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Abstract

The Bag of Words paradigm has been the baseline from which several suc-
cessful image classification solutions were developed in the last decade. These
represent images by quantizing local descriptors and summarizing their dis-
tribution. The quantization step introduces a dependency on the dataset,
that even if in some contexts significantly boosts the performance, severely
limits its generalization capabilities. Differently, in this paper, we propose to
model the local features distribution with a multivariate Gaussian, without
any quantization. The full rank covariance matrix, which lies on a Rieman-
nian manifold, is projected on the tangent Euclidean space and concatenated
to the mean vector. The resulting representation, a Gaussian of local descrip-
tors (GOLD), allows to use the dot product to closely approximate a distance
between distributions without the need for expensive kernel computations.
We describe an image by an improved spatial pyramid, which avoids bound-
ary effects with soft assignment: local descriptors contribute to neighboring
Gaussians, forming a weighted spatial pyramid of GOLD descriptors. In ad-
dition, we extend the model leveraging dataset characteristics in a mixture of
Gaussian formulation further improving the classification accuracy. To deal
with large scale datasets and high dimensional feature spaces the Stochastic
Gradient Descent solver is adopted. Experimental results on several publicly
available datasets show that the proposed method obtains state-of-the-art
performance.
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1. Introduction

Object and Scene Recognition have been a major research direction in
computer vision, and, in particular, the task of automatically annotating
images has received considerable attention. Systems extract some description
from a training set of images, train a classifier and then can be used to
perform their task on new images. The current “standard” approach for
this task is some derivation of the Bag of Words (BoW) [1], and consists
mainly of three steps: (i) extract local features, (ii) generate a codebook and
then encode the local features into codes, (iii) pool all the codes together to
generate a global image representation. In this approach a key step is the
codebook generation, because it is the base to define a high-dimensional Bag
Of Words histogram. Typically this is performed through clustering methods
and the most common approach is the use of k-means clustering, because of
its simplicity and convergence speed.

However, introducing a quantization of the feature space tightly ties
dataset characteristics to the features representation, in the choice of both
the position and the number of cluster centers to use. For the codewords po-
sitions, the quantization is learned from the training set, therefore the cluster
centers reflect the training data distribution. The optimal number of cluster
centers varies depending on the dataset. For example, in [2], the best accu-
racy using regular BoW is reached at 4k clusters for the Caltech-101 dataset,
while, even if the improvement is progressively lower, in PASCAL VOC 2007
it does not reach saturation even with 25k cluster centers. Another example
of this “hidden” dataset dependency inclusion may be found in many spe-
cializations of the BoW approach. [3] and [4] propose two different solutions
to learn category specific codebooks and show how this is able to improve
the descriptor ability to discriminate between similar categories.

The codebook generation step has been introduced in order to obtain a
fixed length representation of the distribution of the local features of an im-
age. This is not strictly necessary, since the descriptors distribution could be
directly modeled with a parametric distribution [3, 5], and the parameters
obtained on the single image may provide a summary of the local descrip-
tors. In some contexts though, the information coming from the specific
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Figure 1: Sample images taken from the five datasets used in the experimental section.
They pose different challenges both for object detection and multiple concepts annotation.

dataset characteristics is able to significantly boost the performance of the
classification system.

Based on these considerations, in this paper we propose a solution to
allow the descriptors to be obtained either in a dataset independent way or
to leverage training information in their construction. Using a multivariate
Gaussian distribution with full rank covariance matrix or a mixture of them
it is possible to tune the system based on the context. We also show how
to embed this descriptors in the Spatial Pyramid Representation [6] further
removing border effects artifacts. The final image descriptor is then used
both with an off-the-shelf batch classifier and with the Stochastic Gradient
Descent on-line solver [7], which allows to deal with large scale datasets and
high dimensional feature spaces.

We name our method Gaussian of Local Descriptors (GOLD) and demon-
strate its effectiveness for automatic image annotation and object recognition.
The main contributions of our work are:
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• we provide a flexible local feature representation leveraging parametric
probability density functions, that can be independent of the image
archive (e.g. for collections that change dynamically) or specific to
dataset characteristics;

• our method employs the projection of the full rank covariance matrix
from the Riemmanian manifold to the tangent Euclidean space to ob-
tain a fixed length descriptor suitable for linear classifiers based on dot
product;

• we conduct experiments on several public databases (Caltech-101, Caltech-
256, ImageCLEF2011, ImageCLEF2013, PASCAL VOC07). Some ex-
amples are reported in Fig. 1. The results demonstrate the effectiveness
of utilizing our descriptor over different types of local features, both in
dataset dependent and independent settings.

This paper is organized as follows. We introduce the state of the art on
image descriptors focusing on encodings, normalizations and pooling strate-
gies in Section 2. Then we elaborate the formulation of the GOLD descriptor
in Section 3, and its combination with the spatial pyramid representation in
Section 4. In Section 5 the extension to the mixture of Gaussian distribu-
tions is presented. We conduct extensive experiments in Section 6 to verify
the advantage of our method for automatic image annotation and object
recognition. Conclusions are drawn in Section 7.

2. Related Work

The basic component of all object recognition and scene understanding
systems are local descriptors [8]. The most famous and effective ones are
SIFT [9], and all their color variations [10].

After describing images with unordered sets of local descriptors, we would
like to directly compare them in order to get information on the images
similarities. The problem could be tackled with solutions inspired by the
assignment problem, but this would be infeasible as soon as we move away
from tiny problems. For this reason, research has focused on finding a fixed
length summary of local descriptors density distribution.

The original solution, named Bag of Words, consists in finding a set of
codewords (obtained by the k-means algorithm) and assigning each local
feature to a codeword. The final descriptor is given by a histogram counting
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the number of local features assigned to every codeword (cluster center) [1].
This last strategy was later referred to as hard-assignment.

