ
µ
j ∂µφ

δH = −2φH + iψµi ∂µφQi . (2.13)

These transformations can be compensated by suitable transformations on the world-

line gauge fields

δe = 2φ e

δχi = −eψµi ∂µφ+ χiφ

δaij = i(χiψ
µ
j − χjψ

µ
i )∂µφ (2.14)

while the variables xµ, pµ, ψ
a
i are taken to be invariant. This proves Weyl invariance.

Because of these background symmetries, conformal Killing vectors necessarily produce

global symmetries. In fact, the conformal Killing vectors are precisely those vector fields ξµ

that generate infinitesimal diffeomorphisms whose effect on the metric and on the vielbein

can be compensated by suitable Weyl and local Lorentz transformations,

δgµν = Lξgµν + 2φgµν = 0

δeµ
a = Lξeµa + φeµ

a + λabeµ
b = 0 (2.15)

where Lξ denotes the Lie derivative acting along the vector field ξµ. As the background

fields are left untransformed, the conformal Killing vectors induce rigid symmetries of the

action (2.7). They generate the conformal group SO(D, 2), which extend the Poincaré

group to include scale transformations and conformal boosts.

An additional bonus of the background Weyl symmetry is that it guarantees that the

O(N) spinning particle propagates consistently on arbitrary conformally flat manifolds.

These spaces include the class of maximally symmetric spaces, i.e. the (A)dS spaces, which

were shown to be consistent backgrounds for the spinning particle in [8], but are more gen-

eral.

Before closing, let us report the finite Weyl transformations leaving the action invariant.

They are given by

g′µν = e2φgµν , eµ
a′ = eφeµ

a , ωµ
ab′ = ωµ

ab + (eµ
aeν

b − eµ
beν

a)∇νφ , (2.16)

implying

Qi
′ = e−φ

(
Qi − Jijψ

µ
j ∂µφ

)

H ′ = e−2φ

(

H − iQiψ
µ
i ∂µφ− i

2
Jijψ

µ
i ∂µφψ

ν
j ∂νφ

)

, (2.17)

and

e′ = e2φe

χi
′ = eφ

(
χi − eψµi ∂µφ

)

aij
′ = aij + i(χiψ

µ
j − χjψ

µ
i )∂µφ− ieψµi ∂µφψ

ν
j ∂νφ . (2.18)
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2.2 Conformally flat spaces

As just discussed, the background Weyl symmetry implies that the spinning particle is

consistent on any conformally flat spacetime. In this section we verify this claim by direct

canonical analysis.

The form of the action is the same as the one reported in eq. (2.7)

S =

∫

dt

[

pµẋ
µ +

i

2
ψiaψ̇

a
i − e

(
1

2
gµνπµπν

)

︸ ︷︷ ︸

H0

−iχi
(

ψai ea
µπµ

)

︸ ︷︷ ︸

Qi

−1

2
aij

(

iψai ψja

)

︸ ︷︷ ︸

Jij

]

(2.19)

but we have renamed the hamiltonian as H0 in view of convenient redefinitions to be

introduced later. We will start assuming an arbitrary metric gµν , and verify that the

constraints H0, Qi, Jij continue to form a first class algebra on spaces that are conformally

flat, so that by assigning suitable transformation rules to the gauge fields e, χi, aij the

action keeps on being gauge invariant.

As anticipated, it is instructive to begin by considering generic curved spaces. Apart

from the SO(N) subalgebra generated by the Jij , which remains unmodified, one obtains

the following algebra

{Qi, Qj}PB
= −2iδijH0 +

i

2
Rabcdψ

a
i ψ

b
jψ

c · ψd

{Qi,H0}PB
= − i

2
πaRabcdψ

b
iψ

c · ψd (2.20)

which generically fails to be first class. Of course, one could try to add new constraints to

force the algebra to close, but this may overconstrain the system.

An option, that in the light of the previous analysis is guaranteed to work, is to

restrict attention to conformally flat spaces. These spaces have a vanishing Weyl tensor,

which allows to solve the Riemann tensor in terms of the Ricci tensor and curvature scalar

Rabcd =
1

(D − 2)

(
ηacRbd − ηadRbc − ηbcRad + ηbdRac

)

− R

(D − 2)(D − 1)

(
ηacηbd − ηadηbc

)
. (2.21)

Substituting this relation into (2.20) produces

{Qi, Qj}PB
= −2iδijH0 −

iR

(D − 2)(D − 1)
JikJjk −

Rab
(D − 2)

(

ψai ψ
b
kJjk + (i↔ j)

)

{Qi,H0}PB
=

R

(D − 2)(D − 1)
QkJki +

Rab
(D − 2)

(

πaψbkJik + iψai ψ
b
kQk

)

(2.22)

which becomes first class, though with structure functions rather than structure constants.

This is enough to guarantee consistency of the gauge system at the classical level, see

for example [34].

It may be convenient, especially when considering maximally symmetric spaces, to

redefine the hamiltonian as

H = H0 + ∆H =
1

2
gµνπµπν −

1

8
Rabcdψ

a · ψbψc · ψd (2.23)

– 7 –
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so that on general curved spaces the algebra (2.20) takes the form

{Qi, Qj}PB
= −2iδijH +

i

2
Rabcd

(

ψai ψ
b
j −

1

2
δijψ

a · ψb
)

ψc · ψd

{Qi,H}PB =
1

8
ψei∇eRabcdψ

a · ψbψc · ψd . (2.24)

Written in this way one sees that the second Poisson bracket vanishes on locally symmetric

spaces, but the first one remains second class. Thus, the model is inconsistent on generic

curved spaces for N > 2 (while for N ≤ 2 one can show that the offending terms vanish).

On conformally flat spaces these relations simplify to

{Qi, Qj}PB
= −2iδijH +

iR

(D − 2)(D − 1)

(
1

2
δijJklJkl − JikJjk

)

(2.25)

− Rab
(D − 2)

(
ψai ψ

b
kJjk + ψajψ

b
kJik − δijψ

a
kψ

b
l Jkl

)

{Qi,H}
PB

= − 1

4(D − 2)(D − 1)
ψci∇cRJklJkl +

i

2(D − 2)
ψci∇cRabψ

a
kψ

b
l Jkl

with

H = H0 +
R

4(D − 2)(D − 1)
JijJij −

iRab
2(D − 2)

ψai ψ
b
jJij . (2.26)

The corresponding action on conformally flat spaces

S =

∫

dt

[

pµẋ
µ +

i

2
ψiaψ̇

a
i − eH − iχiQi −

1

2
aijJij

]

(2.27)

is then gauge invariant under suitable transformation rules generated by the constraints

and their structure functions. We refrain from presenting them here. Of course this form

of the action is equivalent to the one given in (2.19), as can be seen by redefining the gauge

field aij → aij − eFij(x, ψ) which is needed to pass from the form with H to the one with

H0 (the explicit expression of Fij(x, ψ) is easily obtained by using eqs. (2.23) and (2.21)).

