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Abstract
Hexachlorobenzene (HCB) is a persistent environmental fungicide that may disrupt 

androgen regulation. The aim of this study was to investigate associations between 

HCB levels and biomarkers of male reproductive function. 589 spouses of pregnant 

women from Greenland, Poland and Ukraine were enrolled between 2002 and 2004. 

The men provided semen and blood samples and were interviewed. HCB was 

measured in serum by gas chromatography. The mean serum concentrations of HCB 

were higher in Ukraine (182.3 ng/g lipid) and Greenland (79.0 ng/g lipid) compared to 

Poland (14.2 ng/g lipid). Sex Hormone Binding Globulin (SHBG) and Free Androgen 

Index (FAI) were associated with HCB in men from Ukraine and Poland. 

This study spanning large differences in environmental HCB exposure levels shows a 

positive association for SHBG and negative association for FAI with high serum levels 

of HCB in fertile men, but without major consequences for semen quality and the Inuit 

study population.
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Highlights

 Very high levels of HCB were found in men from Ukraine and Greenland.

 Free androgen index was negatively associated with HCB in men from Ukraine 
and Poland.

 Sex hormone binding globulin was positively associated with HCB in men from 
Ukraine and Poland.

 HCB serum levels seem to have no influence on semen quality.

1. Introduction
Hexachlorobenzene (HCB), a chlorinated aromatic hydrocarbon, was in the past 

commonly used as a fungicide (1). In 1978-1981 the estimated worldwide production 

of pure HCB was 10,000 tons per year. The half-life of HCB in humans is between 4 

and 8 years (1) and because it bio-accumulates in fat, it is measurable in adipose tissue 

in a large percentage of investigated populations (2;3). HCB was listed for global ban 

under the Stockholm Convention on persistent organic pollutants (POPs) in 2001. 

Probably due to restrictions, the concentration of HCB is decreasing each year (4), but 

it is still found in the environment. Today, HCB is formed as a byproduct during the 

manufacture of other chemicals like solvents and pesticides (1). 

HCB belongs to the chemical class of organochlorines that also includes 

polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT) that 

have been associated with adverse reproductive outcomes and reduced fertility (5;6). 

HCB in low doses has been found to partially agonize androgen action, and in high 

doses to antagonize androgen action, in both in vivo and in vitro studies (7). 

Studies of HCB exposure and human reproductive function are sparse. HCB levels in 

fatty tissue in children have been associated with cryptorchidism (8), but not when 

HCB was evaluated in breast milk or maternal blood (9;10). Also, hypospadias in sons 

has been associated with maternal levels of HCB (11), these findings pointing to anti-
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androgenic in vivo effects at exposure concentrations encountered in the general 

population.

A study from 2013 investigating couple fecundity by time to pregnancy showed a 

significant negative fecundity odds ratio with serum HCB in females only, but the 

relation did not persist after adjustment for confounding factors (12). To our 

knowledge only two studies have investigated semen quality and HCB levels in humans 

(13;14). Both studies were based on assessment of HCB levels in infertility clients. The 

studies did not find higher levels of HCB among the men with poor semen quality 

compared to men with normal semen quality (13;14). Conflicting results have been 

obtained when associating serum levels of POPs, including HCB, and sex hormone 

levels in young and adult populations (15;16). The data on the link between HCB 

levels and male fertility and our knowledge on potential risk are limited. Therefore we 

aimed this study to investigate associations between HCB and biomarkers of 

reproductive function in a population of fertile men. 

2. Material and methods

This cross-sectional investigation of HCB exposure was nested within the larger study 

by Toft et al, 2005, designed to evaluate environmental contaminants and reproductive 

effects.  

The local ethics committees representing all participating populations approved the 

study. All subjects provided signed, informed consent.

Between May 2002 and February 2004, a total of 3,833 pregnant women and their 

male spouses were invited to participate in the study at their first antenatal care visit at 

19 local settlements in Greenland and hospitals in Warsaw, Poland or Kharkiv, 

Ukraine. In total 1,710 women agreed to participate (44.6%). For the male fertility 

study, 440 men from Greenland, 287 men from Poland and 257 from Ukraine were 

interviewed and gave blood samples. Consecutively, some 200 men from each site 

were enrolled in the semen study; in Greenland (n=196), Warsaw, Poland (n=190), and 

Kharkiv, Ukraine (n=203) (17). The women were on average 24, 24 and 33 weeks 

pregnant in Greenland, Ukraine and Poland, respectively. During the pregnancy the 

men provided semen and blood samples and were interviewed regarding lifestyle, 
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occupation and reproductive history. Thirteen men (n=3 from Greenland, n=7 from 

Poland and n=3 from Ukraine) had missing HCB observations due to insufficient 

serum for analysis, and were excluded leaving a final study sample for analysis of 589 

men. The 13 men excluded did not differ from the final study sample on regional 

demographics, hormones or semen characteristics. A detailed description of the parent 

study has previously been published (17).

2.1 Collection and analysis of semen samples

Participants were instructed to collect a semen sample by masturbation at their 

residence or in privacy in a room at the hospital after at least 48 hours of sexual 

abstinence. The sample was kept close to the body to maintain a temperature close to 

37°C when transported to the laboratory immediately after collection. After 

liquefaction, the sperm concentration was determined on two aliquots of diluted semen 

samples (1:10 or 1:20) using an Improved Neubauer Hemacytometer (Paul Marienfeld, 

Bad Mergentheim, Germany). Sperm cell motility was determined by counting the 

proportion of a) fast progressive sperm; b) slowly progressive sperm; c) local motile 

sperm; and d) immotile sperm on 100 spermatozoa within each of two fresh drops of 

semen (18). Sperm morphology was determined for all samples at the Reproductive 

Medicine Centre, Skåne University Hospital Malmö, on Papanicolaou-stained smears. 

All staff involved locally in analyzing semen parameters participated in two quality 

control workshops (17). Sperm morphology was determined for all research sites at 

the Reproductive Medicine Centre, Skåne University Hospital Malmö, on 

Papanicolaou-stained smears. All semen analyses followed the recommendations by the 

World Health Organization (WHO) 1999.

One hundred and sixteen of the Greenlandic semen samples were collected up to one 

year after enrollment, where the interview and blood sampling occurred, since the 

laboratory was not available at the time of enrollment.

DNA damage was measured by sperm chromatin structure assay (SCSA) following a 

strictly standardized procedure described in (19). SCSA is a flow cytometric (FCM) 

technique which uses acridine orange as a DNA specific metachromatic fluorescent 

probe to discriminate between denaturated (red fluorescence, single stranded) and 

native (green fluorescence, double stranded) DNA regions. The sperm fraction with 

abnormal chromatin packaging and DNA breaks is characterized by an increased 
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susceptibility to acid-induced DNA denaturation in situ and is reported as the DFI 

(DNA Fragmentation Index). All SCSA analyses were performed at the Laboratory of 

Toxicology, ENEA Casaccia (Rome, Italy). A total of 20,000 sperm were analyzed for 

each sample. Inter-day SCSA coefficient of variation (CV) of the %DFI was 6%. The 

median inter-sample CV for %DFI was 1.5% (20). Further details are described 

elsewhere (21).