A histogram is obviously a crude representation of the local features con-
tinuous density profile, it introduces quantization errors and it is sensitive to
noise and outliers [11]. Thus, it would appear that by improving this density
representation to more accurately represent the input feature set the classi-
fiers performance could be improved as well [3]. For example, in [12] the hard-
assignment of features is replaced with soft-assignment, which distributes an
appropriate amount of probability mass to all codewords, depending on the
relative similarity with each of them. The Locality-constrained Linear Cod-
ing [13] projects each descriptor on the space formed by its k -nearest neigh-
bors (with small k; they propose k = 5). This procedure corresponds to
performing the first two steps of the locally linear embedding algorithm [14],
except that the neighbors are selected among the codewords of a dictionary
rather than actual descriptors, and the weights are used as features instead
of being mere tools to learn an embedding.

In [15] two supervised nonnegative matrix factorizations are combined
together to identify latent image bases, and represent the images in this bases
space; in [16] the authors propose to combine structures of input features
and output multiple tags into one regression framework for multitag image
annotation.

Fisher encoding [17], models the codewords with a Gaussian Mixture
Model (GMM), restricted to diagonal covariance matrices for each of the k
components of the mixture. Then, they capture the average first and second
order differences between the image descriptors and the centers of the GMM.

The Vector of Locally Aggregated Descriptors [18] (VLAD) can be seen
as a simplification of the Fisher kernel. Each local descriptor is associated
to its nearest visual word. The idea of the VLAD descriptor is to accumu-
late, for each visual word, the differences of the vectors assigned to it, thus
characterizing the distribution of the vectors with respect to the center. As
for Fisher encoding, the descriptors are pooled together with averaging. Re-
cently a comprehensive study concerning feature coding methods that sum-
marizes their main characteristics including motivations and mathematical
representations has been presented in [19].

The techniques discussed so far have all focused on improving the local
descriptors encoding, relaying on training data for codewords generation.
Given that there are a great number of unlabeled images available, some
works focused on semi-supervised learning in order to leverage unlabeled
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data for large-scale image annotation [20].
In order to overcome the dataset dependency, some authors tried to build

a codebook in a fully data-independent way. In [21] the feature space is
directly discretized using a regular lattice. With four subdivisions for each
dimension, the number of bins is in the order of 1077, most of which are ob-
viously empty. They thus employ a hash table and store only the non-empty
bins. Constant time table lookup, i.e., independent of the size of the visual
vocabulary, can then be guaranteed. In [22] it is shown that this fixed quan-
tization method performs significantly worse then other techniques, probably
due to the fact that it splits dense regions of the descriptor space arbitrarily
along dimension axes, and the bins do not equally split the unit hypersphere
which SIFT covers, resulting in a wildly uneven distribution of points. More-
over they further highlight on Oxford [23] and Paris [24] datasets that the
performance on drop of quantization approaches when generating codewords
from a dataset and using them on another. Similar conclusions were also
found in [25]. In short, referring to a configuration as dataset1/dataset2
(meaning that codewords are generated by dataset1 and used them for re-
trieval on dataset2), the Oxford/Oxford combination provides a mAP value
of 0.673, against a Paris /Oxford mAP of 0.494. In a recent work [26], to
avoid to recompute codewords at every dataset change, a particularly effec-
tive solution for cluster center adaptation, applicable to VLAD descriptors,
is proposed. This, combined with an appropriate normalization step, shows
a remarkable improvement when the codewords are generated from a differ-
ent dataset. It is significant to note that the more different the codeword
generation dataset is, the worse the performance are. Although the proposed
adaptation is particularly efficient, it still requires to apply a transformation
to all VLAD descriptors of the dataset.

A different strategy was proposed in [3], in order to avoid codeword gen-
eration completely, and in this way intrinsically remove any dataset depen-
dency. The idea is to first model each set of vectors by a probability den-
sity function (pdf) and then compare them with a kernel defined over the
pdfs. The advantage of modeling each image’s set of descriptors indepen-
dently are that each image model is tailored to the specific descriptor set
and hence should be more accurate. This solution received little attention,
because of the need of using specific kernels for image comparison, again
posing scalability issues. Recently Carreira et al. [5] proposed to use second-
order analogues of the most common first-order pooling operators to describe
arbitrary shaped regions in semantic segmentation contexts. In particular,
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they focused on multiplicative second-order interactions (e.g. outer prod-
ucts), together with either the average or the max operators. Following the
techniques used in [27], they managed to obtain a region descriptor suitable
for linear classifiers. It can be noted that, when average-pooling is used, this
is exactly the proposal of [3], when the choice for the pdf is a zero-mean
Gaussian distribution, improved with the mapping which allows to avoid the
kernel computation between pdfs.

We propose to follow this latter way of modeling local features distribu-
tions, by choosing a multivariate Gaussian distribution with mean and full
covariance as the reference pdf. By employing the log-Euclidean projection
of [27], detailed in the next section, we can transform the distribution to a
vectorial representation which allows to use the dot product to closely ap-
proximate a distance between distributions. Thanks to the fact that this
representation is indeed modeling a Gaussian distribution, we can further
extend it by changing the pdf to a mixture model, still obtaining a linear
space representation. The idea of computing a Gaussian mixture model on
the training set and then adapt it to each individual image as a descriptor
was introduced in [28]. Although we share similar intentions, the following
points mark the differences with their proposal: (i) they run a full EM algo-
rithm on every image, while we only use the posterior probability to weight
each feature contribution to every component, (ii) they employ a global di-
agonal covariance matrix, while we use a full one, (iii) they assume that this
covariance matrix is fixed throughout the whole corpus, i.e. they do not re-
estimate the image specific covariance matrix, (iv) the final image descriptor
is dependent only on adapted weights and means of the various components,
each scaled by the globally estimated covariance matrices.