All these expressions simplify further on maximally symmetric spaces, the (A)dS

spaces, which are a subset of conformally flat spaces. As we are going to treat the canonical

quantization of these cases in some detail, it may be useful to report the corresponding

classical formulas. The Riemann tensor for maximally symmetric spaces is of the form

Rabcd = b(ηacηbd − ηadηbc) (2.28)

where the constant b is related to the curvature scalar by b = R
D(D−1) . The improved

hamiltonian now reads as

H = H0 + ∆H =
1

2
πaπa −

b

4
JijJij (2.29)

and the complete gauge algebra, including the Jij charges, has the following nonvanishing

Poisson brackets

{Qi, Qj}PB
= −2iδijH + ib

(

JikJjk −
1

2
δijJklJkl

)

– 8 –
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{Jij , Qk}PB
= δjkQi − δikQj

{Jij , Jkl}PB
= δjkJil − δikJjl − δjlJik + δilJjk . (2.30)

It is a quadratic deformation of the linear algebra in (2.2), with b playing the role of de-

forming parameter. It is interesting to note that this algebra reproduces the (classical

version) of the zero mode sector of certain two-dimensional nonlinear superconformal alge-

bras introduced some time ago by Bershadsky and Knizhnik [27, 28]. The corresponding

action (2.27) is invariant under transformation rules that can be easily derived using the

constraints and their structure functions. We list them here, as they might be useful in

discussing gauge fixing issues

δxµ = {xµ, G}
PB

= ξπµ + iǫiψ
µ
i

δpµ = {pµ, G}PB
= (ξπa + iǫkψ

a
k)

(
i

2
∂µωabcψ

b
iψ

c
i − pν∂µea

ν

)

δψai = {ψai , G}PB
= −(ξπb + iǫkψ

b
k)ωbacψ

c
i − ǫiπ

a + (αij − ξbJij)ψ
a
j

δe = ξ̇ + 2iχiǫi

δχi = ǫ̇i − aijǫj + αijχj

δaij = α̇ij + αimamj + αjmaim + ib
(
χkǫkJij + σ(ǫiχkJkj − ǫjχkJki)

+(1 − σ)(ǫkJkjχi − ǫkJkiχj)
)

(2.31)

where the free parameter σ ∈ [0, 1] labels different choices of splitting the algebra in

structure functions and generators.

This hamiltonian formulation of the spinning particle on (A)dS spaces is equivalent to

the lagrangian formulation discussed by Kuzenko and Yarevskaya in [8].

3. Canonical quantization

In this section we study canonical quantization of the spinning particle on the class of

spaces just discussed. Phase space variables become operators and the problem is to find

the correct ordering that preserves the first class property of the constraints. As we shall

discuss, this requirement introduces quantum corrections to the classical hamiltonian as

well. The quantum constraint equations are then used to select the physical sector of the

Hilbert space, and are interpreted as field equations for higher spin fields.

3.1 Minkowski space

Let us briefly review canonical quantization for the O(N) spinning particle in flat space,

which is best carried out using cartesian coordinates. The fundamental (anti) commutation

relations are obtained from the corresponding classical Poisson brackets and read (from now

on all variables are operators)

[xµ, pν ] = iδµν , {ψµi , ψνj } = ηµνδij . (3.1)

This operator algebra is realized irreducibly on a Hilbert space which contains also un-

physical states. The physical states are obtained à la Dirac-Gupta-Bleuler by requiring the

– 9 –
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constraints to annihilate them. Of course, the quantum constraints are constructed from

the classical ones by specifying a suitable ordering plus possible quantum corrections. In

the case of flat spacetime, one only needs to specify the correct ordering in the definition

of the SO(N) generators, as there are no other ordering ambiguities. Taking that into

account, the quantum constraint are given by

H =
1

2
pµp

µ , Qi = pµψ
µ
i , Jij =

i

2
[ψµi , ψjµ] (3.2)

and satisfy the quantum algebra

{Qi, Qj} = 2δijH (3.3)

[Jij , Qk] = iδjkQi − iδikQj (3.4)

[Jij , Jkl] = iδjkJil − iδikJjl − iδjlJik + iδilJjk (3.5)

which is first class. The corresponding constraints give rise to higher spin field equa-

tions [2 – 4], in the form originally developed by Bargmann and Wigner. These equations

are described by a multispinor Ψα1,...,αN
that satisfies a Dirac equation in each index and,

in addition, suitable algebraic constraints which project onto the irreducible spin N
2 com-

ponents [35]. We shall discuss these equations in a different basis for the case of even N

(integer spin) in section 4. The alternative BRST quantization for this model is described

in refs. [36] and [37]. In particular in [37] one finds its use to construct second quantized

actions for any spin in flat spaces of arbitrary dimensions.

3.2 Conformally flat spaces

The classical structure presented in section 2.2 carries over to the quantum theory after

specifying the correct orderings that preserve the symmetries of the model. It is again

useful to discuss first the case of generic curved spaces, and then restrict to conformally

flat spaces which will be shown to admit a first class constraint algebra.

The quantum algebra of the fundamental operators now reads as

[xµ, pν ] = iδµν , {ψai , ψbj} = ηabδij (3.6)

since worldline fermions with flat indices are taken as fundamental variables. The correct

ordering of the SO(N) currents is again immediate

Jij =
i

2
[ψai , ψja] . (3.7)

The susy charges are also ordered uniquely as follows3

Qi = ψai ea
µ

(

pµ −
i

2
ωµbcψ

b
jψ

c
j

)

. (3.8)

3For notational simplicity we use nonhermitian operators Qi. Hermiticity is obtained by a similarity

transformation A→ g
1

4 Ag−
1

4 on the quantum variables, so that hermitian operators Qi (as well as H) are

obtained by substituting pµ → g
1

4 pµg−
1

4 , see for example [11].
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To understand why this covariantization is unique, one may recall that it corresponds to

the unique covariant derivative acting on a multispinorial wave function.

Before proceeding, it may be useful to introduce the hermitian Lorentz generators

Mab =
i

2
[ψaj , ψ

b
j ] (3.9)

which satisfy the Lorentz algebra and commute with the SO(N) generators

[Mab,M cd] = iηbcMad − iηbdMac − iηacM bd + iηadM bc

[Mab, Jij ] = 0 . (3.10)

Then one can write the covariant momentum in the form πµ = pµ − 1
2ωµabM

ab and the

susy charges as Qi = ψai ea
µπµ = ψai πa.

At this point one may start checking the algebra on generic curved spaces and identify

a suitable hamiltonian operator. Equations (3.4) and (3.5) are left unmodified, but the

other (anti)commutators produce

{Qi, Qj} = 2δijH0 +
i

2
ψai ψ

b
jRabcdM

cd (3.11)

[Qi,H0] =
1

2
Rabψ

a
i π

b +
i

2
Rabcdψ

a
iM

cdπb − 1

2
∇aRbcψ

c
iM

ab (3.12)

where

H0 =
1

2

(
πaπa − iωaabπ

b
)

(3.13)

corresponds to the minimal quantum covariantization of the classical operator appearing

in (2.19): in particular, the second term in H0 is a quantum correction which guarantees

covariance. As in the classical case, also in the quantum case the algebra fails to be first

class, implying a generic inconsistency on arbitrary spaces.

Thus, we restrict to conformally flat spaces. Using the relation (2.21) for the Riemann

tensor on conformally flat spaces, we obtain the quantum version of (2.22) which takes

the form

{Qi, Qj} = 2δijH − i

(D − 2)
Rab

(
ψai ψ

b
kJjk + ψajψ

b
kJik − δijψ

a
kψ

b
l Jkl

)

+
1

2(D − 1)(D − 2)
R

(
JikJjk + JjkJik − δijJklJkl

)

[Qi,H] =
1

4(D − 1)
∇aRψ

a
kJik −

i

4(D − 1)(D − 2)
∇aRψ

a
i JjkJjk

− 1

2(D − 2)
∇aRbc ψ

a
i ψ

b
jψ

c
k Jjk (3.14)

where

H = H0 +
1

8
RabcdM

abM cd − (N − 2)(D +N − 2)

16(D − 1)
R (3.15)

= H0 +
1

4(D − 1)(D − 2)
RJjkJjk −

i

2(D − 2)
Rab ψ

a
jψ

b
k Jjk +

(D +N − 2)

8(D − 1)
R
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with H0 as in (3.13). The result is that, with a suitable quantum redefinition of the hamil-

tonian H, the algebra closes and becomes first class. The last term in both expressions

of H, proportional to the scalar curvature, is a quantum effect that did not appear in the

corresponding classical expressions (2.23) and (2.26). This final result proves the quantum

consistency of the model on conformally flat spaces.

