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Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna,

Via Irnerio 46, Bologna I-40126, Italy

Centro de Estudios en F́ısica y Matemáticas Basicas y Aplicadas,
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1 Introduction and summary

Brane world models have drawn a lot of attention in the last years since they provide an

interesting scenario for the search of solutions to long standing particle physics puzzles as

the cosmological constant problem and the hierarchy problem. In cosmology they might

provide alternatives to dark matter and/or dark energy (see e.g. [1, 2]).

In the present manuscript we study brane world models with codimension larger than

two, for a variety of situations. However, we are mostly interested in flat bulk models

where the extra-dimensional volume is infinite and 4d gravity is brane-induced on the

brane at short scales [3–5, 7] (see [6] for an orientifold derivation). Thin tensionful higher-

codimensional solutions in flat space are known to give rise to singular backgrounds [8–10]

and need to be regulated. One possible way to regulate such singularity is to ”resolve” the

brane, by giving it a non-trivial core, in the extra-dimensions, e.g. a thin spherical shell;

in this latter case the brane results effectively codimension-one. This method has proven

to be quite efficient in the codimension-two case, both for finite volume rugby-ball [11]

solutions and for infinite-volume induced gravity ones.1

For codimension larger than two it had been shown that a naive regularization of

the higher-codimension brane by blowing the thin brane to a thin spherical shell lead to

a no-go theorem [19], that we review later. A possible way-out to such no-go theorem

was then found in [20, 21] by employing bulk higher curvature terms to regulate the bulk

singularity. Another recent proposal for smoothing out higher-codimensional singularities

is to consider a bulk Einstein-Skyrme model [22]. Here we present a different way-out:

we keep bulk Einstein-Hilbert gravity but consider a richer brane vacuum structure by

the inclusion of higher-rank (form) fields (this was suggested in [23] for a Z2-symmetric

setup [24]) similarly to the codimension-two models that involve an axion field [25–29]

whose vacuum expectation value cancels the tangential (to the brane profile) component

1Tensionful codimension-two singularities are milder (conical) and do not, a priori, need to be regu-

lated [12]. However, regularization via smoothing out the brane profile is often invoked in order to avoid

subtleties associated to purely conical radially symmetric extra-dimensional space [13–18].
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of the pressure. We explicitly show here that the inclusion of higher-rank fields works as

well for our higher-codimensional solutions.

Another reason behind the present work is the study of new (higher-codimensional)

brane cosmology models: as said above codimension-one regularization seems necessary for

cosmological setups, at least in bulk Einstein gravity (for Lovelock gravity and/or broken

spherical symmetry the situation might improve [30–33]). Such regularization allowed to

study some cosmological properties of codimension-two setups using the moving brane

approach [34, 35] or weak field limit [27, 36]. We can thus also see the present work as a

possible framework where study cosmology on a generic-codimension brane world.

Finally we consider higher-codimensional induced gravity brane world models, in the

light of more recent results [37, 38] where it was found that cascading higher-codimensional

induced-gravity models are ghost-free, hence shedding new light on such induced gravity

models, which have been sources of several controversies regarding their classical and quan-

tum stability. In [39] it was also suggested that cancellation of ghost excitations might as

well take place for resolved brane setups with codimension larger that two, provided tan-

gential pressures are cancelled. We show later that, opposed to the codimension-two case,

in our setup tangential pressures do not have to vanish and no strong fine-tuning between

flux field and tension is a priori needed. However, phenomenological constraints on the

size of the internal brane profile seem to impose, for this class of models, an upper bound

(cfr. eq. (2.37)) to the brane tension, as opposed to the codimension-two case where the

upper bound for the tension is due to a topological constraint (the conical deficit angle is

bounded to be less than 2π).