Another proposal is strictly related to our approach: the recently intro-
duced Vector of Locally Aggregated Tensors (VLAT) [29]. Their approach
extends the VLAD descriptor by aggregating tensor products of local descrip-
tors. They first compute a visual codebook of visual words over a sample
image set using k-means. To compute the signature of an image, for each
cluster, they aggregate with summation the centered tensors of centered de-
scriptors. Each aggregated tensor is flattened into a vector and concatenated
for all clusters. Strong similarities can be observed with our proposal, but:
(i) we theoretically motivate our proposal by modeling a set of descriptors
with a multivariate Gaussian distribution, while the second order tensor used
in VLAT is centered w.r.t. the cluster mean; (ii) they do not normalize the
descriptor with respect to the cardinality of the feature set; (iii) the main dif-
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Figure 2: A schematization of the GOLD descriptor. An image is represented as a
Weighted Pyramid of Gaussians of local descriptors. The covariance matrix is projected
on the tangent space and concatenated to the mean to obtain the final region descriptor.

ference is that VLAT do not employ the log-Euclidean projection and simply
simply vectorize the final tensors, assuming that these can be used with the
Euclidean metric. Following our Gaussian motivation, we also include the
mean to the final descriptor. The contributions of our choices are analyzed
in Section 6.

As an additional improvement, we apply a spatial soft assignment over the
spatial pyramid representation. A schematization of the proposed approach
is presented in Fig. 2.

3. GOLD: Gaussian of Local Descriptors

In order to provide a tractable description of the inherently unknown
pdf of an unordered set of feature vectors, we employ the most classical
parametric distribution, that is the multivariate Gaussian distribution. Let
F = {f1 . . . fN} be the set of d-dimensional local features and suppose that
they are independent and identically distributed samples from a multivariate
Gaussian distribution, defined as

N (f ;m,C) =
1

|2πC| 12
e−

1
2
(f−m)TC−1(f−m), (1)
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where | · | is the determinant, m is the mean vector and C is the covariance
matrix; f ,m ∈ Rd and C ∈ Sd×d++ , and Sd×d++ is the space of real symmetric
positive semi-definite matrices. The mean and covariance parameters are
estimated from F as follows:

m =
1

N

N∑
i=1

fi, (2)

C =
1

N − 1

N∑
i=1

(fi −m)(fi −m)T . (3)

The estimated covariance matrix encodes information about the variance of
the features and their correlation, and, together with the mean, provides a
good insight on the set of features F . The space of covariance matrices can
be formulated as a differentiable manifold, but not as a vector space (e.g. the
covariance space is not closed under multiplication with a negative scalar).
Unfortunately, many efficient machine learning algorithms assume that the
data points form a vector space where dot product is defined, therefore they
cannot readily work with covariance matrices.

It is important to consider that a manifold is a topological space that is
locally similar to a Euclidean space. In particular a Riemannian manifold is
a differentiable manifold in which each tangent space has an inner product,
which varies smoothly from point to point [27].

Recently, it has been shown by Pennec et al. [30] that it is possible to
endow the space of covariance matrices with an affine-invariant Riemannian
metric (thus defining a Riemannian manifold), which allows to map covari-
ance matrices to points in the Euclidean space.

The first step is the projection of the covariance matrices on an Euclidean
space tangent to the Riemannian manifold, at a specific tangency matrix
P. The second step is the extraction of the orthonormal coordinates of
the projected vector. In the following, matrices (points in the Riemannian
manifold) will be denoted by bold uppercase letters, while vectors (points in
the Euclidean space) by bold lowercase ones.

More formally, the projected vector of a covariance matrix C is given by:

tC = logP(C) , P
1
2 log

(
P−

1
2CP−

1
2

)
P

1
2 (4)

where log is the matrix logarithm operator and logP is the manifold specific
logarithm operator, dependent on the point P to which the projection hy-
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perplane is tangent. The matrix logarithm operators of a matrix C can be
computed by eigenvalue decomposition (C = UDUT ); it is given by:

log(C) =
∞∑
k=1

(−1)k−1

k
(C− I)k = Ulog(D)UT . (5)

The orthonormal coordinates of the projected vector tC in the tangent
space at point P are then given by the vector operator:

vecP(tC) = vecI

(
P−

1
2 tCP

− 1
2

)
(6)

where I is the identity matrix, while the vector operator on the tangent space
at identity of a symmetric matrix Y is defined as:

vecI(Y) =
[
y1,1
√

2y1,2
√

2y1,3 . . . y2,2
√

2y2,3 . . . yd,d

]
. (7)

Substituting tC from Eq. 4 in Eq. 6, the projection of C on the hyperplane
tangent to P becomes

c = vecI

(
log
(
P−

1
2CP−

1
2

))
. (8)

Thus, after selecting an appropriate projection origin, every covariance ma-
trix is projected to an Euclidean space. Since c is a symmetric matrix of size
d× d a (d2 + d)/2-dimensional feature vector is obtained.

As observed in [31], by computing the sectional curvature of the Riemma-
nian manifold [32], i.e., the natural generalization of the classical Gaussian
curvature for surfaces, it is possible to show that this space is almost flat. This
means that the neighborhood relation between the points on the manifold
remain unchanged, wherever the projection point P is located. Therefore,
from a computational point of view, the best choice for P is the identity
matrix, which simply translates the mapping into applying the vecI opera-
tor to the standard matrix logarithm. This also frees us from the problem
of optimizing the projection point for the specific data under consideration,
leading to a generally applicable descriptor.