Strand breaks in DNA were determined using the terminal deoxynucleotidyl 

transferase-driven dUTP nick end labelling (TUNEL) assay and analyzed using an 

Epics XL FCM (Beckman Coulter, Fullerton, CA, USA) as described earlier (22). The 

intra-laboratory CV was under 5% (22). Frozen semen samples were shipped on dry 

ice to Polytechnic University of March, Ancona in Italy, for the TUNEL analysis. The 

pro- (Fas) and anti- (Bcl-xL) apoptotic markers on spermatozoa were measured at the 

same FCM facility in Ancona, Italy. To detect Fas on spermatozoa, incubation with 

anti-Fas primary monoclonal antibodies was followed by a goat anti-mouse IgG-FITC 

conjugated secondary antibodies treatment, an indirect immunofluorescence. Whereas 

for Bcl-xL assessment, the primary monoclonal antibody anti-Bcl-xL was detected by a 

goat anti-mouse IgG-PE conjugated. Details are described in depth elsewhere (22). 

20,000 sperm cells were analyzed using flow cytometry. The intra-laboratory CV 

regarding the apoptotic markers was in the range from 6% for Fas and 9% for Bcl-

xL (22).

2.2 Collection of blood samples

Venous blood samples were collected within one week of the semen collection for all 

men in Poland and Ukraine, except for 116 of the Greenlandic samples. The blood 

samples were centrifuged immediately after collection and sera were stored at −80°C 

for later analysis.

2.3 Determination of reproductive hormones

All assays were performed at Dept. of Clinical Chemistry, Laboratory Division, Skåne 

County, Malmö, Sweden. Serum concentrations of luteinizing hormone (LH), follicle-

stimulating hormone (FSH) and estradiol (E2) were analyzed with immunofluorometric 

techniques using the UniCel DxI 800 Beckman Access Immunoassay system (Chaska, 

MN, USA). The total assay CV were 2.6%, 2.9% and 8.1%, respectively, with lower 

limits of detection (LODs) for the assays of 0.2 IU/L, 0.2 IU/L, and 8.0 pmol/L, 
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respectively. Serum testosterone levels were measured by means of a competitive 

immunoassay (Access; Beckman Coulter Inc., Fullerton, CA, USA) with a LOD of 

0.35 nmol/L and total assay CV of 2.8% at 2.9 nmol/L and 3.2% at 8.1 nmol/L. SHBG 

concentrations were measured using a fluoro-immunoassay (Immulite 2000; 

Diagnostic Products Corporation, Los Angeles, CA, USA). The LOD was 

0.02 nmol/L. The total assay CVs were 5.5% and 4.6%, respectively. Inhibin B levels 

were assessed using a specific immunometric method, as previously described, with a 

detection limit of 15 ng/L and intra-assay and total assay CVs < 7% (23). Free 

Androgen Index (FAI) was calculated by dividing total testosterone by SHBG, 

multiplied by 100. We converted estradiol pmol/L to estradiol pg/L, and testosterone 

nmol/L to ng/dL for calculation of the testosterone estradiol ratio (T/E2). Finally, we 

calculated the testosterone/LH ratio (T/LH).

2.4 Determination of HCB

The analyses of HCB were performed as described by Rignell-Hydbom et al. (2012). 

Briefly, the HCB was extracted from the serum by solid phase extraction (Isolute 

ENV+) using on-column degradation of the lipids and analysis by gas chromatography 

mass spectrometry. C13-labeled HCB was used as an internal standard. The LOD was 

defined as the concentration corresponding to three times the standard deviation of the 

ratio between the blank area and the area of the internal standard and found to be 0.01 

ng/mL. The reproducibility was determined by analyses of an in-house quality control 

(QC) sample containing 0.12 ng/mL. The QC sample was analyzed in each sample 

batch and the coefficient of variation was found to be 11% (24). The laboratory 

participates in the Erlangen Round Robin inter-laboratory control program for HCB 

with results within the tolerance limit.

2.5 Statistical methods

We used general linear models to analyze associations between serum concentrations 

of HCB and those of reproductive hormones as well as with measures of semen 

quality. The exposure, HCB, was considered as continuous variable, but also 

categorized according to three percentiles (<25th, 25-75th >75th). HCB values <LOD 

were imputed by the maximum likelihood single imputation method (25). 

The outcome variables, %DFI, %TUNEL, Fas, Bcl-xL, total sperm count, sperm 
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concentration, volume, motility, morphology, testosterone, estradiol, inhibin B, FSH, 

LH, FAI, T/E2 ratio, T/LH ratio and SHBG were analyzed using continuous scales.

The concentrations of HCB differed significantly in the three study regions, Greenland, 

Poland and Ukraine, and therefore we stratified the analyses on regions. In multivariate 

models investigating reproductive hormones, we included serum lipids, season of 

blood collection, body mass index (BMI), age and cotinine in serum as potential 

confounders. In models investigating semen parameters we furthermore adjusted for 

spillage during semen sampling, genital infections and testicular disorders as well as 

sexual abstinence time. The confounders were selected based on a priori

considerations of their role as known or potential risk factors. 

To present an overview of crude associations we used Spearman’s correlation to 

establish correlation between HCB and biomarkers of reproductive function, including 

the outcomes mentioned above as well as age, BMI and total serum lipids.

To improve normality and homogeneity of variance we transformed all outcome 

variables and HCB by the natural logarithm since data was not normally distributed. 

For the linear regression models, the beta coefficient can be interpreted as the 

percentage change in the dependent variable by one percent increase in the independent 

variable.

Due to significant heterogeneity in different regions of Greenland, we performed sub-

analysis where we divided the participating cities in Greenland into four areas: Capital 

city (Nuuk), North (Ilulissat, Qeqertarsuag, Sisimut, Maniitsoq), South (Nanortalik, 

Qaqortoq, Narsaq, Paarmiut) and East (Tasiilaq and Kuummiut) and extracted data 

from the two areas in Greenland (East and North Greenland) with the highest HCB 

concentrations and investigated HCB according to the outcomes. 

Statistical analysis of the data was performed with SAS software, version 9.3 for 

Windows (SAS Institute Inc., Cary, NC, USA).

3. Results

In Poland 20.5% (n=39) of the HCB concentrations were below LOD; all serum 
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samples from Greenland and Ukraine had HCB concentrations above the LOD. 

Demographics, seminal characteristics, reproductive hormones and concentrations of 

HCB are shown in Table 1.

