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Abstract. Factor model methods recently have become extremely popular in the theory and
practice of large panels of time series data. Those methods rely on various factor models
which all are particular cases of the Generalized Dynamic Factor Model (GDFM) introduced
in Forni, Hallin, Lippi and Reichlin (2000). That paper, however, rests on Brillinger’s dynamic
principal components. The corresponding estimators are two-sided filters whose performance
at the end of the observation period or for forecasting purposes is rather poor. No such

problem arises with estimators based on standard principal components, which have been
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dominant in this literature. On the other hand, those estimators require the assumption
that the space spanned by the factors has finite dimension. In the present paper, we argue
that such an assumption is extremely restrictive and potentially quite harmful. Elaborating
upon recent results by Anderson and Deistler (2008a, b) on singular stationary processes with
rational spectrum, we obtain one-sided representations for the GDFM without assuming finite
dimension of the factor space. Construction of the corresponding estimators is also briefly
outlined. In a companion paper, we establish consistency and rates for such estimators, and

provide Monte Carlo results further motivating our approach.

JEL subject classification : C0, C01, EO.
Key words and phrases : Generalized dynamic factor models. Vector processes with singular

spectral density. One-sided representations for dynamic factor models.

1 Introduction

1.1 Dynamic factor models

High-dimensional factor model methods can be traced back to two seminal papers by
Chamberlain (1983) and Chamberlain and Rothschild (1983). The recent and fastly
growing literature on the subject, however, is starting with the contributions by Forni et
al. (2000), Forni and Lippi (2001), Stock and Watson (2002a,b), Bai and Ng (2002) and
Bai (2003). Fostered by their success in applications, factor model methods since then
have attracted considerable attention. The recent literature in the area is so abundant
that even a brief review is impossible here, and we restrict ourselves to a short and
unavoidably somewhat subjective selection of “representative” references. Applications
include (a) forecasting (Stock and Watson 2002a and b, Forni et al. 2005, Boivin and Ng
2006), (b) business cycle indicators and nowcasting (Cristadoro et al. 2005, Giannone et
al. 2008, Altissimo et al. 2010), (c) structural macroeconomic analysis and monetary
policy (Bernanke and Boivin 2003, Bernanke et al. 2005, Stock and Watson 2005,
Giannone et al. 2005, Favero et al. 2005, Eickmeier 2007, Forni et al. 2009, Boivin et
al. 2009, Forni and Gambetti 2010b), (d) the analysis of financial markets (Corielli



and Marcellino 2006, Ludvigson and Ng 2007 and 2009, Hallin et al. 2011), to quote
only a few.

Apart for some minor features, most factor models considered in the literature
are particular cases of the so-called Generalized Dynamic Factor Model (GDFM) in-
troduced in Forni et al. (2000). Consider a countable set {z;}, i € N of observable

stationary stochastic processes. The GDFM relies on a decomposition of the form
T = Xit + it = byt (L)urg + bio(L)ug + - - - + big(L)ugr + &t (1.1)

i € N, t € Z, where u; = (ug4 ug - - uq)' is a g-dimensional orthonormal unobservable
white noise vector and b;f(L),i € N, f =1,..., ¢ are square-summable filters (L, as

usual, stands for the lag operator). Moreover:

(I) w, is orthogonal to &, for all i € N, t € Z and k € Z;

¢

(IT) cross-covariances among the ;s are “weak”.

By “weak”, we mean that, while some cross-covariance among the &’s is allowed,
all sequences of weighted cross-sectional averages of the form >  w,;&; such that
limy, o0 D5 w2 = 0 tend to zero in mean square as n — oo (the sequence of arith-
metic averages n~!' > " | & being a particular case).! Note that E(¢2) < M for all ¢
and E(&;&;;) = 0 for all i # j, is sufficient, but not necessary for (II) to hold (we refer
to Section 2 for a detailed presentation and discussion).

Weak covariance of the &;’s motivates calling them idiosyncratic, while the x;’s,
being driven by the low-dimensional vector of common shocks up, f = 1,2...,q,
are called common components. The model implies that cross-covariances among the
observable variables x;; are essentially accounted for by the common components y;;.

The problem consists in recovering the unobserved common and idiosyncratic com-

ponents x;: and &;;, the common shocks u; and the filters b;¢(L), from finite realizations

! Weak cross-covariance among the £’s, as opposed to cross-sectional orthogonality (that is, the much
stronger assumption of no cross-covariances at all), is the reason for using the term “generalized” in
the denomination of the GDFM. It constitutes a major difference with respect to the dynamic factor
models studied in Sargent and Sims (1977), Geweke (1977), Quah and Sargent (1993), which, being

based on a finite number n of equations of the form (1.1), require strict cross-sectional orthogonality.
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(t=1,...,n;t=1,...,T) of the process {x;}, as n and T both tend to infinity. The
main tool so far has been a principal component analysis (PC) of the variables x;,
either standard or in the frequency domain (Brillinger’s concept of dynamic princi-
pal components), depending on the assumptions made. The results obtained can be

summarized as follows.

(i) The finite-dimension assumption. Most authors assume that, denoting by span( . ..
the space generated by a collection of random variables,? span(y;, ¢ € N), for
given t, has finite dimension r, where r > ¢. Under that assumption, model (1.1)

can be rewritten as

T = MaFu+ Mol 4+ -+ N By + & (1.2)

F, = (Fip ... Ft) =N(L)uy,
i € N, t € Z. This is fairly easy to prove, see Forni et al. (2009), Remark R,
Section 2. In this case, we say that (1.1) admits a static representation. If,
in addition, N(L) = N(0), so that F; is a white noise vector, then (1.1) is a
static factor model. Criteria to determine r consistently are given in Bai and
Ng (2002) (see also Alessi et al. 2010). The vectors F; and the loadings \;; can
be estimated consistently using the first r standard principal components, see
Stock and Watson (2002a,b), Bai and Ng (2002). Moreover, the second equation

in (1.2) is usually specified as a singular VAR, so that (1.2) becomes

T = NitFu + Mg Foy + -+ A B+ it (1.3)
(I -D;L—-DyL?—...—D,[?)F, = Ru,
where the matrices D; are r x r while R is r x ¢. Under (1.3), Bai and Ng (2007)
and Amengual and Watson (2007) provide consistent criteria to determine q.

VAR estimation, and therefore, up to multiplication by an orthogonal matrix,

estimation of u; in (1.3), is standard.

2More precisely, span((;, i € N), where ¢; belongs to the Hilbert space of square-summable random
variables defined over some probability space, equipped with the corresponding L? norm, is the closed
Hilbert space of all mean-square convergent linear combinations of the (;’s and limits of convergent

sequences thereof.