2 Vanishing bulk cosmological constant

The brane world model we study in this section is described by the following action:

S = M̂D−2

∫
dDx

√
−ĝ R̂

+

∫

Σ
dD−1x

√−g

[
MD−3

(
R− Λ − 1

2 · p!
F 2

[p]

)
+ 2M̂D−2K±

]
(2.1)

Σ = RD−n−1,1 × Sn−1
ǫ

Here Σ is a fat codimension-n source brane, whose geometry is given by the product

RD−n−1,1 ×Sn−1
ǫ , where RD−n−1,1 is the (D−n)-dimensional Minkowski space, and Sn−1

ǫ

is a (n − 1)-sphere of radius ǫ (in the following we will assume that n ≥ 3). The quantity

MD−3Λ plays the role of the tension of the brane Σ and F[p] is the field strength of a

(p − 1)-form potential A[p−1]

F[p] = dA[p−1] , Fm1...mp = p∂[m1
Am2...mp] = ∂m1Am2...mp + cyclic (2.2)

Also,

gmn ≡ δm
Mδn

N ĝMN

∣∣∣
Σ

, (2.3)
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where xm are the (D − 1) coordinates along the brane (the D-dimensional coordinates are

given by xM = (xm, r), where r ≥ 0 is a non-compact radial coordinate transverse to the

brane, and the signature of the D-dimensional metric is (−,+, . . . ,+)); finally, the (D−1)-

dimensional Ricci scalar R is constructed from the (D− 1)-dimensional metric gmn and K

is the extrinsic curvature, with K± ≡ K+ + K−. In the following we will use the notation

xi = (xα, r), where xα are the (n − 1) angular coordinates on the sphere. Moreover, the

metric for the coordinates xi will be (conformally) flat:

δij dxidxj = dr2 + r2γαβ dθαdθβ , (2.4)

where γαβ is the metric on a unit (n−1)-sphere. Also, we will denote the (D−n) Minkowski

coordinates on RD−n−1,1 via xµ (note that xm = (xµ, θα)).

The bulk equations of motion are clearly given by

ĜMN = 0 (2.5)

and the boundary conditions for the fat brane can be obtained using Israel junc-

tion conditions
〈
Km

n − δm
n K

〉

±
= − 1

2M̂D−2
Tm

n (2.6)

where

Tmn = −MD−3
(
2Gmn + gmnΛ

)
+ Tmn(F ) (2.7)

is the total energy-momentum tensor for the “matter” localized on the fat brane, with

Tmn(F ) =
MD−3

(p − 1)!

(
− 1

2p
F 2gmn + Fm

l2...lpFn l2...lp

)
. (2.8)

2.1 The no-go theorem

In order to better clarify our results let us first revise the no-go theorem associated to radi-

ally symmetric solutions in absence of the p-form term [19]. Let us consider the following

ansatz for the background metric:

ds2 = exp(2A) ηµν dxµdxν + exp(2B) δij dxidxj , (2.9)

where A and B are functions of r but are independent of xµ and θα (that is, we are looking

for solutions that are radially symmetric in the extra dimensions). The bulk equations of

motion then read (here prime denotes derivative w.r.t. r):

(D − n)

[
D − n − 1

2
(A′)2 +

n − 1

r
A′ + (n − 1)A′B′

]

+(n − 1)(n − 2)

[
1

2
(B′)2 +

1

r
B′

]
= 0 (2.10)

(D − n)

[
A′′ +

D − n + 1

2
(A′)2 +

n − 2

r
A′ + (n − 3)A′B′

]

+(n − 2)

[
B′′ +

n − 3

2
(B′)2 +

n − 2

r
B′

]
= 0 (2.11)
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Figure 1. Pictorial representation of the infinite-volume smooth brane world.

Above, equation (2.11) is the (αβ) equation, while equation (2.10) is the (rr) equation.

Note that the latter equation does not contain second derivatives of A and B. The solution

for B′ is given by (we have chosen the plus root, which corresponds to solutions with

infinite-volume extra space):

B′ = −1

r
− D − n

n − 2
A′ +

√
1

r2
+

1

κ2
(A′)2 , (2.12)

where we have introduced the notation

1

κ2
≡ (D − n)(D − 2)

(n − 1)(n − 2)2
(2.13)

to simplify the subsequent equations.