The mean concentration of HCB was significantly lower in Poland (14.2 ng/g lipid) 

compared to Ukraine (182.3 ng/g lipid) and Greenland (79.0 ng/g lipid) (Table 1). 

Within Greenland the Eastern part had the highest HCB concentration (n=23, mean=

140.2 (18.6-862.6) ng/g lipid) followed by the North (n=79, mean=84.7 (14.7-255.0) 

ng/g lipid), the capital (n=58, mean=60.6 (2.5-257.1) ng/g lipid) and the Southern part 

(n=34, mean=56.5 (16.4-145.2) ng/g lipid), data not shown. 

3.1 Bivariate relationships for HCB

We found significant negative correlations between HCB and semen volume in men 

from Greenland (ρ=-0.15), HCB and estradiol and FAI in men from Ukraine (ρ=-0.16 

and ρ=-0.21, respectively) and HCB and inhibin B in Polish men (ρ=-0.20) (Table 2). 

The Spearman correlations also revealed a negative correlation between HCB and 

BMI and estradiol in Ukrainian men only, whereas we found positive correlations 

between HCB and total serum lipids in men from Ukraine and Poland. Age was 

positively correlated to HCB in Greenland and Poland but not in the younger Ukraine 

population (Table 2). 

3.2 Results from multiple regression analysis

HCB was not associated with any of the measured outcomes when analyzed as 

categorized parameter (data not shown). The anti-apoptotic marker Bcl-xL was 

positively associated with HCB, but only in men from Poland and only in the adjusted 

model (logß (95%CI) = 0.80(0.12;1.47), p=0.02). FAI was negatively associated with 

HCB in men from Ukraine and Poland, corresponding to decreases in FAI of 0.09% 

(p=0.01) and 0.10% (p=0.08) when serum HCB levels increased one percent, 

respectively. In Ukrainian and Polish men SHBG was positively associated with HCB 

serum levels. In men from Ukraine or Poland, one percent increase in HCB was 

associated with a 0.07% (p=0.04) or 0.11% (p=0.09) increase in SHBG, respectively. 

No associations emerged in the adjusted model for other reproductive hormones or 

semen quality measures (Table 3).   

9



We did not observe associations between HCB and any of the outcomes in the two 

areas in Greenland with the highest HCB concentrations (East and North, n=102, mean 

HCB=96.5, median=67.0 ng/g lipid) (data not shown). 

4. Discussion 

To the best of our knowledge, this is the first population-based study of relatively high 

environmental HCB exposure and male reproductive function including semen quality 

and reproductive hormones. Men from Ukraine, which were the men with the highest 

HCB serum levels, had lower estradiol at higher HCB serum levels, but this finding did 

not persist after adjustment for lipids (p=0.08). However, in adjusted models, SHBG 

was positively associated with HCB in men from Ukraine and was borderline 

significant (logβ=0.11, p=0.09) in men from Poland, but not significant in men from 

Greenland. There can be several reasons for a positive association between HCB and 

SHBG including anti-androgenic, estrogenic, or thyroid hormone effects or it could be 

due to high BMI which has previously been reported to be associated with low SHBG 

(26). Both BMI and estradiol were correlated to HCB in Ukrainian men. To 

investigate if the association was due to BMI or estradiol we adjusted for these two 

covariates in the SHBG and HCB analysis and the association remained, suggesting the 

association was probably not driven by BMI or estradiol. Previously, we have 

investigated serum levels of the PCB congener CB-153 and the main DDT metabolite, 

1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p´-DDE) in the same study 

populations (22;27). They both belong to the same chemical class of organochlorines 

as HCB and might have similar mode of action. Like for HCB, CB-153 was positively 

associated with SHBG in Europeans only (ß=2.1, 95%CI=0.7;35). CB-153 was also 

found to be negatively associated with free testosterone in Europeans (ß=-0.05, 95%

CI=-0.08;-0.02) (27). FAI, which is a proxy for unbound testosterone in serum (28), 

was negatively associated with HCB in our study. This fits with the SHBG finding, 

since high SHBG is associated with low free testosterone. Thyroid hormones increase 

hepatic SHBG production (29). A study of 341 men recruited from an infertility clinic 

reported an inverse association between T3 and HCB (30), whereas a study of 110 

Swedish fishermen did not show association between thyroid hormones and HCB (31). 

HCB has been associated with cryptorchidism (8) and hypospadias (11), which points 
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to anti-androgenic effects, therefor the positive association between SHBG and HCB 

found in our study might be an anti-androgenic effect. Therefore, the results might 

indicate hormone-like activity of some POPs in Caucasian populations.

Men from Poland had the lowest HCB concentration of the three study sites, but they 

exhibited higher levels of the anti-apoptotic marker Bcl-xL at higher levels of serum 

HCB after adjustment for potential confounders. On the other hand, sperm apoptotic 

markers were not associated with HCB for the Greenland and Ukraine populations, so 

the finding for Polish men was likely a chance finding due to multiple comparisons. 

Our population-based findings in male spouses of pregnant women are inconsistent 

with some but not all previous studies. Ferguson et al. (2012) investigated 341 male 

partners, aged 18–51, in subfertile couples seeking infertility evaluation and treatment 

(median HCB level was 14.9 ng/g lipid). These authors observed lower SHBG, 

testosterone and free testosterone at higher serum HCB levels, but only when 

unadjusted for lipids. In contrast, Dhooge et al. (2011), in a population of male 

adolescents (median age of 14.8 years), found positive associations between serum

HCB (standardized by lipid) and estradiol, testosterone, free testosterone and the T/E2

ratio (median HCB level was 22.8 ng/g lipid). These contradicting results can be due 

to different study populations. Most studies investigating HCB and semen quality have 

largely shown no significant associations, consistent with our results (12-14;16;31;32). 

The median exposure level of men from Poland in our study was similar or slightly 

lower compared to other studies that have investigated lipid standardized HCB 

(15;16;30;32). The Polish men had the lowest serum HCB in our study, almost 13 fold 

lower than the Ukrainian men, which might be the reason for the borderline significant 

results compared to the significant results in the highly exposed Ukrainian men. We did 

not observe relationships between SHBG, FAI and HCB in men from Greenland, 

although they were the study population with the second highest HCB serum levels. 

Due to genetic differences, Inuit might be affected differently than the two European 

study populations. 

HCB is highly lipophilic and serum lipid levels vary between fasting and non-fasting 

status, a correction for serum lipids is needed for the valid interpretation of serum 

HCB levels. Since other studies have reported HCB levels after standardizing for lipids 

(HCB ng/g lipids) we did the same, as shown in Table 1, to allow our results to be 
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comparable with those from other studies. In a simulation study, Schisterman et al. 