(ii) Obtaining the static representation. Let us point out that (1.2) or (1.3) are con-
venient “reduced forms” of other, more explicitly dynamic, representations. For

example, an interesting dynamic factor model is
Tip = pioky + parke 1 + -+ piphip + &t (1.4)

where f; is a ¢-dimensional stationary vector, p;; is 1 x ¢ and D(L)f; = u,.
Bai and Ng (2007) and Forni et al. (2009) show how (1.4) can be put in the
form (1.2), or (1.3), and obtain the coefficients of (1.2), or (1.3), as functions of
the coefficients of (1.4).

(iii) The dynamically unrestricted model. Using the frequency-domain principal com-
ponents (Brillinger 1981), and without any finite-dimensional assumption of the
form (1.2), Forni et al. (2000) obtain an estimator of the spectral density of
the common components y;; and show how to consistently recover the common
components themselves. Criteria to determine ¢ without assuming (1.2) or (1.3)
are obtained in Hallin and Liska (2007) and Onatski (2009). Unfortunately,
frequency-domain principal components produce estimators of the x;;’s that are
based on two-sided filters, which hence cannot be used at the end of the sample

or for prediction.

Due to that two-sidedness feature, the GDFM is seldom considered in practice,
and finite-dimensional structure assumptions like (1.2) or (1.3) are made with almost
no exception. Even the paper by Forni et al. (2005), which is based on the same
frequency-domain approach as Forni et al. (2000), adopts a finite-dimension assumption
for span(y;, ¢ € N) to obtain one-sided estimators.?

The moot point is that such assumptions are far from being innocuous. For in-
stance, (1.2) is so restrictive that even the very elementary model

a;

l—«

it =

3See also Altissimo et al. (2010), where the spectral-density principal-component approach is used

in combination with the finite-dimensional assumption.



where ¢ = 1, u; is scalar white noise, and the coefficients «; are drawn from a uniform
distribution over (—1,1), is ruled out. Indeed, the space spanned, for a given t, by
the common components Yy, ¢ € N, is easily seen to be infinite-dimensional. Infinite-
dimensional span(y;:, i € N)’s a fortiori occur if the AR common component in (1.5)
is replaced by more general ARMA ones.

But even when the dimension of span(y;, ¢ € N) is finite there are interesting
cases for which the dynamically unrestricted model and related methods provide an
advantage over the static approach. Consider the model

wtauq +& iti=1

w4+ it ifi>1,

where wu; is a scalar white noise, and suppose that we are interested in the first variable
x1;. Of course this model, unlike (1.5), can be written in the static form (1.2), with
Fiy = u; and Fyy = uy_1. However, it does not fulfill a basic assumption of the static
two-factor model, since u;_; is “non-pervasive” (see Assumption B.2, Section 2). As a
consequence, the impulse response function of x4, i.e. 1 —al, cannot be obtained with
the standard principal component method. By contrast, as shown in Section 2, model
(1.6) can be easily accommodated within the dynamic approach proposed here.t

Such examples provide a strong theoretical motivation for solving the one-sidedness
problem in model (1.1) without turning to the finite-dimension restriction and the
related assumptions and methods. This is done in the present paper under assumptions
that include rational spectral density for the common components y;;.>

On the other hand, we must also point out that, even when the finite-dimension
assumption does not hold, model (1.2), or (1.3), can provide a good approximation
to model (1.1), or, in empirical situations, with n and T' given, a good fit or a good
performance in forecasting. These problems are not studied in the present paper, in

which we only deal with representation issues and make use of population covariances

4Model (1.6) is just a stylized example of a situation in which some of the lags of the common

shocks are non-pervasive.
5Some of the results presented her have been outlined, without proofs, in a very preliminary version

in Forni and Lippi (2011).



and spectral densities. The companion paper, Forni, Hallin, Lippi and Zaffaroni (2014),
gives a detailed definition of the estimators corresponding to the construction of the
present paper, studies their consistency rates, and compares, by means of Monte Carlo
experiments, the performance of the static and the dynamic approach. A brief outline

of these results is given in Section 4.5.

1.2 Outline of the paper

Instead of finite-dimensional assumptions of the form (1.2) or (1.3), we impose the
much milder condition that the common components have a rational spectral density,
that is, each filter b;;(L) in (1.1) is a ratio of polynomials in L. More precisely, we

assume the following representation for the common components:

ca(L) cio(L) cig(L)
0 = . 7 1.

where
Cif<L) = Cif0 t CifylL + ...+ Cifvlesl and dzf<L) = dif,O -+ dif,lL + ...+ difstLSQ,

f=1,2,...,¢. The assumption that s; and s, the degrees of ¢;f(L) and d; (L) respec-
tively, are assumed to be independent of 7 is very convenient, though not necessary. As
for the idiosyncratic components we do not make any parametric assumptions, nor re-
strict their cross-covariance structure—except of course for the “weak cross-correlation
assumption” that characterizes idiosyncrasy, as described above. Our model, in that
sense, is a semiparametric one, with a huge nuisance; in particular, the autocorrelation
structures of idiosyncratic components remain completely unspecified.

We show that, for generic values of the parameters c;r, and d;z, (i.e. apart from a
subset that is negligible, in a sense to be specified in Section 2), the infinite-dimensional

common-component vector X, = (X1t X2t "+ Xnt ---)" admits a block-structure au-



toregressive representation

AYL) 0 0 R!

0 A2(L) 0 R’
Xt = uy, (1.8)

0 0 AR(L) R

where each A¥(L) is a (¢ + 1) x (¢ + 1) polynomial matrix with finite degree and R*
is (¢+1)xq. Denoting by A(L) and R the (infinite) matrices on the left- and right-hand

sides of (1.8), respectively, and defining x; and &, in analogy with x,, we obtain
Z;=Ru, + A(L),, (1.9)
where Z;, = A(L)x;, and, lastly,
Z; = ru; + ¢, (1.10)

which results from (1.9) by normalization (both sides of the i-th equation are divided
by the standard deviation of Z;;). This is a factor model with a representation of the
form (1.2) and F; = u,—thus, according to the definition given in Section 1.1, a static
factor model.

Some comments on (1.8)-(1.10) are in order.

(i) We can rewrite (1.8) as A*(L)xF = R*u;, k € N, where the vectors x¥ are

the (¢ + 1)-dimensional subvectors

(Xlt X2t Xq+1,t)7 (Xq+2,t Xq+3.t " XZ(Q—H),t)a

Thus (1.8) is made up of (a) obtaining an autoregressive representation for each of

the vectors x¥, and then (b) knitting together such autoregressive representations.

(ii) As regards (a), each of the subvectors has dimension (¢ + 1) and rank ¢ (i.e. its
spectral density has rank ¢ for all # € [—7 7]), and is therefore singular (i.e.

its dimension is greater than its rank). For singular (or reduced-rank) vectors,



with rational spectral density, existence of a finite-degree autoregressive rep-
resentation, for generic values of the parameters, has been proved in Anderson
and Deistler (2008a, b). We contribute to this literature by showing that, when
the dimension is equal to ¢ + 1, the minimum-lag autoregressive representation
is generically unique. As regards (b), obtaining the same u; for all the vec-
tors x¥ requires the additional assumption that, for each k, span(x¥ ,, h > 0) =

span(x¢—n, h > 0). We will motivate this restriction by a genericity argument.