Here we are interested in non-singular solutions such that A and B are constant for

r < ǫ, and asymptote to some finite values as r → ∞. For r > ǫ the solution for A and B

is given by

A(r) = − κ

n − 2
ln

(
1 + f(r)

1 − f(r)

)
, r > ǫ , (2.14)

B(r) = −D − n

n − 2
A(r) +

1

n − 2
ln
(
1 − f2(r)

)
, r > ǫ , (2.15)

where f(r) ≡
(

r∗
r

)n−2
and r∗ is the integration constant, and where we have set other

integrations constants such that A∞ = B∞ = 0. A pictorial representation of such setup is

given in figure 1, where the gray disk describes the extra-dimensional shape of the inside

bulk (r < ǫ), the bell-shaped part is the asymptotically-flat outside bulk (r > ǫ), the circle

Σ is the fat brane and the ”star” represents the would-be naked singularity r = r∗. Israel

junction conditions (2.6) provide the equations at the location of the fat brane, r = ǫ;

including the contribution of the induced EH term

Gµ
ν = −(n − 1)(n − 2)

2R2
ǫ

δµ
ν (2.16)

Gα
β = −(n − 3)(n − 2)

2R2
ǫ

δa
β (2.17)
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where Rǫ ≡ ǫ eB(ǫ) is the physical radius of the (n − 1)−sphere, we obtain

(n − 2)
2f2(ǫ)

1 − f2(ǫ)
+

ǫL

2
eB(ǫ)

[
Λ − (n − 2)(n − 3)

R2
ǫ

]
= 0 (2.18)

(n − 1)
2f2(ǫ)

1 − f2(ǫ)
− D − 2

n − 2

2κf(ǫ)

1 − f2(ǫ)
+

ǫL

2
eB(ǫ)

[
Λ − (n − 1)(n − 2)

R2
ǫ

]
= 0 (2.19)

for the (αβ) and (µν) components respectively, with L ≡ MD−3

cMD−2
. We can rewrite the

previous matching conditions in a more useful way as follows:

2f2(ǫ)

1 − f2(ǫ)
+

L

2Rǫ
(λ − n + 3) = 0 , (2.20)

D − 2

n − 2

2κf(ǫ)

1 − f2(ǫ)
+

L

2Rǫ
(λ + n − 1) = 0. (2.21)

where we have defined Λ ≡ λn−2
R2

ǫ
. Let us study possible solutions to these matching

conditions with r∗ < ǫ for which 0 < f(ǫ) < 1: they would be non-singular solutions as

the would-be naked singularity r = r∗ is cut away. The second matching conditions can

only be satisfied if Λ < 0. Hence λ must be a negative parameter; in other words there

are no non-singular solutions of this type with positive tension. Moreover, from the first

condition we have:

f(ǫ) =
−λ + n − 3

−λ − n + 1

√
(n − 1)(D − 2)

D − n
. (2.22)

For n ≥ 3, the condition 0 < f(ǫ) < 1 admits no solutions with negative λ. Hence, the

above matching conditions cannot be simultaneously satisfied within this class of solutions.

For a different class of solutions that is curved both on the inside bulk and on the outside

bulk it is possible to overcome the previous no-go theorem [24]. In [23] an upgraded

version of the model [24], that suggested the use of brane form fields, was considered. In

the next section we will see that changing the structure of the vacuum brane stress tensor,

with the inclusion of higher-rank tensors is crucial also for type of geometry described

above, as it allows smooths solutions. This type of geometry is the higher-codimensional

version of that considered in [29]. Such type of regularization was studied in [40–45], in

the context of compact codimension-two brane worlds, in order to obtain codimension-two

effective actions. For the sake of generality we will thus consider in section 3 some higher-

codimensional generalizations of the backgrounds considered in [40–45], that will require

bulk higher-rank tensors as well as non-vanishing bulk cosmological constant or a bulk

σ−model matter action [46, 47].

2.2 Adding the p-form field

In order to enrich the vacuum structure of our brane world we include a p-form field in the

worldvolume of the blown-up brane Σ. We consider the case of a (n−1)-form field strength

but could equivalently consider its dual (D − n)-form as in the string landscape [49]. We

require its energy-momentum tensor to have the block-diagonal form

Tm
n(F ) =

(
Tδµ

ν 0

0 T ′δα
β

)
(2.23)
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with T, T ′ constant. In order to achieve that let us use spherical coordinates

γαβ dθαdθβ = dθ0
2 + sin2 θ0 dθ1

2 + sin2 θ0 sin2 θ1 dθ2
2

+ · · · + sin2 θ0 · · · sin2 θn−3 dθn−2
2 (2.24)

to parameterize the (n − 1)-sphere and let us consider the extended magnetic

monopole field(s)

A[n−2]± =
√

2ΦRn−1
ǫ

(
± c + h(θ0)