(2005) evaluated four statistical models showing that the lipophilic compound PCB, 

standardized by serum lipids as an independent variable, was highly prone to bias 

(weaker associations due to measurement error), a result also shown by others in the 

analysis of HCB (16;30;33). Therefore, we adjusted for total serum lipids as a 

covariate instead of standardizing the HCB by lipids. 

As expected, total serum lipids and age were positively correlated with HCB in our 

study, which is in agreement with results from others (13;14). Because HCB has a long 

half-life, is lipophilic, accumulates in fat and the production of HCB has decreased with 

time, it has been found at higher concentrations in elderly and/or obese populations 

(34;35). We found a negative correlation between HCB and BMI in men from 

Ukraine, which did not fit expectations and might be a chance finding. 

In this study HCB serum levels were highest in men from Ukraine, probably due to an 

excessive use of pesticides in the former Soviet Union (36), followed by men from 

Greenland. HCB levels have previously been found to be higher in Canadian Inuit 

compared to other inhabitants in the Arctic Canada, possibly because of their higher 

marine food intake especially from fatty fish and mammals (37). In a study 

investigating dietary contaminants in Northern Greenland in 1976 and 2004, the levels 

of HCB among Inuit consuming traditional food was measured (38). Even though 

today’s Inuit consumption of traditional food is less than in the 1970’s, the levels of 

HCB were higher in the samples from 2004. This indicates that the relative 

contamination levels in the local food products have increased from 1976 to 2004, 

probably due to the long half-life and lifelong bioaccumulation (38). Looking at the 

four Greenland sub-regions, we observed higher serum concentrations of HCB in men 

from Eastern and Northern Greenland compared to the capital and the Southern 

region. One reason might be the different life styles in different areas of Greenland. In 

the East and the North Greenland, the inhabitants live a more traditional life with high 

marine food consumption, especially seals, whereas in Nuuk, the capital city, the 

population, in particular the youn nger population, consumes more imported food 

(39;40).

The participation rate of the parent study was low with only 44.6%pregnant women 

participating. This was a consequence of the recruitment procedure in Ukraine, where 
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the contact between the participants and the project team was handled by many 

medical doctors. A sub-sample of 605 non-participating Ukrainian women was 

interviewed regarding demographic and reproductive information. Only age differed 

between participating and non-participating women with the latter being of slightly 

lower age. The men who did not accept the invitation did not differ from the 

participating men with regard to their wives’ time to pregnancy (17). 

The HCB concentrations varied substantially between the three study sites. HCB in 

serum was measured at the same laboratory by the same person, thus the HCB 

concentrations would not be expected to be biased because of inter-observer or –

laboratory variation. Further, samples from the three countries were analyzed randomly 

across time, thus systematic differences related to season, equipment or batches are not 

expected. 

In the Greenlandic study population 116 out of the 196 semen samples were collected 

up to one year after enrollment, whereas blood samples were drawn at enrollment. We 

do not believe this to bias the associations since no seasonal variations were found for 

HCB in Greenland, and due to the  long half-life of HCB (4 to 8 years), a measurement 

on serum sample can be considered a good proxy of the exposure level within a year. If 

bias did occur, the estimate would most likely be biased toward the null hypothesis 

since the misclassification of HCB would have been non-differential with respect to the 

outcome.  

5. Conclusions

Our findings indicate that SHBG and FAI might be associated with high environmental 

exposure levels of HCB in proven fertile men of European populations, whereas 

relatively high HCB serum levels seem to have no influence on semen quality. 
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1. Introduction
Hexachlorobenzene (HCB), a chlorinated aromatic hydrocarbon, was in the past 

commonly used as a fungicide (1). In 1978-1981 the estimated worldwide production 

of pure HCB was 10,000 tons per year. The half-life of HCB in humans is between 4 

and 8 years (1) and because it bio-accumulates in fat, it is measurable in adipose tissue 

in a large percentage of investigated populations (2;3). HCB was listed for global ban 

under the Stockholm Convention on persistent organic pollutants (POPs) in 2001. 

Probably due to restrictions, the concentration of HCB is decreasing each year (4), but 

it is still found in the environment. Today, HCB is formed as a byproduct during the 

manufacture of other chemicals like solvents and pesticides (1). 

HCB belongs to the chemical class of organochlorines that also includes 

polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT) that 

have been associated with adverse reproductive outcomes and reduced fertility (5;6). 

HCB in low doses has been found to partially agonize androgen action, and in high 

doses to antagonize androgen action, in both in vivo and in vitro studies (7). 

Studies of HCB exposure and human reproductive function are sparse. HCB levels in 

fatty tissue in children have been associated with cryptorchidism (8), but not when 

HCB was evaluated in breast milk or maternal blood (9;10). Also, hypospadias in sons 

has been associated with maternal levels of HCB (11), these findings pointing to anti-

androgenic in vivo effects at exposure concentrations encountered in the general 

population.

A study from 2013 investigating couple fecundity by time to pregnancy showed a 

significant negative fecundity odds ratio with serum HCB in females only, but the 

relation did not persist after adjustment for confounding factors (12). To our 

knowledge only two studies have investigated semen quality and HCB levels in humans 

(13;14). Both studies were based on assessment of HCB levels in infertility clients. The 

studies did not find higher levels of HCB among the men with poor semen quality 

compared to men with normal semen quality (13;14). Conflicting results have been 

obtained when associating serum levels of POPs, including HCB, and sex hormone 

levels in young and adult populations (15;16). The data on the link between HCB 

levels and male fertility and our knowledge on potential risk are limited. Therefore we 
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aimed this study to investigate associations between HCB and biomarkers of 

reproductive function in a population of fertile men. 

2. Material and methods

This cross-sectional investigation of HCB exposure was nested within the larger study 

by Toft et al, 2005, designed to evaluate environmental contaminants and reproductive 

effects.  

The local ethics committees representing all participating populations approved the 

study. All subjects provided signed, informed consent.

Between May 2002 and February 2004, a total of 3,833 pregnant women and their 

male spouses were invited to participate in the study at their first antenatal care visit at 

19 local settlements in Greenland and hospitals in Warsaw, Poland or Kharkiv, 

Ukraine. In total 1,710 women agreed to participate (44.6%). For the male fertility 

study, 440 men from Greenland, 287 men from Poland and 257 from Ukraine were 

interviewed and gave blood samples. Consecutively, some 200 men from each site 

were enrolled in the semen study; in Greenland (n=196), Warsaw, Poland (n=190), and 

Kharkiv, Ukraine (n=203) (17). The women were on average 24, 24 and 33 weeks 

pregnant in Greenland, Ukraine and Poland, respectively. During the pregnancy the 

men provided semen and blood samples and were interviewed regarding lifestyle, 

occupation and reproductive history. Thirteen men (n=3 from Greenland, n=7 from 

Poland and n=3 from Ukraine) had missing HCB observations due to insufficient 

serum for analysis, and were excluded leaving a final study sample for analysis of 589 

men. The 13 men excluded did not differ from the final study sample on regional 

demographics, hormones or semen characteristics. A detailed description of the parent 

study has previously been published (17).