Finally, the unordered set of feature vectors F can be described by a
Gaussian of local descriptors (GOLD), that is the concatenation of the mean
and the orthonormal projection of the covariance matrix.
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3.1. Normalization

In image classification systems, feature normalization techniques have
the potential to greatly decrease the error rate of the classification, and thus
increase the overall performance. When dealing with classifiers relaying on
dot-product (such as linear SVMs) there is some recent convergence on the
combined use of power normalization and unit length normalization using a
L2 metric [17, 2].

Power normalization consists in applying, to each dimension of the de-
scriptor, the function:

f(x) = sign(x)|x|α with 0 < α < 1. (9)

Perronnin et al. [17] justify the use of power normalization with the empiri-
cal observation that it has the ability of “unsparsifying” the representation,
making it suitable for dot-product similarity. A different interpretation is
provided in [33] where it is shown that applying the square root (a spe-
cial case of the power normalization with α = 0.5) is equivalent to employ
the Hellinger’s kernel (Bhattacharyya’s coefficient). Moreover Safadi and
Quénot [34] tested different normalization approaches and distance measures
on several image descriptors, and observed that power normalization consis-
tently leads to better performance. Moreover they optimized the α param-
eter for every descriptor and distance combination, and concluded that the
optimal value when using dot product is approximately 0.5.

Motivated by these results, we apply power normalization to the GOLD
vector, with α = 0.5. While α optimization could slightly improve the perfor-
mance, it would lead to a dataset-dependent tuning, again in contrast with
our purposes.

4. Weighted Spatial Pyramid of GOLD

A standard way of introducing weak geometry in a Bag of Words repre-
sentation is the use of spatial pyramids [6]. A spatial pyramid is a collection
of feature histograms computed over subregions defined by a multilevel recur-
sive image decomposition. At level zero, the decomposition consists of just a
single region, and the representation is equivalent to the feature histogram of
the entire image. At level one, the image is subdivided into four quadrants,
yielding four feature histograms, and so on. The concept has been extended
to several image representations by stacking the descriptors of every spatial
region in a single vector.
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Figure 3: Bilinear interpolation applied to the spatial pyramid. The images depict the
weights assigned to the local descriptors based on their positions with respect to the center
of the spatial region under consideration, in the case of a 2 × 2 regions (level one of the
spatial pyramid). The weights range from 1 (red) to 0 (blue). This means that a SIFT
descriptor placed on the border between two spatial regions will be equally considered for
both region descriptors.

However in this kind of representation the local features are hard-assigned
to only one subregion, making the representation sensitive to border effects.
For this reason, we follow an approach similar to [35], and apply a bilinear
interpolation to spatial pyramids. We compute the GOLD vector of each
region R, centered in (cx, cy) and with dimensions w×h, on the local features
that fall in the neighborhood R′ with dimensions 2w× 2h, again centered at
(cx, cy). A local feature f , computed at (x, y), is then weighted, with respect
to R, by

w(f , R) =

(
1− x− cx

w

)(
1− y − cy

h

)
. (10)

A visual representation of the weights assigned to different positions in the
case of a 2× 2 regions is provided in Fig. 3.

In the original spatial pyramid formulation [6], histogram intersection was
the kernel chosen to compare unnormalized BoW descriptors. This allowed
to identify matches at different levels, and remove matches at finer levels
(highly significant) from those at coarser ones (less significant). This led to
the usually adopted per-level weights of 0.25, 0.25, 0.5, from coarse to fine,
in a three levels pyramid. Later works tried to improve over the original pro-
posal by learning the level weights [36], or the single regions weights [37, 38].
Again, these solutions are tailored for a specific dataset and lack of gener-
ality. A different strategy is instead followed in HOG descriptors, and later
employed on the spatial pyramid by Harzallah et al. [39], that is independent
L2 normalization per region before constructing the final descriptor. This
solution was later confirmed as the best choice in [17] and in [2].

GOLD descriptors are extracted from the weighted set of local features
of every region, then they are power normalized. Finally, L2 normalization
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is employed, in order to avoid any learning step.

5. Mixture of GOLD

A possible extension of GOLD is to improve the model describing the local
descriptors probability distribution. A natural choice would be to employ a
Gaussian Mixture Model (GMM) instead of a single Gaussian. Unfortunately
this is not as straightforward as it might seem, since the comparison of two
GMMs would require the use of a complex kernel: the main problem for
comparing GMMs is how to choose which component should be compared to
whom, that is solving an assignment problem. The main advantage of GOLD
was exactly the ability of avoiding kernel computations for efficient learning.
We need a solution to perform a similar mapping leveraging a mixture of
Gaussians.

We propose to start from a K-components GMM, learned from the train-
ing set with the EM algorithm:

p(f |Θ) =
K∑
k=1

ωkN (f ;µk,Σk) (11)

where Θ = {ω1, µ1,Σ1, . . . , ωK , µK ,ΣK}. Similarly to what is done in soft
quantization schemes [12], we can partially assign features to the k-th GMM
component, according to the posterior probability for it:

Pr(k|f ,Θ) =
ωkN (f ;µk,Σk)∑K
j=1 ωjN (f ;µj,Σj)

(12)

It is now possible to build K multivariate Gaussian distributions from all
the image descriptors, weighting them with the posterior probability of the
k-th component. As in the maximization step of the EM algorithm, we
estimate the Gaussian distribution parameters of the k-th component with
the following equations:

mk =

∑N
i=1 fiPr(k|fi,Θ)∑N
i=1 Pr(k|fi,Θ)

, (13)

Ck =

∑N
i=1(fi −mk)(fi −mk)

TPr(k|fi,Θ)∑N
i=1 Pr(k|fi,Θ)

. (14)
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The newly obtained Gaussian distributions are related to the GMM com-
ponents originally estimated on the training set, but adapted to the specific
set of local features. Their parameters can thus be used as descriptors for the
local features distribution. As in Section 3 each Gaussian distribution can
be mapped to a GOLD descriptor, obtaining a tuple of K GOLD vectors.
These are then concatenated following the index of the corresponding GMM
component. This allows us to directly compare images using a dot product
operation, removing the need for non-linear kernel computations.