)
E[n−2] (2.25)

with Φ constant, E[n−2] being the volume form of the equatorial (n − 2)-sphere, and with

h′(θ) = sinn−2 θ, and h(π) = −h(0); the field strength

F[n−1] =
√

2ΦRn−1
ǫ S[n−1] (2.26)

is thus proportional to the volume form of the unit (n − 1)-sphere. The field configu-

rations (2.25) are defined on the north (south) hemisphere of Sn−1 and the integration

constant c is fixed by regularity conditions at the poles [48]. From (2.26) one immedi-

ately obtains

Tm
n(F ) = MD−3Φ2

(
−δµ

ν 0

0 +δα
β

)
(2.27)

and

Tµ
ν = −MD−3 n − 2

R2
ǫ

(λ + ϕ2)δµ
ν (2.28)

Tα
β = −MD−3 n − 2

R2
ǫ

(λ − ϕ2)δα
β (2.29)

where we have defined Φ2 ≡ (n−2)ϕ2/R2
ǫ . Hence the boundary conditions (2.20) and (2.21)

still hold with the replacements λ → λ − ϕ2 and λ → λ − (2n − 3)ϕ2 respectively. We

thus have

2f2(ǫ)

1 − f2(ǫ)
=

L

2Rǫ

(
−λ + ϕ2 + n − 3

)
, (2.30)

D − 2

n − 2

2κf(ǫ)

1 − f2(ǫ)
=

L

2Rǫ

(
−λ + (2n − 3)ϕ2 − n + 1

)
(2.31)

so that λ can be either positive or negative, provided ϕ2 is large enough. The second

condition gives

Rǫ = L

√
D − n

(n − 1)(D − 2)

1 − f2(ǫ)

4f(ǫ)

(
−λ + (2n − 3)ϕ2 − n + 1

)
(2.32)

that replaced into the first condition yields

f(ǫ) =

√
(n − 1)(D − 2)

D − n

−λ + ϕ2 + n − 3

−λ + (2n − 3)ϕ2 − n + 1
(2.33)
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that is the equivalent of (2.22). Note however that now there are smooth solutions with

f(ǫ) < 1 regardless of the value of the brane tension (here parameterized by λ). For

example let us consider n = 3, D = 7: in such a case we have f(ǫ) =
√

5
2

−λ+ϕ2

−λ+3ϕ2−2
that

can be smaller than one, provided ϕ2 is large enough. The flux ϕ2 increases the value of the

physical four-dimensional vacuum energy density that can be obtained by integrating (2.28)

over the brane profile

E4d = (n − 2)S(n−1) (λ + ϕ2) M1+n Rn−3
ǫ (2.34)

where S(n−1) is the volume of the unit-radius (n−1)−sphere. Coupling of the form potential

to a localized extended object leads to a quantization condition for the flux [48–52]; we

come back to this point in the next section.

Let us point out a crucial difference between our setup (n > 2) and previously con-

sidered codimension-two smooth solution. In the codimension two case [29] the smooth

solution considered has A = constant and B ∼ ln r so that the junction condition coming

from the (αβ) equation of motion (2.11) is trivial (there are no second derivatives in B

in such a case) and this can only be satisfied if we “tune” Λ = Φ2. In our case the only

requirement for the “flux” is a lower bound. Note however that, once λ and ϕ are chosen,

the value of the physical radius is fixed in terms of (2.32).

In the present 4d-Poincaré-invariant Ricci-flat setup the inclusion of bulk fluxes is

problematic because of the no-go theorem [54–56]. In other words the present solutions

avoid such no-go theorem in a trivial way: no bulk fluxes, and presence of discontinuities in

the derivatives of the warp factors that are absorbed by localized fluxes and brane tension.