3.3 (A)dS spaces

The subset of maximally symmetric spaces, characterized by a Riemann tensor of the form

Rabcd = b(ηacηbd − ηadηbc), is much simpler. In fact, the above algebra simplifies further

and we summarize here the set of quantum constraints appropriate for (A)dS spaces

Jij =
i

2
[ψai , ψja]

Qi = ψai ea
µ

(

pµ −
1

2
ωµbcM

bc

)

H =
1

2

(
πaπa − iωaabπ

b
)
− b

4
JijJij − bA(D) (3.16)

where A(D) ≡ (2 −N)D8 − D2

8 , and the corresponding quantum algebra

[Jij , Jkl] = iδjkJil − iδikJjl − iδjlJik + iδilJjk

[Jij , Qk] = iδjkQi − iδikQj

{Qi, Qj} = 2δijH − b

2
(JikJjk + JjkJik − δijJklJkl) . (3.17)

Note, in particular, that [Qi,H] vanishes. This is not a Lie algebra, but rather a quadrat-

ically deformed Lie algebra with b playing the role of deforming parameter. Of course, as

b is proportional to the (A)dS scalar curvature, in the limit b → 0 one reobtains the flat

space constraint algebra. One may check that this quadratic algebra coincides with the

zero mode algebra in the Ramond sector of the nonlinear SO(N)-extended superconformal

algebras discovered by Bershadsky and Knizhnik in two dimensions [27, 28]. The above

construction gives the quantization of the model obtained at the classical level by Kuzenko

and Yarevskaya in [8].

4. Geometrical equations for higher spin fields

We now study the quantum constraints that define the quantization of the O(N) spinning

particle and use them to derive equations of motion for higher spin fields. The case in

flat space is well-known, as the constraints generate the equations of motion of Bargmann

and Wigner. We review this in section 4.1, though in different language and notations,

to show how the spinning particle reproduces many of the results in higher spin theory,

derived previously from field theory. More importantly, it indicates how to extend those

results to (A)dS and conformally flat spaces. We discuss the extension to (A)dS spaces in

section 4.2. For the sake of concreteness, we consider only the case of even N = 2s, i.e.

massless particles of integer spin s.
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4.1 Minkowski space

In flat space the equations that select the physical states from the Hilbert space are given

by TA|R〉 = 0, where TA = (H,Qi, Jij) are the constraints in (3.2) and |R〉 is a physical

state. We consider even N = 2s, so that the constraints can be analyzed by taking complex

combinations (in a Lorentz invariant way) of the operators ψµi , and representing half of

them as (Grassmann) coordinates and the other half as momenta. Then, one can represent

the wave function |R〉 in a coordinate basis and expand it in terms of tensors of flat space.

The only tensor surviving the constraints lives in even dimensions D = 2d, has “s” blocks

of “d” indices

Rµ1
1...µ

1
d
,...,µs

1...µ
s
d

(4.1)

and satisfies the following three sets of properties:

(i) it is symmetric under exchanges of the s blocks, antisymmetric in the d indices of

each block, traceless, and satisfies the algebraic Bianchi identities (J constraints);

this part is summarized by saying that the tensor R is an irreducible representation

of the Lorentz group specified by the Young tableau with d rows and s columns

Rµ1
1..µ

1
d
,...,µs

1..µ
s
d
∼ d







︸ ︷︷ ︸

s

of SO(D − 1, 1) (4.2)

(ii) it satisfies “differential Bianchi identities” (from half of the Q constraints)

∂[µRµ1
1...µ

1
d
],...,µs

1...µ
s
d

= 0 , (4.3)

(iii) it satisfies “Maxwell equations” (from the other half of the Q constraints)

∂µ
1
1Rµ1

1...µ
1
d
,...,µs

1...µ
s
d

= 0 . (4.4)

The H constraint is automatically satisfied. These are geometrical equations for conformal

free fields of integer spin s, and are equivalent to the Bargmann-Wigner equations when

D = 4 [35]. Up to an overall power of the D’Alembertian operator they coincide with the

geometrical equations introduced in [16], that can also be recovered from the compensator

extension of Fronsdal’s equations of [17].

To derive these equations in more detail, we take complex combinations of the SO(N) =

SO(2s) indices and define (for I, i = 1, . . . , s)

ψI =
1√
2
(ψi + iψi+s) (4.5)

ψ̄Ī =
1√
2
(ψi − iψi+s) ≡ ψ̄I (4.6)

so that

{ψµI , ψ̄Jν} = ηµνδJI . (4.7)

– 13 –



J
H
E
P
1
1
(
2
0
0
8
)
0
5
4

In the “coordinate” representation one can realize ψµI as multiplication by Grassmann

variables and ψ̄Iµ = ∂
∂ψµ

I

(we use left derivatives). This realization keeps manifest only

the U(s) ⊂ SO(2s) subgroup of the internal symmetry group, but will be quite useful in

classifying the constraints and their solutions.

The susy charges in the U(s) basis take the form QI = ψµI pµ and Q̄I = ψ̄Iµpµ, and the

susy algebra (3.3) breaks up into

{QI , Q̄J} = 2δJIH , {QI , QJ} = {Q̄I , Q̄J} = 0 . (4.8)

Similarly, the SO(N) generators split as Jij ∼ (JIJ̄ , JIJ , J̄Ī J̄) ∼ (JI
J ,KIJ , K̄

IJ), which we

normalize as

JI
J = ψI · ψ̄J − d δJI , KIJ = ψI · ψJ , K̄IJ = ψ̄I · ψ̄J , (4.9)

so that JI
J for I = J is a hermitian operator with real eigenvalues. The SO(N) algebra (3.5)

breaks up into

[JI
J , JK

L] = δJKJI
L − δLI JK

J

[JI
J ,KKL] = δJKKIL + δJLKKI

[JI
J , K̄KL] = −δKI K̄JL − δLI K̄

KJ

[KIJ , K̄
KL] = δKJ JI

L − δLJ JI
K − δKI JJ

L + δLI JJ
K (4.10)

where the first line identifies the U(s) subalgebra. Finally, it is useful to list in the same

basis the remaining part of the constraint algebra corresponding to eq. (3.4)

[JI
J , QK ] = δJKQI

[JI
J , Q̄K ] = −δKI Q̄J

[K̄IJ , QK ] = δJKQ̄
I − δIKQ̄

J

[KIJ , Q̄
K ] = δKJ QI − δKI QJ . (4.11)

Let us now analyze the constraint equations, and derive the geometrical equations for

fields of integer spin s, briefly summarized above. A general wave function is a function

of the coordinates (xµ, ψµI ) with a finite Taylor expansion in the Grassmann variables ψµI
(with a slight abuse of notation we indicate with ψµI both the operator and its eigenvalues,

but it will be clear from the context which is which)

|R〉 ∼
D∑

Ai=0

Rµ1...µA1
,..., ν1...νAs

(x)ψµ1
1 . . . ψ

µA1
1 . . . ψν1s . . . ψ

νAs
s . (4.12)

We start by analyzing the consequences of the constraints Jij ∼ (JI
J ,KIJ , K̄

IJ). In the

coordinate representation these operators take the form

JI
J = ψI ·

∂

∂ψJ
− d δJI , KIJ = ψI · ψJ , K̄IJ =

∂

∂ψI
· ∂

∂ψJ
(4.13)
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and we find

JI
I |R〉 = 0 (I fixed) ⇒ |R〉∼Rµ1...µd,..., ν1...νd

(x)ψµ1
1 . . . ψµd

1 . . . ψν1s . . . ψνd
s (4.14)

JI
J |R〉 = 0 (I 6= J) ⇒ R satisfies algebraic Bianchi identities (4.15)

K̄IJ |R〉 = 0 ⇒ R traceless (4.16)

KIJ |R〉 = 0 ⇒ R traceless (in dual basis) . (4.17)

Similarly, the constraints Qi = (QI , Q̄
I) produce

QI |R〉 = 0 ⇒ R closed (Bianchi identities) (4.18)

Q̄I |R〉 = 0 ⇒ R co−closed (Maxwell equations) . (4.19)

The constraint H is automatically satisfied as a consequence of {QI , Q̄J} = 2δJI H.