The concatenation of the K GOLD vectors is now our adapted projection
of the original mixture. We will refer to this extension as Mixture-GOLD.

It is important to note that while this allows to have a highly informative
descriptor for the feature space, it is based on a reference distribution (the
GMM), whose parameters have been estimated on a training set.

The proposed technique is thus able to easily move from a codebook
independent image description to a codebook based one, making it adaptable
to different contexts and usage scenarios.

6. Experimental results

In order to analyze the proposed approach in different scenarios, we
perform the experiments on five datasets: Caltech-101, Caltech-256, Im-
ageCLEF 2011, ImageCLEF 2013 and PASCAL VOC07 (Fig. 1). Caltech
datasets permit a wide comparison with a large number of techniques, while
the ImageCLEF and PASCAL VOC07 datasets allow analyzing our proposal
in less constrained and large-scale collections. In these two scenarios all the
reported experiments are obtained with the dataset independent GOLD de-
scriptor (single Gaussian) and the Mixture-GOLD descriptor showing the
flexibility of our solution. In all experiments, SIFT feature descriptors and
their color variations are extracted at four scales, defined by setting the width
of the spatial bins to 4, 6, 8, and 10 pixels over a dense regular grid with a
spacing of 3 pixels. We use the function vl phow provided by the vl feat

library [40] with default settings.
For larger datasets (Caltech-256, ImageCLEF 2011, ImageCLEF 2013),

we used the stochastic gradient descent (SGD) algorithm [41], introduced for
SVM classifiers training, because it is an online method and can be easily
parallelized to simultaneously train several classifiers. We randomize the
data on disk and we load the data in chunks which fit in memory. We then
train the classifiers on further randomizations of the chunks, so that different

14



0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

5 10 15 20 25 30

M
ea

n
 r

ec
og

n
it

io
n 

ra
te

 p
er

 c
la

ss

Number of training samples per class

P-GOLD (w/o power norm) P-GOLD WP-GOLD (w/o power norm) WP-GOLD

Figure 4: Performance of our approach on Caltech-101 for different settings, reported
with different number of training samples. P-Gold w/o power norm: the Gaussian
of local descriptors with the classical spatial pyramid procedure without the power nor-
malization. P-Gold: the Gaussian of local descriptors with the classical spatial pyramid
procedure with the power normalization. WP-GOLD (w/o) power norm: the Gaus-
sian of weighted local descriptors of every spatial region without the power normalization.
WP-GOLD: the Gaussian of weighted local descriptors of every spatial region with the
power normalization.

epochs (one training epoch is defined as providing all training samples to the
classifier once) will get the chunks data with different orderings.

The source code for the computation of our descriptors is publicly avail-
able for download to allow the community to reproduce our results1.

6.1. Caltech-101 and Caltech-256

The Caltech-101 dataset is one of the most commonly used dataset for
object recognition. It contains 9144 images from 101 object categories and
one background category. The object categories can be very complex but
a common viewpoint is chosen, with the object of interest at the center of
the image at a uniform scale. The number of images per category varies
from 31 to 800. The Caltech-256 dataset consists of 30,607 images divided

1http://imagelab.ing.unimore.it/files/GOLD_image_classification.zip

15



Table 1: Mean Recognition Rate per class on Caltech-101 when PCA is applied on SIFT
descriptors. D is the number of principal components considered.

PCA 30 Training

GOLD D=128 80.92

GOLD D=80 77.43

GOLD D=64 77.13

GOLD D=48 76.75

GOLD D=32 74.70

Table 2: Mean Recognition Rate per class using 30 images training for five runs on Caltech-
101.

Run 1 Run 2 Run 3 Run 4 Run 5 Average

GOLD 80.53 82.38 79.90 80.45 81.33 80.92

Mixture-GOLD 80.61 82.43 79.95 80.56 81.34 80.98

VLATONE [29] 76.39 77.38 74.61 75.08 76.56 76.00

VLAT [29] 78.58 80.24 78.50 78.31 78.77 78.88

HKM [33] 75.21 73.89 73.00 74.14 76.87 74.62

in 256 categories (with at least 80 images each). It presents a much higher
variability in object size, location, and pose with respect to Caltech-101.

For both datasets we follow their respective common experimental set-
tings: for Caltech-101 we randomly select 5, 10, 15, 20, 25, and 30 training
images and at most 50 testing images for each category (this results in 3,060
images for training and 2,995 for testing in the 30 images test); for Caltech-
256 we consider 30 and 60 training images and at most 50 for testing per
class. We report the Mean Recognition Rate per class, i.e. the results are
normalized based on the number of testing samples in that class and aver-
aged over five independent runs. In all the experiment on Caltech datasets
we extract SIFT descriptors, and images are analyzed with a 3 level pyramid,
respectively partitioned in 1× 1, 2× 2 and 4× 4 blocks.

The first experiment highlights the individual contribution of the mean
and the projected covariance to the performance of the GOLD descriptor on
Caltech-101 using 30 training images per class. The mean alone is obviously
a very poor representation and therefore achieves a Mean Recognition Rate
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Table 3: Comparison with the state-of-the-art for Caltech-101.