2.3 Comments

We comment here on the possible physical scales involved in the model; we focus on the case

d = 4, n = 3 for it displays all the details of these models. There is a variety of scenarios

that might appear according to the different values of tension and flux and it is beyond the

scopes of the present manuscript to give a detailed study of such issues. Let us however

point out a few interesting features. The present model has codimension larger than two and

there is, a priori, no critical value for the tension. However, phenomenological constraints

impose that the internal radius of the brane satisfies Rǫ < (TeV )−1. Since the scale L will

be related to the crossover scale after which brane gravity turns higher-dimensional and it

must thus be taken to be enormously large, it is natural to assume that the internal radius

of the brane be extremely smaller than L. Hence, noting that a tiny value in the round

parenthesis of (2.32) would yield to an inconsistent value for f(ǫ), equation (2.32) implies

f(ǫ) ∼< 1 (2.35)

that inserted into (2.33) yields a fine-tuning relation

ϕ2 ∼>
2 −

(√
5/2 − 1

)
λ

3 −
√

5/2
(2.36)
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that can be satisfied, provided

λ ≤ λM ≡ 2/(
√

5/2 − 1) (2.37)

that yields a critical value for the brane tension.

Casting the bulk metric into the form ds2 = V 2(ρ)dxµdxµ + dρ2 + W 2(ρ)dΩ2
2 one can

check that there exists an allowed configuration ρ̄ at which W (ρ) is critical. For such a

value, corresponding to r̄ ∼ 2r∗ the physical radius W (ρ) = r eB(r) assumes its minimum

value, after which the bulk radius asymptotically approaches the flat limit R(r) ∼ r: the

shape of the extra-dimensional space thus looks like a ”throat” ending on the brane, like

depicted in figure 2 and this scenario is somewhat similar to the “near-critical” limit of [29]

where the bulk looks like a thin cylindrical sliver that ends up on the brane and opens up

non trivially at very large scales. Then gravity on the brane should behave 4d at distances

shorter than LC =
M2

4

M3
5

= M1+nRn−1

cM2+nRn−1
= L, then an intermediate 5d behavior should take

over at distances ∼> L , till the bulk finally opens up at a scale L′ related to r̄, and brane

gravity behaves seven-dimensionally, provided the scale at which sources on the brane feel

the whole seven-dimensional bulk is larger than L. In other words the bulk scale r̄ must

be seen as a very large scale from the point of view of an observer on the brane.2 However

regardless of the specific details of the crossover physics we see that brane tension must

be bounded from above at least for this class of smooth solutions. Also, as mentioned

above, the form potential may be coupled to a charged particle eM
∫
W

A, where W is the

particle worldline (for n = 4 it would be a string worldsheet and so on). When W wraps

the horizon of the two-sphere, single-valuedness of the amplitude leads to a quantization

condition for the flux [48] eM
∫
S2

F = 2πk, that yields

ϕRǫ =
k

2
√

2eM
, k ∈ Z . (2.38)

Hence, the above fine-tuning relation (2.36) can be attained only by the portion of tension

that is quantized accordingly, and the excess of tension δλ ∼ 1
eM

seems to either gravitate

or blow the internal radius to an unacceptably large value. Notice also that flux conser-

vation due to Bianchi identity sets the conservation of ϕRǫ, similarly to what discussed

in [53] for the finite-volume rugby-ball model. In the present setup, unlike what happens

in [53], the flux is not fixed in terms of bulk parameters and this would, a priori, allow

an eventual phase transition that locally changes the value of the brane tension. However,

since the internal radius of the brane must locally change in order to “absorb” the different

tension and keep the four-dimensional part of the brane flat, this would lead to a scenario

where different four-dimensional domains (characterized by different values of tension) have

different Planck masses.

2One may worry about the fact that parallel directions are necessarily warped and it may happen that a

RS-like localization [57] takes place at those scales. More precisely one might expect an interplay of effects

between induced gravity and RS localization, such as the one described in [58]. However it is easy to see

that sign(V ′(ρ̄)) = sign(Q(ǫ)) > 0 so that, in the near-brane limit the 5d “bulk” behaves as a brane-to-

boundary chunk of AdS and the five-dimensional length is thus infinite. It is thus natural to expect that

no RS localization takes place.

– 8 –



J
H
E
P
0
1
(
2
0
1
0
)
0
5
1

Rε

−2R(r)

r

Figure 2. Pictorial representation of the extra-dimensional space.

Another issue concerns the stability of such solutions. Although such important point

would require a detailed investigation let us here mention a few related results obtained

in the past in similar models. In the absence of localized fluxes, instabilities were indeed

found in the models discussed in [6, 23]. However, in [23] it was also shown that localized

induced stress tensors of the form (2.23) do indeed lead to a stabilization and such effect

is quite likely to take place in the present solutions as well.