2.1 Collection and analysis of semen samples

Participants were instructed to collect a semen sample by masturbation at their 

residence or in privacy in a room at the hospital after at least 48 hours of sexual 

abstinence. The sample was kept close to the body to maintain a temperature close to 

37°C when transported to the laboratory immediately after collection. After 
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liquefaction, the sperm concentration was determined on two aliquots of diluted semen 

samples (1:10 or 1:20) using an Improved Neubauer Hemacytometer (Paul Marienfeld, 

Bad Mergentheim, Germany). Sperm cell motility was determined by counting the 

proportion of a) fast progressive sperm; b) slowly progressive sperm; c) local motile 

sperm; and d) immotile sperm on 100 spermatozoa within each of two fresh drops of 

semen (18). Sperm morphology was determined for all samples at the Reproductive 

Medicine Centre, Skåne University Hospital Malmö, on Papanicolaou-stained smears. 

All staff involved locally in analyzing semen parameters participated in two quality 

control workshops (17). Sperm morphology was determined for all research sites at 

the Reproductive Medicine Centre, Skåne University Hospital Malmö, on 

Papanicolaou-stained smears. All semen analyses followed the recommendations by the 

World Health Organization (WHO) 1999.

One hundred and sixteen of the Greenlandic semen samples were collected up to one 

year after enrollment, where the interview and blood sampling occurred, since the 

laboratory was not available at the time of enrollment.

DNA damage was measured by sperm chromatin structure assay (SCSA) following a 

strictly standardized procedure described in (19). SCSA is a flow cytometric (FCM) 

technique which uses acridine orange as a DNA specific metachromatic fluorescent 

probe to discriminate between denaturated (red fluorescence, single stranded) and 

native (green fluorescence, double stranded) DNA regions. The sperm fraction with 

abnormal chromatin packaging and DNA breaks is characterized by an increased 

susceptibility to acid-induced DNA denaturation in situ and is reported as the DFI 

(DNA Fragmentation Index). All SCSA analyses were performed at the Laboratory of 

Toxicology, ENEA Casaccia (Rome, Italy). A total of 20,000 sperm were analyzed for 

each sample. Inter-day SCSA coefficient of variation (CV) of the %DFI was 6%. The 

median inter-sample CV for %DFI was 1.5% (20). Further details are described 

elsewhere (21).

Strand breaks in DNA were determined using the terminal deoxynucleotidyl 

transferase-driven dUTP nick end labelling (TUNEL) assay and analyzed using an 

Epics XL FCM (Beckman Coulter, Fullerton, CA, USA) as described earlier (22). The 

intra-laboratory CV was under 5% (22). Frozen semen samples were shipped on dry 

ice to Polytechnic University of March, Ancona in Italy, for the TUNEL analysis. The 

pro- (Fas) and anti- (Bcl-xL) apoptotic markers on spermatozoa were measured at the 
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same FCM facility in Ancona, Italy. To detect Fas on spermatozoa, incubation with 

anti-Fas primary monoclonal antibodies was followed by a goat anti-mouse IgG-FITC 

conjugated secondary antibodies treatment, an indirect immunofluorescence. Whereas 

for Bcl-xL assessment, the primary monoclonal antibody anti-Bcl-xL was detected by a 

goat anti-mouse IgG-PE conjugated. Details are described in depth elsewhere (22). 

20,000 sperm cells were analyzed using flow cytometry. The intra-laboratory CV 

regarding the apoptotic markers was in the range from 6% for Fas and 9% for Bcl-

xL (22).

2.2 Collection of blood samples

Venous blood samples were collected within one week of the semen collection for all 

men in Poland and Ukraine, except for 116 of the Greenlandic samples. The blood 

samples were centrifuged immediately after collection and sera were stored at −80°C 

for later analysis.

2.3 Determination of reproductive hormones

All assays were performed at Dept. of Clinical Chemistry, Laboratory Division, Skåne 

County, Malmö, Sweden. Serum concentrations of luteinizing hormone (LH), follicle-

stimulating hormone (FSH) and estradiol (E2) were analyzed with immunofluorometric 

techniques using the UniCel DxI 800 Beckman Access Immunoassay system (Chaska, 

MN, USA). The total assay CV were 2.6%, 2.9% and 8.1%, respectively, with lower 

limits of detection (LODs) for the assays of 0.2 IU/L, 0.2 IU/L, and 8.0 pmol/L, 

respectively. Serum testosterone levels were measured by means of a competitive 

immunoassay (Access; Beckman Coulter Inc., Fullerton, CA, USA) with a LOD of 

0.35 nmol/L and total assay CV of 2.8% at 2.9 nmol/L and 3.2% at 8.1 nmol/L. SHBG 

concentrations were measured using a fluoro-immunoassay (Immulite 2000; 

Diagnostic Products Corporation, Los Angeles, CA, USA). The LOD was 

0.02 nmol/L. The total assay CVs were 5.5% and 4.6%, respectively. Inhibin B levels 

were assessed using a specific immunometric method, as previously described, with a 

detection limit of 15 ng/L and intra-assay and total assay CVs < 7% (23). Free 

Androgen Index (FAI) was calculated by dividing total testosterone by SHBG, 

multiplied by 100. We converted estradiol pmol/L to estradiol pg/L, and testosterone 

nmol/L to ng/dL for calculation of the testosterone estradiol ratio (T/E2). Finally, we 
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calculated the testosterone/LH ratio (T/LH).

2.4 Determination of HCB

The analyses of HCB were performed as described by Rignell-Hydbom et al. (2012). 

Briefly, the HCB was extracted from the serum by solid phase extraction (Isolute

ENV+) using on-column degradation of the lipids and analysis by gas chromatography 

mass spectrometry. C13-labeled HCB was used as an internal standard. The LOD was 

defined as the concentration corresponding to three times the standard deviation of the 

ratio between the blank area and the area of the internal standard and found to be 0.01 

ng/mL. The reproducibility was determined by analyses of an in-house quality control 

(QC) sample containing 0.12 ng/mL. The QC sample was analyzed in each sample 

batch and the coefficient of variation was found to be 11% (24). The laboratory 

participates in the Erlangen Round Robin inter-laboratory control program for HCB 

with results within the tolerance limit.

2.5 Statistical methods

We used general linear models to analyze associations between serum concentrations 

of HCB and those of reproductive hormones as well as with measures of semen 

quality. The exposure, HCB, was considered as continuous variable, but also 

categorized according to three percentiles (<25th, 25-75th >75th). HCB values <LOD 

were imputed by the maximum likelihood single imputation method (25). 