Let us comment in more depth some of these equations. The constraints (4.14)

and (4.15) correspond to the generators of the subgroup U(s) ⊂ SO(2s), which is manifestly

realized in the complex basis. The curvature R that solves these constraints has “s” sym-

metric blocks of “d” antisymmetric indices each, and satisfies the algebraic Bianchi iden-

tities

R[µ1...µd,ν1]...νd,... = 0 (4.20)

where [. . .] indicates antisymmetrization. Antisymmetry in each block is manifest. Sym-

metry between blocks can be proved by using finite SO(s) ⊂ U(s) rotations. For example,

consider the rotation that exchanges ψI → ψJ and ψJ → −ψI for fixed I and J . This proves

symmetry under exchange of the block relative to the fermions ψI with the block relative to

the fermion ψJ . As these transformations are connected to the identity, they are obtained

by exponentiating the infinitesimal generators used in (4.15), so that this symmetry must

be a consequence of (4.15), i.e. of the algebraic Bianchi identities. As an aside, we note that

the fermionic Fock vacuum |Ω〉 ∼ Ω(x) is not invariant under the subgroup [U(1)]s ⊂ U(s),

as the generator JI
I at fixed I transforms it by an infinitesimal phase (JI

I |Ω〉 = d|Ω〉). It

is the vector |R〉 of eq. (4.14) that is left invariant. Thus, the constraint JI
J selects an

irreducible representation of the general linear group GL(D) depicted by a Young tableau

with d rows and s columns. Note that traces are not removed at this stage.

The constraint K̄IJ removes all possible traces from this tensor, and thus reduces it to

an irreducible representation of the Lorentz group SO(D−1, 1). One may notice that (4.17)

(which removes the traces in the dual tensor) is not independent from (4.16). This does

not seem to be a consequence of the algebra, but it can be viewed as a consequence of a

duality symmetry enjoyed by the spinning particle. One can realize the Hodge operator ⋆I
which takes the dual in the I-th block of indices by the operation

⋆I : ψI ↔ ψ̄I , (⋆I)
2 = 1 . (4.21)

This operation can be obtained by a discrete O(N) symmetry transformation (a reflection

on one real ψi coordinate). Denote by ⋆IJ = ⋆I⋆J (this combined transformation can be

done within SO(N)). Then

KIJ |R〉 = 0 ⇒ (⋆IJ KIJ ⋆IJ) (⋆IJ |R〉) = K̄IJ |R(⋆IJ )〉 = 0 , (4.22)
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which implies that R(⋆IJ ) is traceless when contracting an index of the block I with an

index of the block J . Of course, by R(⋆IJ ) we indicate the tensor dual to R both in the set

of indices of the block I and of the block J . Then, using ǫǫ ∼ δ . . . δ implies tracelessness of

R as well. More generally, invariance under duality implies selfduality, which is an expected

characterization of conformal field equations in higher dimensions, that are precisely those

produced by the O(N) spinning particle. Finally, note that (4.19) is a consequence of (4.18)

and (4.16) (since [K̄IJ , QK ] = δJKQ̄
I − δIKQ̄

J).

4.1.1 Gauge potentials

The previous equations can be partially solved and cast in terms of gauge potentials for

higher spin fields. An independent set of constraints that describe the geometrical equations

is given by (4.18), (4.14)–(4.15), and (4.16), corresponding to the constraints QI , JI
J , K̄IJ ,

respectively, and we can try to solve them precisely in that order.

Before starting, it is useful to define the operator

q = Q1Q2 . . . Qs (4.23)

that satisfies QIq = q QI = 0 for any I. In fact, powers of the QI ’s may be nonvanishing

up to the s-th power, since an additional application of any of the QI ’s makes it vanish as

a consequence of the algebra (4.8).

Constraint (4.18) (i.e. QI |R〉 = 0) can be solved by setting

|R〉 = q|φ〉 . (4.24)

Constraints (4.14)–(4.15) (i.e. JI
J |R〉 = 0) are solved by selecting a tensor

Rµ1
1...µ

1
d
,...,µs

1...µ
s
d

with the symmetries described previously, but not traceless. It corresponds

to a tensor of GL(D) with a Young tableau of the form

R ∼ d







︸ ︷︷ ︸

s

(4.25)

To keep (4.14)–(4.15) satisfied by (4.24), one imposes the vanishing of

JI
Jq|φ〉 = ([JI

J , q] + qJI
J)|φ〉 = q(δI

J + JI
J)|φ〉 = 0 (4.26)

that is implemented by setting

JI
J |φ〉 = −δIJ |φ〉 (4.27)

which says that |φ〉 must have the form

|φ〉 ∼ φµ1...µd−1,..., ν1...νd−1
(x)ψµ1

1 . . . ψ
µd−1

1 . . . ψν1s . . . ψ
νd−1
s (4.28)

and must satisfy corresponding algebraic Bianchi identities. In particular, the tensor φ is

symmetric under block exchanges. In short, it corresponds to a Young tableau of GL(D)

of the form

φ ∼ d− 1

{

︸ ︷︷ ︸

s

(4.29)
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It remains to implement (4.16) (i.e. K̄IJ |R〉 = 0). To do this, let us consider

K̄12 q|φ〉 = K̄12Q1Q2Q3 . . . Qs|φ〉 = Q3 . . . Qs
︸ ︷︷ ︸

q12

K̄12Q1Q2|φ〉

= q12
[

[K̄12, Q1]Q2 +Q1[K̄
12, Q2] +Q1Q2K̄

12
]

|φ〉

= q12
[

− Q̄2Q2 +Q1Q̄
1 +Q1Q2K̄

12
]

|φ〉

= q12
[

− 2H +Q2Q̄
2 +Q1Q̄

1 +Q1Q2K̄
12

]

|φ〉

= q12
[

− 2H +QIQ̄
I +

1

2
QIQJK̄

IJ

]

|φ〉

= q12G|φ〉 (4.30)

where we have defined the Fronsdal-Labastida operator4

G = −2H +QIQ̄
I +

1

2
QIQJK̄

IJ (4.31)

which is manifestly U(s) invariant (one may check that [JI
J , G] = 0). A similar expression

holds for K̄12 → K̄IJ , so that imposing (4.16) produces (in an obvious notation)

qIJ G|φ〉 = 0 . (4.32)

It is convenient to eliminate the operator qIJ form this equation. Recalling that the product

of s+ 1 QI ’s must vanish, one finds the following general solution

G|φ〉 = QIQJQKW̄
KW̄ JW̄ I |ρ〉 (4.33)

which depends on an arbitrary vector field contained in W̄ I ≡ W µψ̄Iµ, and on |ρ〉 that

satisfies JI
J |ρ〉 = −δJI |ρ〉 (so that it belongs to the same space of |φ〉 and |ξ〉, i.e. it has the

same Young tableau appearing in eq. (4.29)). Eq. (4.33) gives the equations of motion for

higher spin fields, written in the form that makes use of the compensator fields described

by |ρIJK〉 ≡ W̄KW̄ JW̄ I |ρ〉, see [17, 20, 22, 24].