To conclude this section, let us briefly mention that, for generic values of parameters,

it seems plausible that the higher codimension resolved brane solutions discussed here

behave more like the “subcritical” codimension-two cases [29], and the crossover scale from

4d gravity and (4 + n)-gravity is expected to be given by rn
C ∼ M2

4
cM2+n

.

3 Non-vanishing bulk cosmological constant

In this section we consider some finite-volume counterparts of the solutions found in the

previous section.3 What follows is to be understood as higher-codimension generaliza-

tions of the smooth codimension-two solution described in [27] of which we also use the

conventions. The bulk part of the action (2.1) now gets generalized to

Sbulk = M̂D−2

∫
dDx

√
−ĝ

[
R̂ − Λ̂ − 1

2(p + 1)!
Ĥ2

[p+1]

]
(3.1)

whereas the brane part remains the same as before. We seek for a solution with spheri-

cally symmetry in the extra n-dimensional space and Poincaré invariance in the d paral-

lel directions

ds2 = ηµνdxµdxν + R2
(
dθ2 + cos2 θdΩ2

(n−1)

)
, −π

2
< θ <

π

2
(3.2)

3 Higher-codimensional brane solutions with bulk higher-rank tensors were considered in [50] where the

regularization consisted in blowing up n− 2 directions of the brane, hence reducing its codimension from n

to 2. Moreover, in [50], the “dual” form H̃[d] was considered, instead of H[n].
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and dΩ2
(n−1) is the line elements of the (n − 1)-sphere, explicitly written in (2.24). We

locate the smooth brane at a certain value of the azimuthal angle θ̄. In fact in general

we might have more branes localized at different angles. For simplicity we will assume Z2

symmetry along θ and a pair of identical branes located at ±θ̄: the symmetry allows us

to concentrate only on the northern hemisphere θ > 0. Again, we start considering the

case where p = n − 1. Similarly to [27] we assume to have an “inside bulk” θ̄ < θ < π/2

and an “outside bulk” 0 < θ < θ̄ with different radii, Ri = Rβ and Ro = R, and different

cosmological constants, Λi and Λo respectively and we take the magnetic monopole ansatz

for the n-form field strength, with

Ĥ[n] =

{
Q̂i (βR)n S[n] , inner bulk

Q̂o Rn W[n] , outer bulk
(3.3)

with S[n] and W[n] respectively being the volume forms of the unit-radius n-sphere and of

the unit-radius wedged n-sphere whose line element is given by dθ2 +β2 cos2 θdΩ2
(n−1). The

bulk equations of motion fix the value of the cosmological constants and magnetic fields in

terms of the radii

R−2
a =

Λ̂a

(n − 1)2
=

Q̂2
a

2(n − 1)
, a = i, o . (3.4)

It is easy to see, that using (3.4), and redefining coordinates as

θ(l) = θ̄ −
(

θ̄ − l

R

)[
Θ(θ̄R − l) + β−1Θ(l − θ̄R)

]
(3.5)

zα = βRθα , α = 1, . . . , n − 1 (3.6)

where Θ’s are Heaviside’s step functions, the volume forms (βR)n S[n] and Rn W[n] are both

given by

V[n] = (cos θ(l))n−1 dl ∧ Ω[n−1](z) , ds2 = dl2 + cos2 θ(l)dΩ2
(n−1)(z) (3.7)

and

Ĥ[n] =
√

2(n − 1) θ′(l) V[n] (3.8)

and θ′(l) is discontinuous at the location of the brane l̄ = θ̄R. The integration by parts

associated to the equation of motion for the potential form field

ω̂[n−1] =
[
± c + f(θ(l))

]√
2(n − 1) Ω[n−1](z) , f ′(θ) = cosn−1 θ (3.9)

whose field strength is Ĥ, will thus give rise to a jump condition at the location of the brane

δωS(H) ⊇ − M̂D−2

(n − 1)!

∫

M

dDx
√

−ĝ∇M0δω̂M1···Mn−1Ĥ
M0···Mn−1

=
M̂D−2

(n − 1)!

∫

∂M

dD−1x
√−g δωm1···mn−1

〈
Ĥl m1···mn−1

〉

±
(3.10)

– 10 –
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where ωm1···mn−1 = ω̂m1···mn−1(θ̄), and comes from the ”-” branch of (3.9) as the brane sits

inside the northern hemisphere. We thus need to ameliorate the (n−1)-form field localized

on the brane with the inclusion of a coupling to ω[n−1], namely

F̃[n−1] = F[n−1] + eMω[n−1] (3.11)

and

δωS(F̃ ) = − MD−2

(n − 1)!