15 Training 30 Training

GOLD 73.39 80.92

Mixture-GOLD 73.46 80.98

Bo et al. [42] 60.50 73.86

Grauman et al. [43] 50.00 58.20

Jia et al. [44] - 75.30

Jiang et al. [45] 67.50 75.30

Liu et al. [46] - 74.21

C. Zhang et al. [47] 69.58 75.68

Tuytelaars et al. [48] 69.20 75.20

Wang et al. [13] 65.43 73.40

Yang et al. [49] 67.00 73.20

Carreira et al. [5] - 79.20

Lazebnik et al. [6] 56.40 64.60

Chatfield et al. [2] - 77.78

Duchenne et al. [50] 75.30 80.30

Zeiler et al. [51] 83.80 86.50

He et al. [52] - 93.42

of 30.19%, while the projected covariance obtains 80.83%. Concatenating the
mean and the covariance, also due to a very high difference in dimensionality,
slightly improves the performance, arriving to 80.92%.

Furthermore, to present the respective contributions of the power normal-
ization and descriptors weighting steps, we report in Fig. 4 the performance
gain given by these two procedures. Note that the Pyramidal-GOLD, i.e. the
Gaussian of local descriptors with the classical spatial pyramid procedure,
shows interesting results (P-GOLD w/o power norm), but the usage of the
power normalization (P-GOLD) enhances the accuracy of about three per-
centage points. A similar improvement is obtained by including the weighting
step (WP-GOLD w/o power norm). The combined use of both techniques
(WP-GOLD), that weights the SIFT descriptors based on their spatial dis-
tribution and applies power normalization, further improves the accuracy of
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about three percentage points. For simplicity, we will refer to this complete
solution as GOLD.

Although the GOLD achieves a very good performance, the dimension-
ality of the final descriptor is quite large. For this reason, in Table 1 we
present performance obtained by reducing the dimensionality of SIFT de-
scriptors with PCA. After an initial drop, the performance slightly decreases
until the dimensionality becomes 48, while for D = 32 we can observe a
second important drop. These results motivate our choice of maintaining
original (not reduced) SIFTs when using the single-Gaussian GOLD. How-
ever, when the Mixture-GOLD is employed, PCA becomes a necessary evil,
in order to still have a tractable descriptors size.

As pointed out by Chatfield et al. [2] several works present results on
the Caltech-101 dataset. However, missing details in the description of the
methods or different tuning of the various components often make a fair
comparison impossible. For this reason we firstly compare our method to
VLAT [29] (that is the most similar approach) and the recently proposed
approach by Vedaldi et al. [33], since they provide their code2. Results are
shown in Table 2. For all of these methods we use the same experimen-
tal settings (same local features, same spatial pyramid and same classifier).
For Mixture-GOLD and VLAT we use a codebook of 512 clusters (K=512)
and SIFT are compressed to 48 dimensions using PCA, following [29]. We
call VLATONE the VLAT descriptor with K=1 and SIFT without PCA com-
pression, that is directly comparable with our single-Gaussian GOLD. When
using a single cluster, the VLATONE descriptor describes the second order
variation with respect to the training set mean, and this suffers from the
lack of specificity with respect to the single image, but mostly from the lack
of the projection on the tangent space. Rising the number of clusters def-
initely reduces the gap with respect to our proposal, but both GOLD and
Mixture-GOLD show superior performance.

For completeness, Table 3 reports the results on Caltech-101 of several
recent approaches that are quite comparable to our method. All of these
use the same standard setting (15/30 samples for training, at most 50 for
testing), and SIFT descriptors captured with dense sampling.

In addition, we include the results of Chatfield et al. [2] and Duchenne et
al. [50] that rely on multiple features or test on a different number of images.

2http://www.vlfeat.org/applications/caltech-101-code.html

18



Table 4: Mean Recognition Rate per class for five runs on Caltech-101 using SGD algo-
rithm.

Epochs Run 1 Run 2 Run 3 Run 4 Run 5 Average

1 1.59 1.71 1.81 1.36 1.36 1.57

2 35.90 36.89 35.31 33.46 38.39 35.99

8 66.14 60.79 64.17 61.95 65.56 63.72

16 73.95 74.14 72.64 72.14 73.17 73.21

128 79.31 81.11 78.95 79.47 80.36 79.84

512 80.35 81.84 79.65 80.34 81.26 80.69

2048 80.56 82.30 79.70 80.50 81.27 80.87

4096 80.59 82.32 79.75 80.52 81.27 80.89

Finally, we report the latest results obtained with deep convolutional neural
networks presented in Zeiler et al. [51] and He et al. [52], which clearly
outperform every other traditional method, including ours.

The results reported for the Caltech-101 dataset were obtained with Lib-
SVM, a well known software package for batch SVMs solving. The adoption
of a batch solver was appropriate because feature data could entirely fit in
memory, due to the limited size of the dataset. In order to verify the ap-
plicability of on-line solvers, we also trained the SVM classifiers using the
SGD algorithm, starting from the public implementation provided by Leon
Bottou3. In Table 4 the Mean Recognition Rate over the five runs at differ-
ent number of training epochs is reported. Note that the results at the first
epoch are very low for all runs, but they rapidly increase after few epochs.
After 2048 epochs the SGD algorithm achieves good results, but only at 4096
epochs the SGD achieves the MRR score obtained with LibSVM (with a gap
of only 0.03%), proving the efficacy of the on-line solver.

Lastly, in this section we report the results obtained on Caltech-256, as
shown in Table 5. Since this dataset is larger than Caltech-101, for this
experiment we employed the SGD solver and similar to Caltech-101 we fix
the epochs equal to 4096. Also on this more challenging dataset, our method
shows very competitive performance with respect to several SIFT-based tech-

3http://leon.bottou.org/projects/sgd
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Table 5: Comparison with the-state-of-the-art for Caltech-256.