(iii) The matrices A¥(L) and R¥ can be obtained starting with the spectral density
matrix of the observable variables x;;. The vector z; results from the application
of one-sided filters to the variables x;, see (1.10). Lastly, u; can be obtained
using the first ¢ principal components of the variables z;;, i.e. only current values

of the variables z;;. Our procedure thus solves the one-sidedness problem.

(iv) Moreover, the matrices A*(L) and R* which are (¢+1) x (¢+1) and (g+ 1) xq
respectively, result from separate low-dimensional calculations. Thus we do not

run into “curse of dimensionality” problems.

In Section 2, we state the main assumptions underlying the GDFM and review
some basic results from previous literature. In Section 3, we prove some general results
on stochastic vectors that are infinite-dimensional with finite rank, like x,, under the
assumption of rational spectral density. Rational spectral density is assumed for x,
throughout the paper. In Section 4, we present results on autoregressive represen-
tations of singular stochastic vectors. Such results are then used to construct the
blockwise autoregressive representation (1.8) for x, and to transform the original vari-
ables x;; into another set of variables for which a static factor model holds. Lastly, we
briefly outline the correspondence between our representation result here and the es-
timation procedure that we study in the companion paper Forni et al. (2014). Section

5 concludes.



2 Main assumptions and background results

2.1 Notation

The GDFM (1.1) can be thought of as (i) a double-indexed stochastic process {z, i €
N, t € Z}, (ii) a family of stationary processes {z;, t € Z} indexed by ¢« € N, or
(iii) a stationary family of cross-sections {z;, i € N} indexed by t € Z, i.e. a station-
ary infinite-dimensional stochastic process®. We find the third option convenient, and
accordingly write x; for (xy; x -+ Zy --- ). The notation x,, &, and x; = x, + &,
is used in a similar way, with obvious componentwise counterparts. Associated with
this infinite-dimensional vector notation, we also consider infinite-dimensional matri-
ces, such as A(L) or R (see (1.10)), which are co x oo and oo X ¢, respectively.
Also, defining b(L) as the oo X ¢ matrix with (i, f)-entry b;r(L), (1.1) is rewritten
as x; = b(L)u;+&,. The reader will easily check that we never produce infinite sums of
products, so that our infinite-dimensional matrices are no more than a notational conve-
nience. All infinite-dimensional matrices are underlined, while their finite-dimensional
submatrices are not. In particular, A (L) denotes the s x s upper left submatrix
of A(L), by(L) and R, the s x ¢ upper submatrices of b(L) and R, respectively.
Given the infinite-dimensional process y; = (Y1 Yor -+ Ynt -+ )', we use the fol-

lowing notation:

(i) ys is the s-dimensional process (yi; y2r -+ Yst)'s
(i) HY =span(yy, i € N, t € Z), HY =span(yy, 1 <i<s, t €Z);
(i) H{ =span(y;r, 1 € N, 7 <t), H{} =span(y;,, 1 <i<s, 7<1t).

If y, is s-dimensional we use the notation HY = span(yy, ¢ < s, t € Z), H{ =

span(y;-, @ < s,7 < t) (we never need sub-vectors of finite-dimensional vectors).

SFor an introduction to infinite-dimensional stationary stochastic processes, their spectral repre-
sentation and prediction theory, see Salehi (1981). Some results on infinite-dimensional processes are
proved in the present paper. However, as we assume rational spectral density and finite rank, see Sec-
tion 3, our proofs only need straightforward generalizations of results holding in the finite-dimensional

case.
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It is convenient, though not necessary, to assume throughout the paper that all

white-noise vectors are orthonormal.

2.2 Basic assumptions

All the stochastic variables x;;, x;; and &; below have mean zero and finite variance.

Assumption A.1 For all n € N, the vector x,; is weakly stationary (stationary

henceforth), and has a spectral density (an absolutely continuous spectral measure).

Denote by X7 (0), with entries of;(0), i,j € N, 6 € [~7 7, the nested spectral
density matrices of the vectors x,;, = (z14 T2 -+ ). The matrix ¥2(0) is Her-
mitian, non-negative definite and has therefore non-negative real eigenvalues for all
¢ € [-m 7. Denote by A7;(0) the j-th eigenvalue, in decreasing order, of X7 (¢), and
let X5(0) = sup,cy An;(0). The notation LX(0), o5(0), Ay;(0), A3(0), £5(6), afj(e),
Aij(e), and 5\?(9) is used in a similar way. Our second assumption is

Assumption A.2 There ezists a positive integer q such that (i) A2(0) = oo for almost
all 6 in [—7 «, and (i) 5\§+1(9) is essentially bounded, i.e. there exists a real B* such

that A2, (0) < B* almost everywhere in [—m ).

Forni and Lippi (2001) prove that

Theorem A Assumptions A.1 and A.2 imply that x; can be represented as in (1.1), i.e.
x=x; & =b(L)w +§, (2.1)
where b(L) is an oo X q matriz of square-summable filters, v, is a q-dimensional or-

thonormal white noise. Moreover,

(i) €,, satisfies Assumption A.1, and Ns(0) is essentially bounded, i.e. there exists a
real BE such that Xs(0) < B¢ almost everywhere in [~ w;

(it) x, satisfies A.1 and N¥(0) = oo almost everywhere in 0 in [—m | (note that

A o(0) =0 ace. in [—7 7] for all s > 0);

(iii) &, and v,y are uncorrelated for allt € Z and k € Z;

11



(iv) the components xu and & are unique.

Conversely, if x; can be represented as in (2.1) with x, and &, fulfilling (i), (ii) and (iii),
then x; satisfies Assumptions A.1 and A.2.

An infinite-dimensional vector satisfying (i) is called an idiosyncratic vector.
Under the restriction that the dimension of span(x;, ¢« € N) is finite, so that the

model has representation (1.2), or (1.3), the basic assumptions are:
Assumption B.1 Same as A.1.

Assumption B.2 Let I'; be the variance-covariance matriz of Xp, fiy,; its j-th eigen-

value and [if = sup,ey piy,;- There exists a positive v such that (i) jiy = oo, and
(1) fiyy, < 0.

Theorem B (Chamberlain and Rothschild, 1983) Assumptions B.1 and B.2 imply

that x; can be represented as
Tig = Xit + &t = Nt Fie + Ao by + -+ N Frg + &t (2.2)

where ¥ is a weakly stationary r-dimensional vector. Moreover,
(i) &, satisfies Assumption B.1 and [i5 < oo;
(ii) x, satisfies Assumption B.1 and X = oo (note that fiy,, =0 for all s >0);
(iii) &, and ¥, are uncorrelated for allt € Z;
(iv) the integer r and the components xu and & are unique.

Conversely, if x; can be represented as in (2.2) with x, and &, fulfilling (1), (ii) and (iii),
then x; satisfies Assumptions B.1 and B.2.