To familiarize with the meaning of the present notation, note that the effect of W̄ I

acting on |ρ〉 is to saturate one index belonging to the block I of the tensor sitting in |ρ〉
with the vector field W µ, so that |ρIJK〉 contains a tensor with s − 3 blocks with d − 1

indices, and the remaining 3 blocks (block I, block J , block K) with d− 2 indices, so that

it corresponds to a Young tableau of GL(D) of the form

ρIJK ∼ d− 1

{

︸ ︷︷ ︸

s

(4.34)

Let us now discuss gauge symmetries in this language. Using an arbitrary vector field

V µ(x) we define

V̄ I ≡ V µψ̄Iµ (4.35)

4It corresponds to the Fronsdal kinetic operator for higher spin fields in D = 4 [25], extended to higher

dimensions for generic tensors of mixed symmetry by Labastida [26].
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and use it to define the gauge transformation

δ|φ〉 = QK V̄
K |ξ〉 . (4.36)

It is a gauge symmetry of |R〉 = q|φ〉, the solution of the Bianchi identities that expresses

the curvature in terms of the gauge potentials. Since [JI
J , QK V̄

K ] = 0, one requires that

the gauge parameters satisfy JI
J |ξ〉 = −δJI |ξ〉 to guarantee that |φ〉 and δ|φ〉 are tensors

with the same Young tableau.

To study how the gauge symmetries act on equation (4.33), one may compute the

gauge variation of G|φ〉 using (4.36)

Gδ|φ〉 = −1

2
QIQJQK V̄

KK̄JI |ξ〉 . (4.37)

Thus, defining the gauge transformation on the compensators as follows

δ(W̄KW̄ JW̄ I |ρ〉) = −1

2
V̄ [KK̄JI]|ξ〉 (4.38)

guarantees gauge invariance of eq. (4.33).

One can use part of the gauge symmetry to set to zero the compensator fields described

by W̄KW̄ JW̄ I |ρ〉, and obtain the equation of motion in the Fronsdal-Labastida form

G|φ〉 = 0 . (4.39)

Inspection of eq. (4.33) indicates that the gauge symmetries surviving this partial gauge

fixing are those with traceless gauge parameters |ξ〉, i.e. K̄IJ |ξ〉 = 0, as K̄IJ in the operator

that computes the trace. For consistency, the gauge potential |φ〉 must be double traceless.

This can be seen by applying the operator Q̄I − 1
2QJK̄

JI on eq. (4.39)

(

Q̄I − 1

2
QJK̄

JI

)

G|φ〉 = −1

4
QJQMQNK̄

IJK̄MN |φ〉 = 0 (4.40)

which is consistent only if K̄IJK̄MN |φ〉 = 0, i.e. if |φ〉 is double traceless.

In appendix A one finds a dictionary for translating our present notation to the

standard tensorial notation. In particular, one may verify that in D = 4 the gauge

potential |φ〉 corresponds to a symmetric tensor φµ1...µs , the Fronsdal equation G|φ〉 ≡
(−2H +QIQ̄

I + 1
2QIQJK̄

IJ)|φ〉 = 0 translates to

∂α∂
αφµ1...µs − (∂µ1∂

αφαµ2...µs + · · · ) + (∂µ1∂µ2φ
α
αµ3...µs + · · · ) = 0 (4.41)

where the brackets contain s and 1
2s(s − 1) terms, respectively, needed for symmetrizing

the µi indices, and the condition K̄IJK̄MN |φ〉 = 0 corresponds to the double traceless

condition φαα
β
βµ5...µs = 0.

The analysis presented here makes use of the natural quantum mechanical operators

of the spinning particle and corresponds to a translation in the present notations of the

analyses performed in [22 – 24]. Geometrical equations for conformal field theories and their

link with spinning particles were also discussed in [38], though from a different perspective

which emphasized manifest conformal invariance.
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4.2 (A)dS spaces

The solutions to the geometrical equations described in the previous section for Minkowski

backgrounds can be deformed to other maximally symmetric spaces with non-vanishing

cosmological constant, thus producing conformal invariant field equations (see [39] for an

analysis of conformal representations on AdS). In fact the corresponding constraint algebra,

given in eqs. (3.16) and (3.17), defines a quadratic deformation of the linear algebra which

describes the propagation on flat space, and is used to produce the geometrical equations

for higher spin fields on (A)dS spaces. These equations can be worked out, and correspond

to the simple covariantization of the flat space ones, eqs. (4.1), (4.3), (4.4). They read

Rµ1
1...µ

1
d,...,µ

s
1...µ

s
d
∼ d







︸ ︷︷ ︸

s

of SO(D − 1, 1)

∇[µRµ1
1...µ

1
d
],...,µs

1...µ
s
d

= 0

∇µ1
1Rµ1

1...µ
1
d
,...,µs

1...µ
s
d

= 0 (4.42)

where ∇µ is the covariant derivative on (A)dS spaces. To analyze them it is again useful

to employ a U(s) notation. The deformed susy algebra reads

{QI , QJ} = b
(

KILJJ
L +KJLJI

L
)

(4.43)

{Q̄I , Q̄J} = −b
(

K̄ILJJ
L + K̄JLJI

L
)

(4.44)

{QI , Q̄J} = 2δJI

(

H0 − bAs(D)
)

− b
2

(

JI
KJK

J + JK
JJI

K −KIKK̄
JK − K̄JKKIK

)

(4.45)

with As(D) = (1−s)D4 −D2

8 being the ordering constant given in (3.16) for the case N = 2s,

while all other algebraic relations remain unchanged. Note that in (3.16) we preferred to use

H as hamiltonian to make contact with the zero mode sector of the Bershadsky-Knizhnik

superconformal algebra, but now we find it more convenient to use H0, which is allowed

since the difference is proportional to the Jij constraints and the algebra remains first class.

An independent set of constraint is again given by the set QI , JI
J , K̄IJ . We shall discuss in

full generality the first two constraints, QI and JI
J , which can be solved by the introduction

of higher spin gauge potentials. The main difference with respect to the flat space case is

that theQI operators are no longer anticommuting with one another, so thatQ1Q2 · · ·Qs|φ〉
does not solve the “Bianchi identity” constraint anymore (the QI constraint).

Since Q1Q2 · · ·Qs|φ〉 does solve the Bianchi identity in the flat space limit b → 0, we

use it as a starting point to integrate the higher spin curvature. We find it convenient

to use an explicitly U(s) covariant formulation (actually SU(s) invariant) and rewrite the

above leading order (in powers of b) state as

|R0〉 = q0|φ〉 , with q0 ≡ 1

s!
ǫI1···IsQI1 · · ·QIs (4.46)
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with the gauge potential |φ〉 still satisfying eq. (4.27) to solve the JI
J constraint. Hence,

by acting on the previous state with QI and by making repeated use of the anticom-

mutator (4.43), produces on the right hand side only higher order terms, in powers of

b. In particular, it is not difficult to convince oneself that only operators of the form

QI ǫ
I1···IsKI1I2 · · ·KI2n−1I2nQI2n+1 · · ·QIs are involved. Therefore the higher spin curvature

is solved by the expression

|R〉 =

[s/2]
∑

n=0

(−b)nrn(s)qn(s) |φ〉 (4.47)

where the operators qn(s) are given by

qn(s) ≡
1

s!
ǫI1I2···IsKI1I2 · · ·KI2n−1I2nQI2n+1 · · ·QIs (4.48)

and the coefficients rn(s) are uniquely fixed by imposing the Bianchi identity (we give a

more detailed description of our derivation in the appendix) and can be written recursively

in terms of the Pochhammer function P (s, k) ≡ s(s− 1)(s − 2) · · · (s − k) as follows

rn(s) =
1

2n

n∑

k=1

rn−k(s) a2k(s− 2(n− k) + 1) , r0(s) ≡ 1 (4.49)

where

a2k(s) = f(k)P (s, 2k) = f(k)

2k∏

l=0

(s − l) (4.50)

and the s-independent function f(k) is defined by the recursive formula

f(k) = (−)k

[

1

(2k + 1)!
−
k−1∑

l=0

(−)l

(2(k − l))!
f(l)

]

, f(0) = 1 . (4.51)

We have checked numerically that these coefficients are generated by the Taylor expansion

of the tangent function, tan(z) =
∑∞

k=0 f(k)z2k+1. This solves the problem of expressing

the higher spin curvature in terms of gauge potentials on (A)dS spaces.

