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Introduction 
 

In the Method-of-Moments (MoM), applied to the Electric Field Integral Equation 
(EFIE), the solution (the unknown current) is approximated by a linear 
combination of a finite number of basis functions. The basic question addressed in 
this work is whether the use of the exact Green's function is the optimal choice 
once the (finite-dimensional) space of the approximate solution has been chosen. 
We approach to the above question introducing a new representation of the spatial 
Green’s function obtained by an appropriate spectral filtering with a mesh-
dependent spectral content. The first direct impact of this filtering is in the 
disappearance of the Green’s function singularity; as a consequence, the spatial 
integration is easier, avoiding the extraction of the singular term in the integration 
process. 
 
Here we consider both scattering and antenna problems in free space, proposing a 
“band limited” Green’s function expressed in closed form in the spatial domain 
and obtained through an appropriate windowing in the spectral domain.  
 
In [1] preliminary investigations have been done for periodic structures. For 2D 
scattering problems [2] proposed a spectrally-filtered Green’s function that has to 
be obtained numerically; for 3D scattering problems [3] proposed a regulated 
kernel, obtained with a simple windowing function, evaluated through a series. 
 

Formulation 
 
Using the standard spatial and spectral version of the MoM (Parseval theorem), 
the (m,n)-entry of the MoM matrix is expressed as:  
 
                                                                                                                               (1) 
                                                                                                                                
where “~” indicates Fourier transforms. We analyze the effect of truncating the 
spectral integration region up to a finite spectral bandwidth K, that is equivalent in 
the spatial-domain to the use of a windowed band limited Green’s function GW: 
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The criterion to find the optimal spectral threshold K is related to the main lobe of 
the employed basis functions spectra. This is related to the reciprocal of the mesh 
size ∆  (the relation is explicit and trivial for separable functions like rooftops), 
obtaining ∆∝ π2K . The simplest filtering is a rectangular window that drops 
abruptly to zero at K, but this truncation lends to produce ripples in the space 
domain, and related Gilbbs phenomena; so in the following we use more 
convenient spectral windows [4].   
 

Band-limited regularized free space Green’s function 
 
In free space, the “infinite-bandwidth” (i.e. exact) Green’s function is known in 
closed form, so we would like to maintain this property in its band-limited 
version. From the Sommerfeld identity representation of the Green’s function, 
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we can directly derive the band-limited free space Green’s function gw:  
 
                                                                                                                               (4) 
 

where 22 |'| zzr −+= ρ , 22
0 σ−= kkz , and ( )σw  is the chosen window.  

 
In order to use a window such that the integral (4) can be evaluated in a closed 
form, thus avoiding any numerical integration process, we propose first to apply 
the exponential window ( ) zkjew  ασ −= , where α  is a parameter related to the 
mesh size. With this window the integral (4) is evaluated analytically, obtaining 

from (4) a band-limited Green’s function  
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Generalized Pencil of Function (GPOF) procedure [5]. 
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Numerical results 
 
First of all we analyze the scattering from a square flat plate, with a side of 15 cm, 
discretized by 280 Rao-Wilton-Glisson (RWG) basis functions [6]. The Green’s 
function is filtered with two exponential windows, shown in Figure 1, with 
bandwidth related do the mesh size ∆ (-3dB bandwidth equal to 4π/∆ and 6π/∆). 
The -3dB circles of the considered spectral windows are reported on the 
amplitude Fourier Transform of the “normal” RWG (constructed as the vector 
product of the two polar components) in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 3 the amplitude of the scattered field is shown comparing the case 
without windowing (exact Green’s function) and applying the two exponential 
windows of  Figure 1: the results are overlapped. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Then we analyze a dipole with length of 75 mm excited with a voltage gap in the 
center, in order to evaluate its input impedance. First we apply two exponential 
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Figure 3: Scattering from a flat plate. Amplitude of the scattered field: comparison between no 
windowing (solid line) and exponential windowing (dash and dotted lines)
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Figure 2: flat plate, FT of a RWG with the 
-3 dB circles of the exponential windows    

Figure 1: Scattering from a flat plate:
exponential window filtering 
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windows: the filtered Green’s function is shown in Figure 4 in dash and dash-
dotted lines. Figure 5 reports the evaluated input impedance. We can see that, 
with the exponential windows, the results are not overlapped with the reference 
obtained with the exact Green’s function. So we try another (more convenient) 
spectral window, a gaussian window [4] expressed as sum of M=5 complex 
sources. The resulting band-limited Green’s function is depicted through a solid 
line in Figure 4 (overlapped with the dotted line obtained without the complex 
sources expansion), and the evaluated input impedance is very close to the 
reference obtained without filtering (see Figure 5).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

References 
 
[1] F. Vipiana, A. Polemi, G. Vecchi, S. Maci, “Hybrid Spatial-Spectral Analysis 

of Periodic Structures”, Proc. IEEE Int. Sym. on Ant. Propag., Albuquerque 
(New Mexico), July 2006, pp. 2867-2870. 

[2] G.F. Herrmann, S.M. Strain, “Sampling Method Using Prefiltered Band-
Limited Green’s Functions for the Solution of Electromagnetic Integral 
Equations”, IEEE Trans. Ant. Prop., Vol. 41, No. 1, 1993, pp. 20-24. 

[3] K.F. Warnick, G. Kang, W.C. Chew, “Regulated Kernel for the Electric Field 
Integral Equation”, Proc. IEEE Int. Sym. on Ant. Propag., Vol. 4, July 2000, 
pp. 2310-2313. 

[4] F.J. Harris, “On the use of windows for harmonic analysis with the Discrete 
Fourier Transform”, Proc. of the IEEE, vol. 66, no. 1, Jan. 1978. 

[5] T. K. Sarkar, O. Pereira, ”Using the Matrix Pencil Method to Estimate 
the Parameters of a Sum of Complex Exponential”, IEEE Trans. on 
Ant. Prop., vol. 37, no.1, pp.48-55, Feb. 1995. 

[6] S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by 
surfaces of arbitrary shape”, IEEE Trans. Ant. Prop., Vol. 30, pp. 409-418, 
May 1982. 

0 0.01 0.02 0.03 0.04 0.05
0

1000

2000

3000

4000

5000

6000

7000

ρ/λ

Real part - Free space Green function - freq.= 1800 MHz

Gaussian win. (complex sources)
Exponential win. α=2.1e-4 
Exponential win. α=1.4e-4 
Gaussian win.   

NO windowing 

1500 1600 1700 1800 1900 2000 2100 2200
-100

-50

0

50

100

150

200

frequency MHz

Zin Ohm - Dipole

Exponential win. α=1.4e-4 
NO windowing                              
Exponential win. α=2.1e-4 
Gaussian win. (complex sources)

REAL 

IMAG 

Figure 5: dipole, input impedance, comparison 
between no windowing, exponential and 
gaussian windows. 

Figure 4: dipole, real part of the free space 
Green’s function, comparison between no 
windowing, exponential and gaussian windows. 
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