The outcome variables, %DFI, %TUNEL, Fas, Bcl-xL, total sperm count, sperm 

concentration, volume, motility, morphology, testosterone, estradiol, inhibin B, FSH, 

LH, FAI, T/E2 ratio, T/LH ratio and SHBG were analyzed using continuous scales.

The concentrations of HCB differed significantly in the three study regions, Greenland, 

Poland and Ukraine, and therefore we stratified the analyses on regions. In multivariate 

models investigating reproductive hormones, we included serum lipids, season of 

blood collection, body mass index (BMI), age and cotinine in serum as potential 

confounders. In models investigating semen parameters we furthermore adjusted for 

spillage during semen sampling, genital infections and testicular disorders as well as 

sexual abstinence time. The confounders were selected based on a priori

considerations of their role as known or potential risk factors. 
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To present an overview of crude associations we used Spearman’s correlation to 

establish correlation between HCB and biomarkers of reproductive function, including 

the outcomes mentioned above as well as age, BMI and total serum lipids.

To improve normality and homogeneity of variance we transformed all outcome 

variables and HCB by the natural logarithm since data was not normally distributed. 

For the linear regression models, the beta coefficient can be interpreted as the 

percentage change in the dependent variable by one percent increase in the independent 

variable.

Due to significant heterogeneity in different regions of Greenland, we performed sub-

analysis where we divided the participating cities in Greenland into four areas: Capital 

city (Nuuk), North (Ilulissat, Qeqertarsuag, Sisimut, Maniitsoq), South (Nanortalik, 

Qaqortoq, Narsaq, Paarmiut) and East (Tasiilaq and Kuummiut) and extracted data 

from the two areas in Greenland (East and North Greenland) with the highest HCB 

concentrations and investigated HCB according to the outcomes. 

Statistical analysis of the data was performed with SAS software, version 9.3 for 

Windows (SAS Institute Inc., Cary, NC, USA).

3. Results

In Poland 20.5% (n=39) of the HCB concentrations were below LOD; all serum 

samples from Greenland and Ukraine had HCB concentrations above the LOD. 

Demographics, seminal characteristics, reproductive hormones and concentrations of 

HCB are shown in Table 1.

The mean concentration of HCB was significantly lower in Poland (14.2 ng/g lipid) 

compared to Ukraine (182.3 ng/g lipid) and Greenland (79.0 ng/g lipid) (Table 1). 

Within Greenland the Eastern part had the highest HCB concentration (n=23, mean=

140.2 (18.6-862.6) ng/g lipid) followed by the North (n=79, mean=84.7 (14.7-255.0) 

ng/g lipid), the capital (n=58, mean=60.6 (2.5-257.1) ng/g lipid) and the Southern part 

(n=34, mean=56.5 (16.4-145.2) ng/g lipid), data not shown. 

3.1 Bivariate relationships for HCB
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We found significant negative correlations between HCB and semen volume in men 

from Greenland (ρ=-0.15), HCB and estradiol and FAI in men from Ukraine (ρ=-0.16 

and ρ=-0.21, respectively) and HCB and inhibin B in Polish men (ρ=-0.20) (Table 2). 

The Spearman correlations also revealed a negative correlation between HCB and 

BMI and estradiol in Ukrainian men only, whereas we found positive correlations 

between HCB and total serum lipids in men from Ukraine and Poland. Age was 

positively correlated to HCB in Greenland and Poland but not in the younger Ukraine 

population (Table 2). 

3.2 Results from multiple regression analysis

HCB was not associated with any of the measured outcomes when analyzed as 

categorized parameter (data not shown). The anti-apoptotic marker Bcl-xL was 

positively associated with HCB, but only in men from Poland and only in the adjusted 

model (logß (95%CI) = 0.80(0.12;1.47), p=0.02). FAI was negatively associated with 

HCB in men from Ukraine and Poland, corresponding to decreases in FAI of 0.09% 

(p=0.01) and 0.10% (p=0.08) when serum HCB levels increased one percent, 

respectively. In Ukrainian and Polish men SHBG was positively associated with HCB 

serum levels. In men from Ukraine or Poland, one percent increase in HCB was 

associated with a 0.07% (p=0.04) or 0.11% (p=0.09) increase in SHBG, respectively. 

No associations emerged in the adjusted model for other reproductive hormones or 

semen quality measures (Table 3).   

We did not observe associations between HCB and any of the outcomes in the two 

areas in Greenland with the highest HCB concentrations (East and North, n=102, mean 

HCB=96.5, median=67.0 ng/g lipid) (data not shown). 

4. Discussion 

To the best of our knowledge, this is the first population-based study of relatively high 

environmental HCB exposure and male reproductive function including semen quality 

and reproductive hormones. Men from Ukraine, which were the men with the highest 

HCB serum levels, had lower estradiol at higher HCB serum levels, but this finding did 

not persist after adjustment for lipids (p=0.08). However, in adjusted models, SHBG 
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was positively associated with HCB in men from Ukraine and was borderline 

significant (logβ=0.11, p=0.09) in men from Poland, but not significant in men from 

Greenland. There can be several reasons for a positive association between HCB and 

SHBG including anti-androgenic, estrogenic, or thyroid hormone effects or it could be 

due to high BMI which has previously been reported to be associated with low SHBG 

(26). Both BMI and estradiol were correlated to HCB in Ukrainian men. To 

investigate if the association was due to BMI or estradiol we adjusted for these two 

covariates in the SHBG and HCB analysis and the association remained, suggesting the 

association was probably not driven by BMI or estradiol. Previously, we have 

investigated serum levels of the PCB congener CB-153 and the main DDT metabolite, 

1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p´-DDE) in the same study 

populations (22;27). They both belong to the same chemical class of organochlorines 

as HCB and might have similar mode of action. Like for HCB, CB-153 was positively 

associated with SHBG in Europeans only (ß=2.1, 95%CI=0.7;35). CB-153 was also 

found to be negatively associated with free testosterone in Europeans (ß=-0.05, 95%

CI=-0.08;-0.02) (27). FAI, which is a proxy for unbound testosterone in serum (28), 

was negatively associated with HCB in our study. This fits with the SHBG finding, 

since high SHBG is associated with low free testosterone. Thyroid hormones increase 

hepatic SHBG production (29). A study of 341 men recruited from an infertility clinic 

reported an inverse association between T3 and HCB (30), whereas a study of 110 

Swedish fishermen did not show association between thyroid hormones and HCB (31). 

HCB has been associated with cryptorchidism (8) and hypospadias (11), which points 

to anti-androgenic effects, therefor the positive association between SHBG and HCB 

found in our study might be an anti-androgenic effect. Therefore, the results might 

indicate hormone-like activity of some POPs in Caucasian populations.

Men from Poland had the lowest HCB concentration of the three study sites, but they 

exhibited higher levels of the anti-apoptotic marker Bcl-xL at higher levels of serum 

HCB after adjustment for potential confounders. On the other hand, sperm apoptotic 

markers were not associated with HCB for the Greenland and Ukraine populations, so 

the finding for Polish men was likely a chance finding due to multiple comparisons. 