Under Assumptions Al and A2, plus some technical assumptions, model (1.1) can
be estimated using the (estimated) spectral density of the z’s, see Forni et al. 2000.
As mentioned in the Introduction, Hallin and Liska (2007) and Onatski (2009) provide
criteria to determine ¢, while Forni et al. (2000) construct a two-sided estimator for x;.

All these papers use spectral techniques. A combination of spectral and time-domain

12



techniques is used in the present paper to obtain a one-sided representation. For the
corresponding one-sided estimator, see Forni et al. (2014).

Under the finite-dimension restriction and Assumptions B.1 and B.2, plus some
technical assumptions, model (1.2), or (1.3), can be estimated using the variance-
covariance matrix of the z’s: seminal papers are Bai and Ng (2002), providing criteria
to determine r, and Stock and Watson (2002a, b), constructing an estimator for F;.
Bai and Ng (2007) develop tests for the number of dynamic factors ¢ in model (1.3)
without resorting to spectral techniques.

Example (1.6) in the Introduction, i.e. xy = wu; + aug_1 + &1 , Ty = up + Ex
for ¢ > 1, nicely highlights a noticeable difference between Assumptions A.2 and B.2,
corresponding to a basic difference between the dynamic and the static approaches.
Using the dynamic approach, we see that the first eigenvalue of the spectral density
matrix diverges and Asssumption A.2 is fulfilled with ¢ = 1. Hence the common
component of the first variable is u; + au;_; and its idiosyncratic component is &;;.
Using the techniques of the present paper, the (bivariate) VAR corresponding to the
first block in equation (1.8) is

1 —al X1t 1
= U,
0 1 X2t 1
while all other bivariate blocks (zaj414, Z2j+1)) (j = 1,2,...) have A¥(L) = I, and
R* = (1 1), so that we obtain the correct representation (1 + aL)u, for x4, that is,
the correct response of z1; to the common shock ;.

On the other hand, using the static approach, we find that only the first eigenvalue of
the variance-covariance matrix diverges. Assumption B.2 is fulfilled with » = 1, namely,
by Theorem B, the model has a static factor representation with just one factor, i.e. u,
whereas u;_1, being non-pervasive, is not a common factor. The common component of
the first variable is u; and the term au;_; is absorbed by the idiosyncratic component,

so that the model fails to correctly represent the reaction of x; to the shock u,.”

"The resulting lagged covariance between the common and the idiosyncratic component of z1; is

ignored within the static approach.
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3 Infinite-dimensional processes with finite rank

Of course, uniqueness of x, and €; in (2.1) does not imply that u; or b(L) are unique.
Alternative representations are x, = [b(L)Q][Qw;] = ¢(L)v;, where Q is an arbi-
trary gx g orthogonal matrix, or, more generally, x, = [b(L)Q(L)][(Q'(F)u,] = d(L)wy,
where F'= L™ and Q(e *)Q’(e?) = 1, for almost all 6 in [—7 7).

More importantly, Theorem A does not ensure that x, admits a one-sided moving-
average representation, i.e., a representation of the form x, = e(L)w;, where w; is

g-dimensional orthonormal white noise and e(L) = e, + e, L + ---. For example, if

Xit = Utti-1, (3.1)

where u; is one-dimensional white noise (¢ = 1), then statement (ii) of Theorem A
holds true, so that x, is the common component of some process x; satisfying A.1
and A.2, but x, has no one-sided representations (this is quite obvious from Lemma 1
below).®

The existence of one-sided moving average representations of infinite-dimensional
stochastic vectors is analyzed in Lemmas 1 and 2 under the assumptions of ratio-
nal spectral density and finite rank. A precise statement of those lemmas requires
giving some further definitions and recalling a few results on rational-spectrum finite-

dimensional stochastic vectors.

Definition 1 Consider the infinite-dimensional process yiy = (Y1t Yor =+ Ynt )
Assume that y; fulfills Assumption A.1. We say that y, has rank q if there exists a

positive integer s such that rank(XY(6)) = q, for n > s and almost all 0 in [—7 7].

Definition 2 Let y; denote an infinite-dimensional stationary stochastic vector with

a moving average representation

Yyt = h(L)Vt> (3-2)

8The possibility that x, has no one-sided representations arises here from infinite dimension. This
bears no relationship with the possible non-existence of one-sided representations for finite-dimensional
processes. For example, a scalar process whose spectral density vanishes in [—1 1] and is positive

elsewhere has no one-sided representations, see e.g. Pourahmadi (2001), Theorem 10.5, p. 361.
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where vy is q-dimensional orthonormal white noise and b(L) is an oo X q square-
summable filter. We say that (3.2) is a fundamental representation if (1) b(L) is
one-sided, and (2) vy belongs to H{. In that case, we also say that the white noise v,

is fundamental for y,. Note that if v; is fundamental for 'y, then HY = H.

Now suppose that y; is n-dimensional with representation
Yyt = b(L)Vt7 (33)

where v; is g-dimensional orthonormal white noise and b(L) is an n X g square-
summable filter. Fundamentalness of (3.3) and v; are defined as in Definition 2. More-

over,

(I) if (3.3) is fundamental, then n > ¢. Moreover, if y; = c(L)w;, where w; is
orthonormal, is another fundamental representation, then w; has dimension ¢,
c(L) = b(L)Q and w; = Q'vy, where Q is a ¢ x ¢ orthogonal matrix (Rozanov
1967, pp. 56-57);

(IT) if (3.3) is fundamental, then rank(b(z)) = ¢ for all complex z such that |z| < 1
(Rozanov 1967, p. 63, Remark 3). In particular, rank(by) = rank(b(0)) = q.

A finite-dimensional stationary process with a spectral density does not necessarily

possess a fundamental representation (see footnote 8). However,

(III) if y; has rational spectral density, then it has fundamental representations. If
y: = b(L)v; is one of them, v; being ¢-dimensional orthonormal white noise,
then the entries of b(L) are rational functions of L (Rozanov 1967, Chapter I,
Section 10; Hannan 1970, pp. 62-67);

(IT") suppose that y, has rational spectral density, that y, = b(L)v;, where b(L) is
n X q, rational, square-summable and one-sided, v, is g-dimensional orthonormal
white noise, and that rank(b(z)) = ¢ for all z such that |z| < 1: then, y;, = b(L)v,
is fundamental (Hannan, 1970, pp. 62-67).

We say that the infinite-dimensional process y; has rational spectral density if y.,;

has rational spectral density for all n.
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Lemma 1 Suppose that the infinite-dimensional process y; has rational spectral den-

sity and rank q. The following statements are equivalent:

(i) y¢ has a one-sided rational moving average representation y; = b(L)v; (the en-
tries of b(L) are rational functions of L), where v, is q-dimensional orthonormal

white noise.

(i) There exists a positive integer s such that Hi* = Hj.