30 Training 60 Training

GOLD 43.89 49.41

Mixture-GOLD 44.21 50.11

Bo et al. [42] 30.50 37.60

Yang et al. [49] 34.00 40.10

van Gemert et al. [54] - 27.20

Perronnin et al. [17] 40.80 47.90

Tuytelaars et al. [48] 37.00 -

Wang et al. [13] 41.19 47.68

Duchenne et al. [50] 38.10 -

Cao et al. [53] 38.74 45.43

Zeiler et al. [51] 70.60 74.20

niques. Note also that the proposed approach obtains significantly better re-
sult than more complex techniques such as [50, 53]. As observed for Caltech-
101, the deep convolutional neural network approach [51] has a significant
advantage over all reported methods.

In both Caltech-101 and Caltech-256, the improvement in performance
given by the Mixture-GOLD over the GOLD is only of some decimal points.
We think that this behavior can be partially explained analyzing the charac-
teristics of the datasets: as firstly demonstrated by [6], in these datasets the
spatial pyramid is really effective, due to the homogeneous location and size
of the objects. A good description of the spatial regions is therefore crucial
to obtain a high recognition rate. The smaller the region, the stronger is the
assumption (on which GOLD is based) that local descriptors follow a (single)
Gaussian distribution, reducing the advantage of the GMM model used in
Mixture-GOLD.

6.2. ImageCLEF 2011

ImageCLEF 2011 Annotation Task dataset is composed of a training set
of 8000 images and a test set of 10000 images. The ImageCLEF 2011 photo
corpus is a challenging concept detection dataset (multiple labels per image)
due to its high heterogeneity of classes (see samples in Fig. 1). There are 99
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Figure 5: Cross validation results for choosing the parameter λ on the ImageCLEF 2011
dataset.

concepts, which are concrete objects such as “church” or “trees” as well as
more abstractly defined classes like “funny” or “unpleasant”.

On this dataset we extract RGBSIFT descriptors [10] at four scales (4,
6, 8, and 10 pixels respectively) over a dense regular grid with a spacing
of 3 pixels and, even in this case, we use the function vl phow. As spatial
pyramids we use 1× 1, 2× 2 and 3× 1. The Mean Average Precision (MAP)
is used to evaluate the performance.

With larger datasets such as ImageCLEF 2011, an on-line learning ap-
proach (in our case SGD) becomes the only possible choice on common PCs.
Only loading the entire training set in memory (8000 samples) occupies about
6GB, requiring to split the data in chunks.

To select an appropriate regularization parameter λ for the SGD solver,
we randomly split the training set in two and run the SGD varying λ from
10−3 to 10−7 in power of 10 steps. Based on this preliminary experiments
we fix λ = 10−5 (see Fig. 5). Furthermore Fig. 6 reports the results in term
of Mean Average Precision (MAP) at different number of training epochs.
Note that the performance increases until the 64th epoch obtaining a MAP
of 36.2, but thereafter the MAP tends to slightly decrease, probably due to
an over-fitting of the SVM on the training data. The experiments show that
is very difficult to predict the exact number of epochs necessary to reach the
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Figure 6: Mean Average Precision on ImageCLEF 2011 at different number of training
epochs.

best results, and that even if there is a relation with the number of training
samples and the size of the feature vectors, it is not a simple one. We found
that the best practice is to run a k-fold cross-validation on the training set,
which closely follow the final trend on the testing set.

Lastly we report in Table 6 a comparison with several techniques: in the
upper part of the table we directly compare our approach with Bag of Words
approaches (with linear and non-linear kernels) and very successful methods
that publicly share their code [33, 13]. All of these methods use the same
experimental settings (same local features, same spatial pyramid and same
SGD classifier). For the Bag of Words approaches we use 4000 visual words
since we observed that the performance tends to saturate at this codebook
size, while, for the other techniques, we use the values suggested by the au-
thors. In the table we also include the best run of the ImageCLEF workshop
that obtained a MAP of 38.8 [55]. However these authors used three different
color SIFT variations, different sampling strategies and improvements, and a
Multiple Kernel Learning approach. Moverover, their computations required
a cluster with 11,000 Core Units which had (according to cpubenchmark.net)
a speed rank of 134 in August 2011. Our tests were performed on a 12 cores
machine, which clearly limits the affordable computational effort. A more
comparable approach, from a computational requirements point of view, was
followed in [56], which used 7 color SIFT variations with both Harris and
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Table 6: Comparison with the-state-of-the-art for ImageCLEF 2011.

MAP

GOLD 36.20

Mixture-GOLD 37.65

BOW 25.06

BOW + Hellinger Kernel 33.87

Homogeneous Kernel Map [33] 34.72

Fisher Vectors 35.69

LLC [13] 34.12

Spyromitros-Xioufis et al. [56] 31.10

Binder et al. [55] 38.80

Dense sampling, leading to 14 separate classifiers per concept, combined
with late fusion (averaging). They obtained a MAP of 31.1, clearly showing
that the summarization properties of the GOLD and Mixture-GOLD repre-
sentations, computed with only the basic RGBSIFT, are able to beat the
description of the BoW approach.

6.3. ImageCLEF 2013

ImageCLEF 2013 Scalable Concept Image Annotation dataset is com-
posed by 250,000 training images, obtained by querying popular image search
engines (namely Google, Bing and Yahoo) when searching for words in the
English dictionary. It includes various precomputed visual feature descrip-
tors, extracted using the ColorDescriptor software [10], and textual features
extracted from the websites in which the images appeared. It also provides
a development and test sets of 1,000 and 2,000 images, respectively, both
manually annotated for 95 and 116 concepts [57]. The competition objective
is to develop systems that can easily change or scale the list of concepts used
for image annotation.

Two possible strategies have been identified: i) finding images similar to
the query, and from those extract the image concepts, leveraging the pro-
vided textual annotation; ii) directly using the textual annotation to roughly
annotate the training set and then for every concept building a classifier ap-
plicable to the query. In the competition it has been shown that the second
strategy largely outperforms the first one.
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Table 7: Evaluation of our method with different local descriptors on ImageCLEF 2013.