Note that, alternatively, one may find it more convenient to express the coeffi-

cients (4.49) in a way that a common Pochhammer function gets factored out, namely

rn(s) = ρn(s) P (s+ 1, 2n) (4.52)

with the prefactor ρn(s) given by

ρn(s) =
f(n)

2n
+

n−1∑

k1=1

f(k1)f(n− k1)

22n(n− k1)
(s − 2n+ 2k1 + 1)

+

n−1∑

k1=1

n−1−k1∑

k2=1

f(k1)f(k2)f(n−k1−k2)

23n(n−k1)(n−k1−k2)
(s−2n+2k1+1)(s−2n+2k1+2k2+1)
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+ · · · +
n−1∑

k1=1

n−1−k1∑

k2=1

· · ·
n−1−k1···−kn−2∑

kn−1=1

f(k1)f(k2) · · · f(n− k1 · · · − kn−1)

2nn(n− k1) · · · (n− k1 · · · − kn−1)

×(s− 2n+ 2k1 + 1) · · · (s − 2n+ 2k1 · · · + 2kn−1 + 1) . (4.53)

It remains to study the K̄IJ constraint, which however seems rather involved alge-

braically and we have not attempted to find a general formula for it. Nevertheless in the

next section we shall treat explicitly the first few cases, i.e. for spin s ≤ 4. Analyses of the

geometrical equations for higher spin fields on (A)dS have been presented also in [40, 41],

though in the case of totally symmetric potentials that coincide with our conformal models

only in D = 4.

Let us conclude this section reporting the explicit expressions for the higher spin cur-

vatures for the cases s ≤ 4. We have

r0(s) = 1

r1(s) =
1

2
a2(s+ 1) =

1

6
(s + 1)s(s − 1)

r2(s) =
1

4

(

a4(s+ 1) +
1

2
a2(s + 1)a2(s− 1)

)

=
5s+ 7

360
(s+ 1)s(s− 1)(s − 2)(s − 3)

which provide the following expressions for s = 2, 3, 4

|R〉 =
1

2!
ǫI1I2

[

QI1QI2 − bKI1I2

]

|φ〉 , (4.54)

|R〉 =
1

3!
ǫI1I2I3

[

QI1QI2QI3 − 4bKI1I2QI3

]

|φ〉 , (4.55)

|R〉 =
1

4!
ǫI1I2I3I4

[

QI1QI2QI3QI4 − 10bKI1I2QI3QI4 + 9b2KI1I2KI3I4

]

|φ〉 . (4.56)

5. Explicit examples on (A)dS

In this section we prove explicitly the gauge invariance on (A)dS backgrounds of the higher

spin curvatures, expressed in terms of gauge potentials, for the special cases of spin 2, 3, 4,

and impose the remaining constraints (due to K̄IJ) that lead to higher derivative equations

of motion for the potentials. Then we make contact with the standard (quadratic in

derivatives) formulation by introducing compensator fields to maintain the gauge invariance

of the equations of motion. Finally we obtain the Fronsdal-Labastida equation for the

double-traceless potentials by gauging to zero the compensators.

5.1 Spin 2

The starting point is the SU(2) invariant expression

|R〉 =
1

2!
ǫI1I2

[

QI1QI2 − bKI1I2

]

|φ〉 (5.1)

for the spin 2 curvature.
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Gauge invariance. Let us consider the transformation

δ|φ〉 = QK V̄
K |ξ〉 (5.2)

where V̄ K = V aψ̄Ka and |ξ〉 is the gauge parameter. Both |φ〉 and |ξ〉 are described by a

rectangular Young tableau of GL(D) of the type

D

2
− 1







︸ ︷︷ ︸

2

(5.3)

Now one can easily compute

δ

(

Q1Q2|φ〉
)

= b K12 QK V̄
K |φ〉 =⇒ δ|R〉 = 0 .

This proves that the spin 2 curvature is invariant with respect to the gauge transforma-

tion (5.2).

Equations of motion. The gauge-invariant curvature |R〉 given above is expressed in

terms of the gauge potential |φ〉. Imposing the left over trace constraint K̄IJ |R〉 = 0

produces the equations of motion for the potential. We find that

K̄12|R〉 = G
(A)dS
2 |φ〉 = 0 (5.4)

where we recognize the spin 2 Fronsdal-Labastida kinetic operator on (A)dS

G
(A)dS
2 = −2H0 +QIQ̄

I +
1

2
QIQJK̄

IJ

︸ ︷︷ ︸

G

−bKIJK̄
IJ + bα2(D) (5.5)

and

α2(D) = 4 − D

2

(
D

2
+ 1

)

. (5.6)

The operator G looks formally as the one in flat space, but of course it is the minimally

covariantized version of it. By expressing the equation of motion (5.4) in components it

is easy to see that, for D = 4, it reduces to the linearized Einstein equation on (A)dS,

R
(1)
µν (g + φ) = 3b φµν , i.e.

∇2φµν −∇µ∇ρφρν −∇ν∇ρφρµ + ∇µ∇νφ
ρ
ρ + 2b(gµνφ

ρ
ρ − φµν) = 0 . (5.7)

In even dimension D = 2d > 4 it corresponds to

∇2φµ1...µd−1,ν1...νd−1
− (d− 1)

(

∇µ1∇ρφρµ2...µd−1,ν1...νd−1
+ ∇ν1∇ρφµ1µ2...µd−1,ρν2...νd−1

)

+(d− 1)2∇(µ1
∇ν1)φ

ρ
µ2...µd−1,ρν2...νd−1

+ 2b(d− 1)2gµ1ν1φ
ρ
µ2...µd−1,ρν2...νd−1

+b
(

4 − d(d+ 1)
)

φµ1...µd−1,ν1...νd−1
= 0 (5.8)

where a weighted antisymmetrization in the µ and ν groups of indices is implied and with

the round bracket around indices denoting a weighted symmetrization.
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5.2 Spin 3

We start from the SU(3) invariant expression

|R〉 =
1

3!
ǫI1I2I3

[

QI1QI2QI3 − 4bKI1I2QI3

]

|φ〉 (5.9)

for the spin 3 curvature.

Equations of motion. Similarly to the spin 2 case we obtain the equation for the spin

3 potential by imposing tracelessness of its curvature, K̄IJ |R〉 = 0. Using the quadratic

algebra described in the previous section, we obtain an elegant U(3) covariant result

0 = ǫIKLK̄
KL|R〉 = QIG

(A)dS
3 |φ〉 (5.10)

where

G
(A)dS
3 = −2H0 +QIQ̄

I +
1

2
QIQJK̄

IJ

︸ ︷︷ ︸

G

−bKIJK̄
IJ + bα3(D) (5.11)

is the spin 3 Fronsdal-Labastida kinetic operator on (A)dS and

α3(D) = 9 − D

2

(
D

2
+ 2

)

. (5.12)

Note that the equations of motion (5.10) for the spin 3 potential are higher derivative

ones. This is well-known to be correct for geometrical equations satisfied by curvatures

for spin s > 2.