Proof. Assume (ii). By (III) there exists a one-sided rational fundamental represen-
tation for yg, denote it by yg = bs(L)v,. We have H}* = H}. By assumption,

Ysikt € HY* and, therefore, yg ., € HY, so that
Vst = bs(L)Vt and Yst+kt = bs+k(L)Vt. (34)

The white noise v; is fundamental for y, hence also for (y, ysix¢)’. Thus representa-
tion (3.4) is fundamental, so that, by (III), bs (L) must be rational. The conclusion
follows. Assume now that (i) holds. We say that g is a zero of b(L) if the determi-
nants of the ¢ X ¢ submatrices of b(f) all vanish. Assume that « is a zero of b(L) and
that |a| < 1. There exists a unitary ¢ X ¢ matrix B, such that all the entries of the
first column of b(L)B,, vanish at a. Defining 7,(L) as the g x ¢ diagonal matrix with
diagonal entries ((1 — aL)(L —«a)™* 1 --- 1), we have

yi = b(L)Bava(D)] |7a(L7)Bave| = e(L)w:

where a tilde denotes transposition and conjugation. This is an alternative one-sided
rational representation in which the multiplicity of a as a zero of the matrix polyno-
mial has decreased by one unit. Because a zero of b(L) is a zero of b,(L), with a
finite number of iterations we obtain a rational representation, y; = d(L)z,, say, such
that d(L) has no zeros of modulus less than one. For the same reason, there exists an
integer s such that ds(L) has no zeros of modulus less than one. By (II'), y& = ds(L)z,
is fundamental for y,, and therefore for y;. Q.E.D.

Lemma 2 Suppose that the infinite-dimensional process y; has rational spectral den-

sity and rank q. Then,
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(i) if y: has a one-sided rational representation y, = b(L)vy, then 'y, has a funda-

mental (rational) representation;

(i) if y¢ = b(L)v; and y; = c(L)w; are fundamental, with v, and w; q-dimensional
and orthonormal, then c(L) = b(L)Q and w; = Q'v;, where Q is some q X q

orthogonal matrix;

(iii) if y¢ = b(L)v, = byv, + byv, 1 + -+ is fundamental, then b, has rank q.

PROOF. Statement (i) is part of the proof of Lemma 1. As for (ii), suppose that
y: = b(L)v, and y; = c(L)w; both are fundamental. By Lemma 1, there exists s
such that HY* = H{. As a consequence, both v; and w; belong to H}*, and therefore

are fundamental for y,. This implies that w; = Q’v;, where Q is orthogonal. Thus

v = c(L)w; = [c(L)Q']vy = b(L)vy. As v, is orthonormal white noise, we have
c(L) = b(L)Q. Because v, is fundamental for ys, bs(0) has rank ¢, see (II), so
that b(0) = b, has rank q. Q.E.D.

Summing up, given the infinite-dimensional vector y;, assuming A.1, finite rank,
rational spectral density, and the existence of a one-sided rational moving average
representation, we obtain the existence of a rational fundamental representation for y;,
which is unique up to multiplication by an orthogonal matrix. Moreover, for some s, the
space spanned by the current and past values of y,; coincides with the space spanned
by current and past values of the whole vector y; (equivalently, a fundamental white
noise of y is a fundamental white noise of y;).

Let us now return to the infinite-dimensional vector x; and to the decomposition
x; = X; +&,. Assume that x, has rational spectral density, so that either rank(XX(0)) <
q for all § € [—7 7] or rank(XX(#)) = ¢ for almost all § in [—7 7|. On the other hand,
since AX,(0) diverges for almost all § in [~7 7], this is Assumption A.2, there exists
s such that rank(XX(6)) = ¢ for n > s and almost all § in [—7 7|. Therefore, x, has
rank q.

Adding to a rational spectral density the assumption that x, has a one-sided rational
representation or, equivalently, that H}* = H)} for some s, so that cases like (3.1)

cannot occur, Lemma 2 ensures that x, has a rational fundamental representation.
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More precisely, for i € N,

_ca(L) cia(L) Cig(L)

th, (35)

where ¢;¢(L) and d;;(L) are polynomials in L, and v, is fundamental for x;,.

However, in Assumption A.3 (see Section 4.2), we will require more than the exis-
tence of an integer s such that H)* = H). Rather, we suppose that the space spanned
bY Xivrs Xigrs - - s Xigra,rs T < t, coincides with H} for all (¢ + 1)-tuples iy <ip < --- <
ig+1. Thus, u in (3.5) is fundamental for any (¢ + 1)-dimensional subvector of x,,
not only for the subvector x,, associated with some s. This stronger requirement is
motivated in Section 4. We prove that, under a quite general parameterization, the
stronger condition holds generically, i.e. outside of a negligible subset, as defined in

Section 4, of the parameter space.

4 AR representations of the vector y;,

4.1 General results for singular stochastic vectors

Consider an n-dimensional vector y; such that

o cii(L) cia(L) Cig(L)
Yit = d“ (L) V1 + dz2<L) Vg + +

Vgt (4.1)

with
Cﬁ(L) = Cif’() + Cif’lL 4+ 4 Ciﬁlesl and dlf(L) - 1—|—dif,1L 4+ 4 dif’s2L82 (42)

fori =1,2,...,n, f =1,2,...,q, where v = (vy; vy --- vy) is orthonormal white
noise.
We assume that for any i the filters in (4.2) are parameterized in the same set

IT C R”, with v = q(s; + s2 + 1), where

(I) IT is the closure of an open subset of RY;

(II) d;f(L) has no root of modulus smaller than or equal to one, for f =1,2,...,¢.

Thus, there exists a real ¢ > 1 such that all the roots of the polynomials d;(L) are of

modulus greater than or equal to ¢.
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As a consequence, the vector y; is described by a parameter vector taking values

in II" = II x I x --- x II, which is the closure of a non-empty open subset of R”, with

= nv.

We are interested in the case n > ¢. Such “tall systems” have been studied re-
cently by Anderson, Deistler and their coauthors (see in particular, Anderson and
Deistler, 2008a and b). One of their results is that when n > ¢, there exists a nowhere
dense set N/ C II", i.e. a set whose closure has no interior points, such that if the

parameter vector lies in II" — N, y; has an autoregressive representation of the form
A(L)y: = Rv, (4.3)

where
(i) R is n x ¢, with rank(R) = g;
(ii) A(L) is an n X n finite-degree matrix polynomial.
When a property holds in II" — M and M is nowhere dense in II", we say that the
property holds generically in 1I". As R has generically full rank, (4.3) implies that,
generically, v, is fundamental for y,.”