Descriptor Baseline GOLD Mixture-GOLD

SIFT 28.32 36.02 38.43

RGBSIFT 29.50 38.53 40.12

OPPONENTSIFT 30.31 37.84 39.72

We tested this dataset for several reasons: it consists of a very large
number of images; it is an unconstrained and challenging dataset, because
it has a high heterogeneity of classes (mixed professional and user-generated
content) and training images are not manually annotated.

In this experiment, following the second strategy, we compare our ap-
proach with SVM classifiers learned by the provided precomputed BoW [57].
Since the organizers computed the BoW features using a spatial pyramid of
1 × 1 and 2 × 2, we also used the same setting. In order to perform a fair
comparison, all the techniques use the same textual annotation to select the
image training set. Table 7 reports the performance in terms of MAP on
the development set using three different local descriptors: SIFT, RGBSIFT
and OPPONENTSIFT. It can be noted that our approach obtains superior
MAP values with all of the three features.

In our best run at the ImageCLEF 2013 workshop [58], images are de-
scribed using the GOLD descriptor computed on standard SIFT and on three
different color SIFT variations, combined with a late fusion averaging ap-
proach. In this run, textual analysis on the web pages containing training
images is also performed, to retrieve a relevant set of samples for learning
each concept classifier based on WordNet lexical database. This run obtained
the best result of the ImageCLEF 2013 workshop in terms of MAP: 45.6 (for
more detailed results see [57]4). Also in this dataset, the Mixture-GOLD is
able to further improve the performance of the GOLD descriptor, of about
1.5 MAP points.

6.4. PASCAL VOC07

The PASCAL VOC07 dataset is a challenging archive for image classi-
fication with 9963 image divided in 20 classes of objects. Images are taken

4http://imageclef.org/2013/photo/annotation/results
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from Flickr and have large variations in size, illumination, scale, and view-
point. Classification accuracy is measured using Mean Average Precision
(MAP) over the 20 classes following the common experimental protocol [2].
In this experiment we use the VLFeat library [40] that includes multiple en-
coding methods such as BOW, LLC, Super Vectors and Fisher Vectors. All
the tested methods use densely extracted multi-scale SIFT descriptors, and
images are partitioned with a 3 level pyramid: 1 × 1, 2 × 2 and 3 × 1. Fol-
lowing [2], for BOW and LLC the codebook size is set to 25000, for Super
Vectors it is set to 1024, while Fisher vectors uses a GMM with K = 256
components, after reducing the dimensionality of the SIFT descriptor to 80
by using PCA. Similarly, for the Mixture-GOLD (M-GOLD) we used a GMM
with K = 16 components and again a 80-dimensional PCA-SIFT.

Table 8 shows the performance of our method with respect to the other
approaches. Although this dataset is very challenging, without specializing
the GOLD image descriptor we are able to reach the performance of the BOW
technique, which on the contrary requires to learn a very large and specific
codebook. In order to achieve state of the art results, obtained by the Fisher
Vector technique, introducing dataset dependency with GMM modeling is
required. Moving from the GOLD to the Mixture-GOLD improves the per-
formance of 6 MAP points getting results comparable with Fisher Vectors.

Therefore, our solution enables the user to choose between a descriptor
which is effectively reusable when the image collection dynamically evolves,
and one that provides better performance, thanks to the specific dataset
characteristics.

7. Conclusions

In this paper we presented a new way to summarize local descriptors
by means of multivariate Gaussian distributions. While still providing the
possibility to include all the techniques which improve system performance,
such as spatial pyramids and power normalization, this allows to obtain an
image descriptor totally independent on the dataset. The experimental re-
sults show that the method achieves performance which are very competitive
with state-of-the art approaches on several well-known datasets. This solu-
tion could be also employed in many different situations in which the dataset
changes dynamically (for example in online services such as Flickr or Google
Images), still allowing to use the same feature vectors in different scenarios.
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Table 8: Comparison with the-state-of-the-art for PASCAL VOC07.

Class GOLD M -GOLD BOW LLC [13] SV [59] FV [17]

Aeroplane 76.45 77.58 67.29 71.35 74.32 78.97

Bicycle 58.26 65.57 55.22 62.65 63.79 67.43

Bird 41.14 51.75 36.58 46.12 47.02 51.94

Boat 70.51 76.39 64.42 68.98 69.44 70.92

Bottle 21.95 29.32 21.89 26.04 29.06 30.79

Bus 63.86 69.71 56.31 63.92 66.46 72.18

Car 75.02 78.16 72.90 76.98 77.31 79.97

Cat 61.02 63.12 52.11 59.71 60.18 61.35

Chair 52.09 54.12 51.51 53.96 50.19 55.98

Cow 36.96 47.70 38.23 46.34 46.46 49.61

Diningtable 48.51 58.35 46.50 52.10 51.86 58.40

Dog 36.33 46.27 34.99 42.39 44.07 44.77

Horse 78.01 79.98 74.62 77.17 77.85 78.84

Motorbike 65.19 69.63 60.71 67.15 67.12 70.81

Person 82.81 81.64 80.05 83.36 83.07 84.96

Pottedplant 19.75 30.28 18.79 23.11 27.56 31.72

Sheep 38.27 46.76 37.13 44.45 48.50 51.00

Sofa 47.75 59.41 50.22 52.12 51.10 56.41

Train 75.46 79.01 71.71 75.36 75.50 80.24

Tvmonitor 50.84 56.53 48.32 52.21 52.26 57.46

Mean 55.01 61.06 51.97 57.27 58.16 61.69
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Furthermore an extension to a mixture of Gaussians is proposed, enhanc-
ing the image description considering context information. Its discriminative
capability allows to boost classification results in specific scenarios.
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