∫

Σ
dD−1x

√−g δωm1···mn−1e F̃m1···mn−1 , (3.12)

so that
〈
Ĥl m1···mn−1

〉

±
= L Me F̃m1···mn−1 (3.13)

is the jump condition for the form field, with

〈
Ĥl α1···αn−1

〉

±
=
√

2(n − 1)
1 − β

Rβ
cosn−1 θ̄

√
Ω ǫα1···αn−1 . (3.14)

For the metric we have (2.6) instead, that using (3.7), simply yields the following non-

vanishing components for the extrinsic curvature K±
αβ = ±1

2∂lgαβ = ∓θ′(l̄±) tan θ̄ gαβ .

Then, choosing the brane magnetic field to be

F[n−1] = Φ cosn−1 θ̄ Ω[n−1] ⇒ F̃[n−1] = Φ̃ cosn−1 θ̄ Ω[n−1] (3.15)

with Φ̃ = Φ + eM
√

2(n − 1)(f(θ̄)− c)(cos θ̄)1−n, we have the following junction conditions

Λ − 1

2
Φ̃2 =

2(n − 2)

L

1 − β

Rβ
tan θ̄ (3.16)

Λ +
1

2
Φ̃2 =

2(n − 1)

L

1 − β

Rβ
tan θ̄ (3.17)

eΦ̃ =

√
2(n − 1)

LM

1 − β

Rβ
. (3.18)

where (3.16), (3.17) are the (αβ) and (µν) components of the junction condition for the

metric and (3.18) is the junction condition for the form field. They can be solved to give

Λ =
2n − 3

L

1 − β

Rβ
tan θ̄ =

2n − 3

2
Φ̃2 (3.19)

Φ̃ =
2eM√
2(n − 1)

tan θ̄ (3.20)

so that a brane of arbitrary tension can be accommodated on such a setup while maintaining

4d-Poincaré invariance. A few observations are in order. First, it is easy to see that,

contrarily to what happens in [27], for fixed 4d vacuum energy density one cannot take the

thin limit θ̄ → π/2. The vacuum energy density can be simply obtained from the integral

of the l.h.s. of (3.17) over the internal profile of the brane. Up to irrelevant numerical

constants it reads

T ∼ M̂D−2Rn−2(β cos θ̄)n−2 sin θ̄(1 − β) . (3.21)
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For n = 2 one recovers the result of [11, 27]. For n > 2, holding T fixed, the aforementioned

limit is impossible as β is bounded from above. In other words T → 0 for θ̄ → π
2 ; it is thus

difficult to imagine how to extend the approach of [40–45] to codimension higher that two,

at least within this class of spherically symmetric regularizations. Also, coupling of the

form fields to extended objects leads to quantization conditions [48, 50–52] for the fluxes

that in turn yield a quantization condition for the brane tension.

Let us conclude by mentioning possible extensions of the latter solutions to the case

of negative bulk cosmological constant. It is obvious that an unwarped solution like (3.2)

with an internal AdS is prohibited by Maldacena-Nunez no-go theorem [54–56]. However,

at least partial way-outs seem possible if, for instance, one allows the extra space to be

non-compact. In fact, let us start from

ds2 = R2

(
dξ2

ξ2
+ ξ2ηµνdxµdxν

)
+ δabdzadzb , za ∼= za + 2πla (3.22)

where the (n−1)−torus parameterized by za is the internal profile of the brane localized at

ξ0 = 1. Bulk equation of motion in presence of negative cosmological constant and fluxes

yields a similar fine-tuning condition like the one given in (3.4). Taking for simplicity a Z2-

symmetry and setting ξ = 1+ ǫ|u| it is easy to see that (with the exception of codimension

one, where there is no bulk flux and reduces to the RS2 model [57]) finite transverse volume

(ǫ = −1) implies positive brane tension, Λ > 0 but negative localized flux, Φ̃2 < 0, whereas

infinite volume (ǫ = +1) implies negative brane tension, Λ < 0 and positive flux, Φ̃2 > 0.
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