To provide an intuition for this result and Proposition 1 below, let us consider the

following elementary example, in which n =2, ¢ = 1, and

Y1 = a1V + byvg_q
(4.4)

Yor = aVy + bavy_1,
with parameter (aq, by, as, by) in R? x R?. Outside of the nowhere dense subset in which

ai1by — asby = 0, we obtain
1

— (b —b . 4.
S ale( 21t — b1Yar) (4.5)

V¢ =
Using (4.5) to get rid of v;_; in (4.4), we obtain the AR(1) representation

Y11 = dbiboyy—1 — db%yQt—l + a1y
(4.6)

Yor = dbgyu_l — db1bayor—1 + agvy,
where d = 1/(a1by — asby). Note that

9Results on the existence of autoregressive representations for singular vectors are given in Mi-
amee and Pourahmadi (1987). Without assuming rational spectral density, they provide sufficient

conditions. However, the existence of finite-degree autoregressive representation is not considered.
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(i)

If a;b9—a9b; = 0, no finite-degree autoregressive representation exists, unless b; =
by = 0. Moreover, fundamentalness of v; for y; requires that the root of a; + b1 L

(which is also the root of ay + by L) has modulus larger than one.

However, as soon as aijbs — asb; # 0, vy is fundamental for y; even if both the

roots of a; + b;L, i = 1,2, are smaller than one in modulus.

Quite obviously, a1by — asby # 0 if and only if ¥, 1 and yo;_1 are linearly inde-
pendent. Therefore, generically, the projection (4.6) is unique, i.e. generically no

other autoregressive representation of degree one exists.

But higher-degree autoregressive representations do exist. Rewriting (with ob-
vious definitions of A and a) (4.6) as y; = Ay; 1 + av;, we get y; = A’y o +
Aav;_; + av;. Using (4.5) to get rid of v;_1, we obtain another autoregressive
representation, of degree two. Such non-uniqueness does not occur for square

systems (when n = q).

On the other hand, if n = 3 and y;; = a;v; +b;v,_1, 1 = 1,2, 3, then, outside of the
set in which asb; = ayby and asby = a1bs, which is nowhere dense in R? x R? x R?,

we have

1
o + axye + asys
where by7y1 + bay2 4+ bsys = 0. This can be used to get rid of v;_1, in the same way

Uy (M1 + Y2y + V3Y3e),

as we did in the n = 2 case. Thus, generically, y; has an AR(1) representation.
However, the variables y;; 1, ¢ = 1,2, 3, are not linearly independent, so that such

minimum-lag autoregressive representation is not unique.

Let us show that remark (iii) can be generalized. Precisely, if n = ¢ + 1, then,

generically, there exists only one minimal-lag autoregressive representation.

Proposition 1 Consider an n-dimensional vectory; with representation (4.1)-(4.2),

and assume that n = g+ 1. There exists a set N' C 119 nowhere dense in 1191 such

that, if the parameter vector lies in 1971 — N,

(i) y: has a finite-degree AR representation A(L)y; = Rvy, where R is (¢ + 1) X g,

Rif = ¢;f(0), rank(R) = ¢, A(L) is (¢+1) x (¢+1) and has degree not exceeding
S = qs1 + ¢*sy. This implies that v, is fundamental for y,.
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(ii) Suppose that (a) A*(L) is a (g+1) x (¢4 1) polynomial matriz whose degree does
not exceed S, with A*(0) =1, (b)) R* is (¢ + 1) x ¢, (¢) v§ is a q-dimensional
orthonormal white noise orthogonal to y,—y, k > 1, (d) A*(L)y; = R*v;. Then
A*(L)=A(L), R* =RQ, vi = Q'vy, where Q is an orthogonal ¢ X q matriz.

See Appendix A for the proof.

Part (i) of Proposition 1 has already been proved in the papers by Anderson and
Deistler, as we have mentioned above. However, the parameters in Anderson and
Deistler’s papers are the entries of the matrices in the state-space representation of the
rational-spectrum vector y;, whereas our parameters are the coefficients of the rational
functions in representation (4.1).

Note that Proposition 1 does not claim that, generically, the process y; correspond-
ing to a parameter vector in I1%"! has no non-fundamental representations. What it
claims is that, generically, such non-fundamental representations are not parameterized
in 1191, For example, representation (4.4) is generically fundamental in R* x R®. On

the other hand, given any a with |a| > 1, the process y; also has the representation

l—aL [ [1—=a'L (a; + b;L)(1 — aL)
= . N = 4.
vit (ai + b )1 - alL] { 1—al Ut} 1—a'L o (4.7)
for i = 1,2, where
1—a 'L 1—alL
Yem T L T _a_lFl Sy

is white noise (this is easily proved by showing that its spectral density is constant).
Thus, y; has the non-fundamental representation (4.7). The latter, however, is param-
eterized in R? x R? x R, not R? x R%

Now assume that y; is infinite-dimensional with y;; modeled as in (4.1) for ¢ € N.
The vector y; is parameterized in I[1*° = II x IT x --- . We define negligible sets and
genericity in II° with respect to the product topology'®. We say that a subset of II* is
negligible if it is meagre, i.e. the union of a countable set of nowhere dense subsets, and

that a property holds generically in II°° if the subset where it does not hold is meagre.

10Tt us recall that a basis for the open sets in II*® in the product topology is the family of all

sets Hfil G;, where G; is an open subset of I and G; = II but for a finite number of values of 4.
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Define the set M,,,, for m > g + 1, as the set of points in II*® such that all vectors
ihi%m’iﬁl = (Yirt Yint = Yigpat), With iy < iy < --- < igyq < m, admit a representation
of the form

Ail,ig,...,iq+1 (L)yil,innyqurl — Ril,iz,...,qurlvt, (48)

where A’%2-a+1([) is at most of degree S and unique in the sense of Proposition 1(b).
From Proposition 1, we see that N,, = II* — M,, is a nowhere dense subset in the
product topology of TI*°, so that the set N = Un=q 41N, being a countable union of

nowhere dense subsets of II*°, is a meagre subset. We thus have the following.

Lemma 3 Assume that y, is infinite-dimensional, modeled as in (4.1) for i € N and

parameterized in 11 . Generically in 11°°, all the vectors yi""> """ = (yis Yist - - Yigirt)s
with iy < iy < +++ < 41, can be represented as in (4.8), where A2-ta+1(L) is at

most of degree less than S and unique in the sense of Proposition 1(b).

Definining negligible subsets of II*° as meagre subsets has a good motivation in the
fact that (i) the complement of a meagre subset of II°° is not meagre, (ii) if a subset
of II*® is not meagre, obtaining it as the union of a family of nowhere dense subsets
requires an uncountable family.!!

Moreover, assuming that the parameter space indexing the polynomials c¢;;(L)
and d;;(L) does not depend on ¢, as we do in (4.1), is convenient but not necessary.
With the dimension of the parameter space depending on 4, a more general version of
Proposition 1 holds as well as the meagreness result for infinite-dimensional vectors y;.
However, the gain in generality does not seem to justify the substantial additional com-

plications in the proof of Proposition 1 and the determination of the degree of A(L).