Our population-based findings in male spouses of pregnant women are inconsistent 

with some but not all previous studies. Ferguson et al. (2012) investigated 341 male 

partners, aged 18–51, in subfertile couples seeking infertility evaluation and treatment 
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(median HCB level was 14.9 ng/g lipid). These authors observed lower SHBG, 

testosterone and free testosterone at higher serum HCB levels, but only when 

unadjusted for lipids. In contrast, Dhooge et al. (2011), in a population of male 

adolescents (median age of 14.8 years), found positive associations between serum

HCB (standardized by lipid) and estradiol, testosterone, free testosterone and the T/E2

ratio (median HCB level was 22.8 ng/g lipid). These contradicting results can be due 

to different study populations. Most studies investigating HCB and semen quality have 

largely shown no significant associations, consistent with our results (12-14;16;31;32). 

The median exposure level of men from Poland in our study was similar or slightly 

lower compared to other studies that have investigated lipid standardized HCB 

(15;16;30;32). The Polish men had the lowest serum HCB in our study, almost 13 fold 

lower than the Ukrainian men, which might be the reason for the borderline significant 

results compared to the significant results in the highly exposed Ukrainian men. We did 

not observe relationships between SHBG, FAI and HCB in men from Greenland, 

although they were the study population with the second highest HCB serum levels. 

Due to genetic differences, Inuit might be affected differently than the two European 

study populations. 

HCB is highly lipophilic and serum lipid levels vary between fasting and non-fasting 

status, a correction for serum lipids is needed for the valid interpretation of serum 

HCB levels. Since other studies have reported HCB levels after standardizing for lipids 

(HCB ng/g lipids) we did the same, as shown in Table 1, to allow our results to be 

comparable with those from other studies. In a simulation study, Schisterman et al. 

(2005) evaluated four statistical models showing that the lipophilic compound PCB, 

standardized by serum lipids as an independent variable, was highly prone to bias 

(weaker associations due to measurement error), a result also shown by others in the 

analysis of HCB (16;30;33). Therefore, we adjusted for total serum lipids as a 

covariate instead of standardizing the HCB by lipids. 

As expected, total serum lipids and age were positively correlated with HCB in our 

study, which is in agreement with results from others (13;14). Because HCB has a long 

half-life, is lipophilic, accumulates in fat and the production of HCB has decreased with 

time, it has been found at higher concentrations in elderly and/or obese populations 

(34;35). We found a negative correlation between HCB and BMI in men from 
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Ukraine, which did not fit expectations and might be a chance finding. 

In this study HCB serum levels were highest in men from Ukraine, probably due to an 

excessive use of pesticides in the former Soviet Union (36), followed by men from 

Greenland. HCB levels have previously been found to be higher in Canadian Inuit 

compared to other inhabitants in the Arctic Canada, possibly because of their higher 

marine food intake especially from fatty fish and mammals (37). In a study 

investigating dietary contaminants in Northern Greenland in 1976 and 2004, the levels 

of HCB among Inuit consuming traditional food was measured (38). Even though 

today’s Inuit consumption of traditional food is less than in the 1970’s, the levels of 

HCB were higher in the samples from 2004. This indicates that the relative 

contamination levels in the local food products have increased from 1976 to 2004, 

probably due to the long half-life and lifelong bioaccumulation (38). Looking at the 

four Greenland sub-regions, we observed higher serum concentrations of HCB in men 

from Eastern and Northern Greenland compared to the capital and the Southern 

region. One reason might be the different life styles in different areas of Greenland. In 

the East and the North Greenland, the inhabitants live a more traditional life with high 

marine food consumption, especially seals, whereas in Nuuk, the capital city, the 

population, in particular the youn nger population, consumes more imported food 

(39;40).

The participation rate of the parent study was low with only 44.6%pregnant women 

participating. This was a consequence of the recruitment procedure in Ukraine, where 

the contact between the participants and the project team was handled by many 

medical doctors. A sub-sample of 605 non-participating Ukrainian women was 

interviewed regarding demographic and reproductive information. Only age differed 

between participating and non-participating women with the latter being of slightly 

lower age. The men who did not accept the invitation did not differ from the 

participating men with regard to their wives’ time to pregnancy (17). 

The HCB concentrations varied substantially between the three study sites. HCB in 

serum was measured at the same laboratory by the same person, thus the HCB 

concentrations would not be expected to be biased because of inter-observer or –

laboratory variation. Further, samples from the three countries were analyzed randomly 

across time, thus systematic differences related to season, equipment or batches are not 
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expected. 

In the Greenlandic study population 116 out of the 196 semen samples were collected 

up to one year after enrollment, whereas blood samples were drawn at enrollment. We 

do not believe this to bias the associations since no seasonal variations were found for 

HCB in Greenland, and due to the  long half-life of HCB (4 to 8 years), a measurement 

on serum sample can be considered a good proxy of the exposure level within a year. If 

bias did occur, the estimate would most likely be biased toward the null hypothesis 

since the misclassification of HCB would have been non-differential with respect to the 

outcome.  

5. Conclusions

Our findings indicate that SHBG and FAI might be associated with high environmental 

exposure levels of HCB in proven fertile men of European populations, whereas 

relatively high HCB serum levels seem to have no influence on semen quality. 
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Table 1. Demographic, seminal and hormonal characteristics and HCB exposure of the study populations
Greenland (N=196) Poland (N=190) Ukraine (N=203)

Demographic characteristics: Mean Media
n

Range Mean Media
n

Range Mean Media
n

  Age (years) 31.0 30.6 18.5–51.3 30.3 29.6 20.4–46.3 26.5 25.0
  Body Mass Index (kg/m2) 26.1 25.5 14.0–57.8 25.8 25.4 18.5–38.1 24.2 24.0
  Cotinine (ng/ml) 165.1 143.5 0.4–570.0 40.0 0.4 0.0–445.7 153.5 119.7
  Period of abstinence (days) 5.3 3.0 0.5–240.0 7.7 4.0 0.1–90.0 3.9 3.0
Seminal characteristic :
  Total sperm count (x106) 245.7 184.4 2.4–