Gauge invariance and Fronsdal-Labastida equation. Using the experience inherited

from the flat case, we now study the gauge invariance and describe the appearance of the

compensator field W̄KW̄ JW̄ I |ρ〉. First of all, eq. (5.10) shows that G
(A)dS
3 |φ〉 is closed with

respect the operator QI ; hence, in analogy with the spin 3 Damour-Deser identity [42], one

can integrate the QI by using the compensator to parametrize an element of the kernel of

QI and obtain the searched for second order differential equation

G
(A)dS
3 |φ〉 =

(
QIQJQK − 4bKIJQK

)
W̄KW̄ JW̄ I |ρ〉 . (5.13)

The gauge transformation

δ|φ〉 = QK V̄
K |ξ〉 (5.14)

is a symmetry of the generalized curvature (5.9), whereas the left hand side of (5.13)

transforms as

G
(A)dS
3 δ|φ〉 = −1

2
(QIQJQK − 4bKIJQK)V̄ [KK̄JI]|ξ〉 . (5.15)

Hence, the differential equation with compensator is fully gauge-invariant provided the

compensator transforms as

δ(W̄KW̄ JW̄ I |ρ〉) = −1

2
V̄ [KK̄JI]|ξ〉 . (5.16)
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The latter can be used at once to gauge fix the compensator to zero yielding

G
(A)dS
3 |φ〉 = 0 (5.17)

that is the second order spin 3 Fronsdal-Labastida equation on (A)dS. The left over gauge

symmetry must keep the left hand side of (5.16) equal to zero, V̄ [KK̄JI]|ξ〉 = 0. Hence,

the gauge parameter must be traceless.

5.3 Spin 4

We start from the manifestly SU(4) invariant expression

|R〉 =
1

4!
ǫI1I2I3I4

[

QI1QI2QI3QI4 − 10b KI1I2QI3QI4 + 9b2 KI1I2KI3I4

]

|φ〉 (5.18)

for the spin 4 curvature.

Equations of motion. The traceless condition (in the form ǫIJKLK̄
KL|R〉 = 0) produces

the higher order equations of motion

(
Q[IQJ ] − bKIJ

)
G

(A)dS
4 |φ〉 = 0 (5.19)

where

G
(A)dS
4 = −2H0 +QIQ̄

I +
1

2
QIQJK̄

IJ

︸ ︷︷ ︸

G

−bKIJK̄
IJ + bα4(D) (5.20)

is the second order Fronsdal-Labastida differential operator on (A)dS and

α4(D) = 16 − D

2

(
D

2
+ 3

)

. (5.21)

Gauge invariance and Fronsdal-Labastida equation. Once again the higher order

equations of motion (5.19) are fully gauge invariant under δ|φ〉 = QK V̄
K |ξ〉. On the other

hand it is straightforward to check that, identically to the spin 3 case, one gets

G
(A)dS
4 δ|φ〉 = −1

2
(QIQJQK − 4bKIJQK)V̄ [KK̄JI]|ξ〉 (5.22)

so that the “compensated” second order equation

G
(A)dS
4 |φ〉 =

(
QIQJQK − 4bKIJQK

)
W̄KW̄ JW̄ I |ρ〉 (5.23)

is invariant, provided the compensator transforms as in (5.16). The Fronsdal-Labastida

equation

G
(A)dS
4 |φ〉 = 0 (5.24)

is again obtained by gauge fixing the compensator to zero. It is invariant under gauge

transformations parametrized by a traceless parameter and requires a gauge potential

with vanishing double trace.
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5.4 Spin s > 4

The results obtained above suggest us that, for every integer spin s in arbitrary (even)

dimensions D, the Fronsdal-Labastida kinetic operator on (A)dS becomes

G(A)dS
s =

[

−2H0 +QIQ̄
I +

1

2
QIQJK̄

IJ − bKIJK̄
IJ + bαs(D)

]

(5.25)

where

αs(D) = s2 − D

2

(
D

2
+ s− 1

)

= s2 + 2As(D) . (5.26)

One can check that the gauge transformation of G
(A)dS
s |φ〉 is identical to the ones obtained

above in (5.15) and (5.22) for spin 3 and spin 4, respectively, and it is gauge invariant

provided the gauge parameter is traceless. Moreover, in D = 4 this operator reproduces

the extension of the Fronsdal operator to (A)dS spaces.

6. Conclusions

We have discussed classical and quantum properties of the O(N) spinning particles and

studied their relation to the equations of motion for fields of spin s = N
2 . After a review of

the model, we have shown how these spinning particles can be coupled to conformally flat

spaces, both classically and quantum mechanically, thus extending the result of [8], where

the coupling to (A)dS spaces was obtained at the classical level. One of our results, worth

mentioning, is that on (A)dS the algebra of quantum constraints closes quadratically and

reproduces the zero mode sector of the 2D Bershadsky-Knizhnik SO(N)-extended nonlinear

superconformal algebra [27, 28].

Furthermore, we have analyzed the constraint equations that select the physical states

from the particle Hilbert space. We have shown that in flat space these equations repro-

duce the so-called geometrical equations for higher spin curvatures. Using the quantum

mechanical operators we have described how to integrate the “Bianchi identities” to ex-

press curvatures in term of gauge potentials, and obtained various well-known forms of the

equations of motion for higher spin fields [5, 17, 20, 22 – 26, 43, 44].

Then we have studied the spinning particles on (A)dS spaces and obtained correspond-

ing geometrical equations. To our knowledge generalized Poincaré lemmas are not known

for this case, but using the constraint algebra we have shown how to integrate the “Bianchi

identities” in terms of gauge potentials. Finally, we have analyzed in detail the equations

of motion and the gauge invariances for the cases of spin s ≤ 4.

Having established the precise connection between the quantum theory of the O(N)

spinning particles and the conformal higher spin field equations on (A)dS, one can now use

the equivalent path integral quantization to obtain further results on the quantum theory

of higher spin fields.
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A. Dictionary

For the reader’s convenience, we present a dictionary between our compact notation and

the more conventional tensorial notation. Building blocks are the superalgebra constraints

that lead to the geometrical equations

QI = −iψaI eµa
(

∂µ + ωµbcψ
b
J

∂

∂ψJc

)

, Q̄I = −i ∂

∂ψIa
eµa

(

∂µ + ωµbcψ
b
J

∂

∂ψJc

)

JI
J = ψaI

∂

∂ψaJ
− dδJI , KIJ = ψaIψJa , K̄IJ =

∂

∂ψaI

∂

∂ψJa
.

As an example, let us consider a state corresponding to a rectangular tensor

|X〉 = Xa1...an,b1...bn,...,c1...cnψ
a1
1 . . . ψan

1 ψb12 . . . ψbn2 . . . ψc1s . . . ψcns ∼ n

{

︸ ︷︷ ︸

s

with n arbitrary (and similar expansions for more general tensors). A set of correspondences

that allows to obtain Fronsdal-Labastida equations in components is given by table 1 and

table 2, where a weighted antisymmetrization in each of the s groups of indices ai, bi, . . . , ci
is implied. In the last two expressions the dots in parenthesis indicate a sum over all pairs

of indices corresponding to I < J and the round brackets around indices denote a weighted

symmetrization.