HTet us recall that: (I) because II is a closed subset of R”, the space II*° is the Cartesian product
of a countable family of complete metric spaces and is therefore a complete metric space (Dunford
and Schwartz (1988), p. 32, Lemma 4); (II) in complete metric spaces the complement of a meagre

subset is not meagre (same reference, Baire Category Theorem, p. 20).
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4.2 Existence of AR representations of y;,

Let us now turn our attention to the common-component vector x,. As we have seen,

assuming that x, has rational spectral density and a one-sided rational representa-

tion implies, by Lemma 2, that x; has a fundamental rational representation of the

form (4.1). The meagreness argument developed in Section 4.1, as summarized in

Lemma 3, provides a motivation for assuming more.

Assumption A.3 The vector x, has a representation

cin(L) cia(L) cig(L)
Mult—i-ngt—F"‘—F

Xit =
where
Cif<L) = Cif,O + Cif’lL —|— s —I— Cz‘ﬁlesl and dlf(L) = 1 —I— diﬁlL —|—

forallt e N and f =1,2,...,q. Moreover,

11,02,--,5q+1

(i) Each vector x, = (Xirt Xigt =" Xigeat)s with iy <y < -

autoregressive representation
81,82, esbg+1 il:i27--~7iq+1 _ 11,82,y lg+1
A 1 (L)x, =R iy,

where A™2-ia+1(L) is of degree not greater than S = qs1 + ¢*ss

cee 4 dif752L52

o <ligy1, has an

(4.9)

; and Rilai27---7iq+1

has rank q. This implies that v, is fundamental for all (¢ + 1)-dimensional sub-

vectors of X,
(i1) Representation (4.9) is unique in the sense of Proposition 1(ii).

An immediate consequence of Assumption A.3 is that x, can b

in (1.8), that is,

X1t Xg+2,t
A | | =R, A2 | | =R,
Xq+1,¢ X2(q+1),t

where the degrees of the polynomial matrices A*(L) do not excee

e represented as

(4.10)

d S. Moreover,

those A¥(L)’s are unique among autoregressive representations of degree not greater
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than S. Writing A(L) for the (infinite) block-diagonal matrix with diagonal blocks
AY(L),A%(L),..., and letting R = (RY,R?,---)’, we thus have

A(L)x, = Ru. (4.11)

Two comments are in order. Firstly, of course, any permutation of the variables
produces a distinct (¢ + 1)-blockwise autoregressive representation of the form (4.10).
This is consistent with the observation in Section 4.1 that autoregressive representations
of singular vectors are not unique, even if their degree is minimum, unless n = ¢ + 1,
see Proposition 1.

Secondly, u; and R do not play any special role. By Lemma 2(ii), all the white
noise vectors @; and matrices R, corresponding to alternative representations of the
form (4.11) satisfy R = QR, and #i; = Q'u; where Q is an orthogonal ¢ X ¢ matrix.'?
For identification and estimation of a couple uj, R* based on economic theory, see

Forni et al. (2009) and Forni et al. (2014).

4.3 Construction of the AR representations of y,

Assumption A.3 ensures existence and uniqueness of the autoregressive representa-
tion (4.10). We now show how (4.10), i.e. the matrices A*(L) and (up to multiplication

by an orthogonal matrix) R*, can be constructed from the spectral density of the x’s.

(i) Assume that the population spectral density of the vector x, is known, i.e. that

the nested spectral density matrices £X(6), n € N, are known.

(ii) Denote by xF the k-th (¢ + 1)-dimensional subvector of x, appearing in (4.10),
and write X%, (0) for the (¢ + 1) x (¢ + 1) cross-spectral density between x] and

X

X¥. Then, denoting by I';. . the covariance between X{ and x¥

P;{k,s =E [X{Xffs, i| - / 62892;(k<9)d9 (412)

—Tr

(iii) Using the autocovariance function I')}, ., we obtain the minimum-lag matrix poly-

nomial A*(L) and the autocovariance function of the unobservable vectors

U =AY D)x;, PI=A'Dxi, ... (4.13)

120f course, Ruy, which is the one-step-ahead prediction error of x,, is identified.
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Indeed, letting A*(L) =1, — AYL — -+ — AELS, define

A = (AF AL ... ALY, BY= (T o - o) (4.14)
and
ko a0 Thisa
ka _ ka,—l F;'(k,o T F;'(k,S—Q (4 15)
J )
F;‘{k,fSH F;‘(k,75+2 Y F}Ck,o
We have

Al = B (Ci‘k)_l = By (Clit) aa det (C?gk)_l and F;#k = F;(k - AU]C}%@AW?
(4.16)
where C,q stands for the adjoint of a square matrix C. Invertibility of C},, hence

of (C},)aq, is a consequence of Assumption A.3.

(iv) The oo x oo matrix L' obtained by piecing together the matrices F}I’k is of rank ¢
(see Lemma 2(iii)) and can therefore be represented as LY = S S, where S is
an oo x ¢ matrix. On the other hand, 'V is the covariance matrix of the right-hand

side terms in (4.10), so that S = RH, where H is ¢ x ¢ and orthogonal.
Lastly, using x; = x; + &, letting Z; = A(L)x; and ®; = A(L)&;, we obtain
Zt = Eut + Qt' (417)

In conclusion, starting with the spectral density of the x’s, we obtain the filter A (L),
the vector Z; and the model (4.17). The above construction, based on an estimate of
the spectral density XX(6), is used in the estimation procedure studied in Forni et

al. (2014), see Section 4.4 for an illustration.

4.4 Normalization of Z;

Under our assumptions, the dynamic factor model for the variables z;; has been trans-
formed into model (4.17), which has the form (2.2) for the variables Z;, with r = ¢

and F; = u,. Application of standard principal components to estimate u; and R
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requires that Assumptions B.1 and B.2 be fulfilled. The latter are equivalent to state-
ments (i), (ii) and (iii) of Theorem B, see Section 2.2. In particular, the first eigenvalue
of the variance-covariance matrix of ®,,; should be bounded. We show below that this
is not a consequence of our assumptions so far.

To see this, let us resort again to the simple case in which ¢ = 1 and the common
components are MA(1),

Tip = U + U1 + &t

Considering the 2-dimensional vectors xF, we have, see (4.6):

2
Cr—1Ck —Cr_1

AM(L) =15 — (¢ — cpy) ! L.

2
Cy —Cr—1C

Assumption 3 implies that ¢ — cx_1 # 0 for all & (and all possible groupings), but no
more. In particular, it does not imply that |cx — cx_1| > d for some d > 0 and all k.
As a consequence, the variance of the components of ®, = A(L)&, is not necessarily
bounded, as it should be if ®; were idiosyncratic.

Two possible ways out of this difficulty are: (i) assuming that det(C},) > ¢ > 0 for
all k, this is what we do in our companion paper on estimation, Forni et al. (2014),

(i) normalizing Z;, this is what we do here. Define:
(i) w; =1 if var(Z;) = 0, otherwise w; = \/var(Zy);
(ii) V as the oo x oo diagonal matrix with w; * in entry (4,1);

(i) z = VZ;, r=VR, ¢, = V®,.

Equation (4.17) becomes
z; = ru; + ¢y (4.18)

Adding the following assumption is sufficient, though not necessary, to prove that ¢,

fulfills statement (i) of Theorem B.