1496.0
345.2 197.2 3.7–

2071.0
250.4 178.9 2.1

  Sperm Concentration (mill/mL) 72.0 52.6 0.6–374.0 89.2 64.0 2.1–419.0 73.3 59.4
  Volume (g) 3.5 3.2 0.7–9.7 3.8 3.5 0.5–10.5 3.5 3.1
  Normal morphology 7.0 6.0 0.0–20.0 6.7 6.0 0.0–16.0 7.4 7.0
  Motility A+B (%) 54.9 60.0 1.0–87.0 60.0 63.5 0.0–92.0 54.1 55.5
  DFI (%) 9.3 7.5 1.3–37.8 12.2 9.7 2.9–49.4 13.3 10.5
  TUNEL (%) 4.5 2.9 0.3–44.7 15.3 13.2 0.0–79.8 9.3 6.6
  Bcl-xL (%) 26.1 10.5 0.0–97.2 18.1 9.3 0.0–89.6 67.4 87.1
  Fas (%) 25.1 19.0 0.0–90.8 48.8 42.8 0.0–98.3 28.0 17.3
Hormonal characteristics:
  Testosterone (nmol/L) 14.8 14.2 3.2–26.9 13.0 12.7 4.8–24.0 18.0 17.6
  LH (IU/L) 4.4 4.1 1.4–13.2 4.1 3.7 1.3–8.9 4.2 4.0
  FSH (IU/L) 4.9 4.3 0.0–14.6 4.0 3.6 0.7–16.7 4.2 3.4
  Free Androgen Index 55.3 52.4 22.3–

106.3
60.7 55.9 24.3–

164.0
69.8 66.5 21.0

  Estradiol (pmol/L) 65.5 65.3 32.8–
112.6

75.8 68.9 37.5–
297.3

84.0 78.9 33.0

  Inhibin B (ng/L) 184.2 181.0 48.0–
470.0

158.0 153.0 27.0–
338.0

194.6 186.0 55.0

  SHBG (nmol/L) 28.4 27.9 11.1–55.0 23.6 21.6 5.9–63.7 27.7 26.8
  T/E2 ratio 24.6 24.7 10.4–40.8 23.6 22.7 7.6–46.1 19.6 18.9
Environmental chemical:
  Hexochlorobenzene (ng/g total 
lipid)

79.0 55.1 9.5–869.6 14.2 12.6 2.6–43.1 182.3 118.5

bGenital infections: epididymitis, gonorrhea, Chlamydia or mumps in adulthood. 
cTesticular disorders: treatment for retracted testis, surgery for varicose veins, torsio testis or testis cancer.
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Table 2. Correlation between HCB concentrations in serum and biomarkers of reproductive function in fertile 
men from Greenland, Poland and Ukraine

Biomarkers of reproductive function Greenland (n=196) Poland (n=190) Ukraine (n=
203)

DFI (%) 0.05 0.13 -0.00
TUNEL(%) 0.09 0.06 -0.03
Fas-positive(%) 0.07 -0.08 0.04
Bcl-xL(%) 0.07 0.15 -0.23
Semen volume (g) -0.15* 0.00 0.04
Total sperm count (x106) -0.05 0.02 0.05
Sperm concentration (mill/mL) 0.04 0.01 0.01
Normal morphology (%) 0.01 -0.02 -0.08
Motility A+B (%) -0.09 0.06 0.03
Immature sperms (%) -0.04 0.05 0.02
Testosterone (nmol/L) -0.04 -0.03 -0.10
Estradiol (pmol/L) -0.04 -0.04 -0.16*
LH (IU/L) 0.01 -0.04 0.00
FSH (IU/L) 0.11 0.12 0.07
Inhibin B (ng/L) 0.10 -0.20* -0.02
SHBG (nmol/L) -0.01 0.05 0.11
Free androgen index -0.05 -0.15 -0.21*
T/E2 ratio 0.01 -0.05 0.01
Body Mass Index (kg/m2) 0.06 0.01 -0.20*
Total serum lipids 0.13 0.24** 0.18*
Age at interview (years) 0.37** 0.24** 0.02
*=p<0.05 **=p<0.001
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Table 3. Adjusted associations between biomarkers of reproductive function and HCB. The log(ß) corresponds to the percentage change in the 
dependent variable by one percent increase in the independent variable.

Greenland (n=196) Poland (n=190) Ukraine (n=203)
Biomarkers of 
reproductive function Log(ß) 95%CI p-value Log(ß) 95%CI p-value Log(ß) 95%CI

DFI (%) 0.07 -0.05;0.19 0.25 0.12 -0.10;0.33 0.30 -0.04 -0.17;0.09

TUNEL(%) 0.00 -0.17;0.18 0.99 0.13 -0.19;0.45 0.42 -0.12 -0.39;0.14

Fas-positive(%) 0.15 -0.07;0.37 0.18 0.06 -0.40;0.52 0.79 0.03 -0.33;0.38

Bcl-xL(%) 0.08 -0.33;0.49 0.70 0.80 0.12;1.47 0.02 -0.09 -0.89;0.69

Semen volume (g) -0.09 -0.20;0.02 0.11 0.02 -0.13;0.17 0.77 0.03 -0.08;0.13
Total sperm count 
(x106) -0.06 -0.27;0.15 0.57 0.13 -0.21;0.46 0.46 -0.01 -0.23;0.23

Sperm concentration 
(mill/mL) 0.03 -0.12;0.22 0.77 0.10 -0.21;0.42 0.51 -0.03 -0.24;0.17

Normal morphology (%) -0.02 -0.15;0.11 0.72 -0.00 -0.20;0.19 0.96 -0.09 -0.23;0.06

Motility A+B (%) -0.07 -0.19;0.06 0.30 -0.05 -0.20;0.11 0.56 -0.04 -0.18;0.09

Immature sperms (%) 0.07 -0.16;0.30 0.52 0.06 -0.17;0.29 0.62 -0.07 -0.27;0.13

Testosterone (nmol/L) -0.02 -0.191.19 0.99 0.63 -0.66;1.91 0.33 -0.19 -1.30;0.93

Estradiol (pmol/L) -0.02 -0.08;0.04 0.55 -0.001 -0.11;0.11 0.98 -0.06 -0.12;0.00

LH (IU/L) -0.00 -0.11;0.10 0.94 -0.00 -0.14;0.14 0.99 0.02 -0.07;0.12

FSH (IU/L) 0.00 -0.12;0.13 0.96 0.04 -0.13;0.22 0.62 0.09 -0.03;0.26

Inhibin B (ng/L) 0.05 -0.05;0.15 0.29 -0.06 -0.19;0.08; 0.40 -0.05 -0.13;0.02

SHBG (nmol/L) -0.03 -0.11;0.05 0.46 0.11 -0.02;0.24 0.09 0.07 0.00;0.14

Free androgen index 0.03 -0.05;0.11 0.47 -0.10 -0.20;0.01 0.08 -0.09 -0.16;-0.02

T/E2 ratio 0.02 -0.05;0.09 0.62 0.02 -0.10;0.14 0.79 0.04 -0.03;0.10
Seminal biomarkers were adjusted for serum lipids, season of blood collection, BMI, age, cotinine in serum, spillage during semen sampling, genital 
infections, testicular disorders as well as sexual abstinence time.
Hormone levels were adjusted for serum lipids, season of blood collection, BMI, age and cotinine in serum.
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