B. Solution to the “Bianchi identities” on (A)dS

We give here a detailed derivation of the solution to the “Bianchi identities” equations for

the higher spin curvatures on (A)dS. In the spinning particle language such equations read

JI
J |R〉 = 0 (B.1)

QI |R〉 = 0 , I, J = 1, . . . , s . (B.2)

As explained in the main text the first relation selects an irreducible GL(D) tensor rep-

resented by a rectangular Young tableau with s rows and D/2 columns. The “differential

Bianchi identity” is instead encoded in the second relation, and can be solved by expressing

the curvature |R〉 in terms of a potential |φ〉

|R〉 = q|φ〉 (B.3)

where the operator q must reduce in the flat space limit to

q
flat space−→ Q1Q2 · · ·Qs =

1

s!
ǫI1···IsQI1 · · ·QIs ≡ q0 (B.4)
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Compact notation Tensorial notation

|X〉 Xa1...an,b1...bn,...,c1...cn

Q1|X〉 −i∇a1Xa2...an+1,b1...bn,...,c1...cn

Q̄1|X〉 −in∇lXla2...an,b1...bn,...,c1...cn

K̄12|X〉 (−)nn2X l
a2...an,lb2...bn,...,c1...cn

K12|X〉 (−)nηa1b1Xa2...an+1,b2...bn+1,...,c1...cn

J1
1|X〉 (n− d)Xa1...an,b1...bn,...,c1...cn

Table 1: Dictionary for elementary constraints.

and, since [JI
J , QK ] = δJK QI , the potential must satisfy

JI
J |φ〉 = −δJI |φ〉 (B.5)

so that it is represented by a Young tableau with s columns and D/2− 1 rows. Above and

in what follows we express the differential operator q in an explicitly SU(s) invariant form.

We construct q by imposing the conditions

QI |R〉 = 0 (B.6)

and use its flat space limit q0 as our starting point. In particular, thanks to the SU(s)-

invariance it will suffice to require Q1|R〉 = 0. In order to achieve such a task we shall need

a few recursive relations that we derive using the commutation relations

{QI , QJ} = b
(
KILJJ

L +KJLJI
L
)

(B.7)

[JI
J , QK ] = δJK QI (B.8)

[KIJ ,KKL] = [KIJ , QK ] = 0 (B.9)

and the condition (B.5). We find it convenient to split the s indices into a “time-like” index

1 and s− 1 “space-like” indices i

I = (1, i) , i = 2, . . . , s . (B.10)

Let us define a shortcut notation that will prove to be extremely useful

ǫi1···is−1 Qi1 · · ·QinQ1Qin+1 · · ·Qis−1 −→ Q[n]Q1Q[s−1−n]

ǫi1···is−1 K1i1 Qi3 · · ·QinQ1Qin+1 · · ·Qis−1 −→ K1i1 Q[n−2]Q1Q[s−1−n]

and whenever we encounter a Kab tensor we use the commutation rules above and the

antisymmetry provided by the ǫ tensor to bring it in front of everything and give it the

first indices of the set i1, i2, . . . . It is thus not difficult to prove the relation

(−)nQ[n]Q1Q[s−1−n]|φ〉 = Q1Q[s−1]|φ〉 + b

(

n(s− 2) − n(n− 1)

2

)

K1i1Q[s−2]|φ〉

−bKi1i2

n∑

m=1

s−3∑

k=m−1

(−)kQ[k]Q1Q[s−k−3]|φ〉 (B.11)
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that can be iterated by noting that the last term is just equal to the left hand side provided

one performs the substitution s→ s− 2. The iteration process thus yields

s−1∑

n=0

(−)nQ[n]Q1Q[s−1−n]|φ〉= sQ1Q[s−1]|φ〉

−(−b) a2(s)

(

K1i1Q[s−2] −Ki1i2Q1Q[s−3]

)

|φ〉

−(−b)2a4(s)

(

K1i1Ki2i3Q[s−4]−Ki1i2Ki3i4Q1Q[s−5]

)

|φ〉
.

.

−(−b)pa2p(s)K1i1Ki2i3 · · ·Ki2(p−1)i2p−1Q[s−2p]|φ〉

+(−b)p
s−1∑

k0=1

k0∑

m1=1

s−3∑

k1=m1−1

· · ·
kp−1∑

mp=1

s−2p−1
∑

kp=mp−1

(−)kp

K1i1Ki2i3 · · ·Ki2(p−1)i2p−1Q[kp]Q1Q[s−2p−1−kp]|φ〉 (B.12)

with

a2n(s) ≡
s−1∑

k0=1

k0∑

m1=1

s−3∑

k1=m1−1

· · ·
kn−1∑

mn=1

s−2n−1∑

kn=mn−1

1 = f(n)P (s, 2n) (B.13)

where P (s, 2n) = s(s− 1) · · · (s − 2n) is the Pochhammer function and the s-independent

function f(n) is given be the recursive formula (equivalent to (4.51))

n∑

k=0

(−)k

(2k)!
f(n− k) =

(−)n

(2n + 1)!
. (B.14)

Note that the iterative expression (B.12) stops at the last-but-one entry if s = 2p, whereas

it stops at the last entry if s = 2p+ 1. Another helpful relation that can be obtained with

the help of (B.12) and with implied antisymmetrization of the indices “i”, reads

Q2
1Q[s−1]|φ〉 = bK1i1

s−2∑

n=0

(−)nQ[n]Q1Q[s−2−n]|φ〉

= bK1i1

(

a0(s− 1)Q1Q[s−2] − b a2(s − 1)Ki2i3Q1Q[s−4]

+ · · · + (−b)p−1 a2(p−1)(s − 1)Ki2i3 · · ·Ki2(p−1)i2p−1Q1

)

|φ〉 .

(B.15)

It is easy now to convince oneself that the zero-th order operator q0(s) can be written as

s q0(s) =

s−1∑

n=0

(−)nQ[n]Q1Q[s−1−n] (B.16)
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Compact notation Tensorial notation

H0|X〉 −1
2∇2Xa1...an,b1...bn,...,c1...cn

QIQ̄
I |X〉 −n

(

∇a1∇lXla2...an,b1...bn,...,c1...cn

+∇b1∇lXa1...an,lb2...bn,...,c1...cn

+ · · · + ∇c1∇lXa1...an,b1...bn,...,lc2...cn

)

QIQJK̄
IJ |X〉 2n2

(

∇(a1∇b1)X
l
a2...an,lb2...bn,...,c1...cn

+ · · · + ∇(a1∇c1)X
l
a2...an,b1...bn,...,lc2...cn

+ · · · + ∇(b1∇c1)Xa1...an,
l
b2...bn,...,lc2...cn + · · ·

)

KIJK̄
IJ |X〉 −2n2

(

ηa1b1X
l
a2...an,lb2...bn,...,c1...cn

+ · · · + ηa1c1X
l
a2...an,b1...bn,...,lc2...cn

+ · · · + ηb1c1Xa1...an,
l
b2...bn,...,lc2...cn + · · ·

)

Table 2: Dictionary for some composite operators.

so that making use of (B.12), (B.15), and assuming for definiteness that s = 2p, one gets

s! Q1q0(s)|φ〉 = −
s/2
∑

n=1

(−b)na2n(s+ 1)Q1In(s)|φ〉 (B.17)

where

In(s) ≡ K1i1Ki2i3 · · ·Ki2(n−1)i2n−1Q[s−2n] (B.18)

and we have used the identity
n∑

k=0

a2k(s)a2(n−1−k)(s − 1 − 2k) = a2n(s+ 1) , a−2(s) ≡ 1 (B.19)

that can be proved by induction. This completes the first step. The next step is to rewrite

expression (B.17) in terms of U(s)-covariant tensors. The covariantization of the tensors

In(s) is again an iterative process. Note in fact that one can write

In(s)|φ〉 =
s!

2n
qn(s)|φ〉 +

1

2n

s/2
∑

m=n+1

(−b)m−n a2(m−n)(s− 2n+ 1) Im(s)|φ〉

that finally yields

Q1

[s/2]
∑

n=0

(−b)nrn(s)qn(s)|φ〉 = 0 (B.20)

with

rn(s) =
1

2n

n∑

k=1

rn−k(s) a2k(s − 2(n − k) + 1) . (B.21)

Finally, note that in (B.20) we have replaced s/2 with its integer part: it is in fact not

difficult to check that the latter holds for odd s as well, with that precise replacement.
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