Assumption A.4 There exists a real b5 > 0 such that XS, (0) > b for all n and 0 al-

most everywhere in [—m 7| (XS, (0) is the smallest eigenvalue of £5(6), see Section 2.2).
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Proposition 2 Let I'? the variance-covariance matrixz of ¢, and ,uﬁl its first eigen-
value. Under Assumptions A.1, A.2, A.3 and A.}4, there exists a real number M such
that u%, < M for all n.

PROOF. It is convenient here to assume, without loss of generality, that the number n
of variables increases by blocks of size g+ 1. Thus n = m(g+1), where m is the number
of blocks. Let b be a 1 x n vector with |b| = 1. The notation b = (b! b? --- b™) and
V,, = diag(V! V2 ... V™) is used in an obvious way. We denote by ¥¢%(6) the spectral
density matrix of £ and by a%(e™") the j-th row of A¥(e™*), for j =1,2,...,q+1. Let
c=(c'c® --- ¢™), and suppose that ¢/ = 0 if j # k. Then cX¢ (0)c’ = c*E&(0)ct.

As a consequence, if d is 1 x (¢ + 1), then
X (0)dd’ < dEF(9)d’ < A&, (h)dd, (4.19)
for k=1,2,...,m. Using Assumption A.4, statement (i) of Theorem A and (4.19),
b2 ()b’ = bVA (e )T (0) A/ () VD' < XS, (A)bVA (e ) A/ () VD
= X5, (0) zm: bEVEAR (=) AF () VFDH

k=1

m

' . ) m q+1 a.(e—zﬂ)ak‘: (eie) ,
< X,(0) Zbktrace [V"”Ak(e_w)Ak (eZQ)Vk] b = X8, (0) Zbk Z ! . b*
k=1

k=1

m q+1 k¢, —i0\ k'/ if
S EHOD DI ) D S R

= [ ak(em Bk (0)ak () do

—T

Bg m q+1 ak(e—ie)ak’(eie)

ngbk Z/ﬂ_ J J bk/,

af(e)ak' (e7")db

—T
f-a.e. in [—m 7]. Integrating, we obtain

T Bf
bI'b’ = / bX?(9)b'df < E(q +1),
which implies that u¢, = max|p|—1 b['Yb’ is bounded. Q.E.D.

Let us now consider statements (ii) and (iii) of Theorem B. The definition of ¢,

and statement (i) of Theorem A imply that ¢; and 9, = ru, fulfill statement (iii). As
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regards statement (ii), let again ¢ = 1 and
Ty = (cio + ca L)ug + &t

The corresponding representation (4.18) is

Cio
Zip = dipUy + Qip = Nig + Gip,  dip = .
¢ + var(®;)

We have

n n 2
W)= 5 D lew teae™ P and iy =3t

We see that divergence of A, (f) almost everywhere in [—7 7] does not imply divergence
of . However, convergence of u'; occurs only if var(®;)/cZ diverges. Sufficient
conditions for this are (1) var(®;) — oo and ¢ bounded away from zero, (2) var(®;;)
bounded away from zero and c2 — 0. Regarding (1), though we do not assume
that var(®;) is bounded, divergence of var(®;) requires a very special sequence of
coefficients (c;9, ¢;1). Regarding (2), even if we do not assume a positive lower bound
for c;o, convergence to zero of ¢, can be ruled out as very special. Even more far-

fetched are the cases in which the ratio var(®;;)/c% diverges though neither (1) nor (2)
holds, like the ratio ay /8 with

1 for 7 odd 1 for 7 odd

Q= Bi =
1 for i even 1/i for i even.

Extending these considerations to ¢ > 1 and more complex models for x, does not seem
worthwhile. We believe that the analysis of the simple example above is sufficient to
motivate the following assumption on the ¢-th eigenvalue of the variance-covariance

matrix of z;.

Assumption A.5 ], — 00 asn — oo.

Summing up, under Assumptions A.1 through A.5, the variables z;; can be trans-
formed into the variables z;;, which satisfy the static model (4.18). Statements (i), (ii)
and (iii) of Theorem B hold or, equivalently, the variables z;; fulfill Assumptions B.1
and B.2.
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4.5 Estimation

The construction leading from the x’s to the z’s has a natural counterpart in the
estimation procedure developed in the companion paper Forni et al. (2014).

(I) We start with an estimate of X¥¥(0), the spectral density of the observable vari-
ables x;; call 22(9) such an estimate.

(IT) An estimate of the spectral density of the common components, call it f)i(@),
is then obtained using the first ¢ dynamic principal components of 22(9), see Forni
et al. (2000). An estimate of the spectral density of the idiosyncratic components is
obtained as well as 22(9) = 2:(9) — 2:(9)

(IIT) Steps (ii), (iii) and (iv) of Section 4.3 are then reproduced, starting with 22(0)
instead of ¥X(6). We thus obtain estimates Ak(L), R¥, Zps, %, 2. Note that Z,,; and
Z,: result from the application of one-sided filters to the observable variables x;;.

(IV) Lastly, we estimate a static representation with ¢ factors for z,;, obtaining an
estimate 1;. This step employs the first ¢ principal components of z,;, and therefore
only current and past values of the variables x;;.

As already observed in the Introduction, though the dynamic model studied in the
present paper is more general than model (1.3), when a dataset is given, with finite n
and T, the static approach might perform well even if the data were generated by a
model not fulfilling the finite-dimension assumption.

Suppose we want to estimate the impulse-response functions of the variables x;
with respect to the shocks us. Under the dynamic approach, we have to determine ¢
and the maximum lag S for the matrices A*(L), e.g. by means of information criteria;

then estimate the corresponding

[S(qg+1)*+ (¢ + 1)‘1]an1 =[S(g+1)+qn

parameters of the matrices A*(L) and R*. Under the static approach (1.3), we must
determine, r, ¢ and the maximum lag for the matrix D(L), then estimate the corre-
sponding

nr + pr’ 4+ rq

parameters \;y and the matrices D(L) and R. It is easily seen that an a priori assess-
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ment of the relative merits of the two methods is impossible, the situation being much
more complicated than the problem we face when deciding which ARMA specification
should be chosen for a medium-size stochastic vector.

A simple illustration of the difficulty can be obtained by considering example (1.5)
again. In this case the dynamic approach seems definitely superior. Even though a
good approximation can be obtained using the static approach, we may argue that
there is no good reason to use a moving average when the data have been generated
by an autoregression. On the other hand, as the true model is unknown, even if we
correctly specify S as 1 in our dynamic model, we end up estimating n/2 unrestricted
VAR’s of degree 1 for the 2-dimensional vectors (xi: Xi+1:t), therefore twice the “right”
number of parameters.

With these considerations in mind, the static and dynamic methods have been ap-
plied to simulated data in several Monte Carlo experiments by Forni et al. (2014). A
very short summary of our results is that (i) when the data are generated by infinite-
dimensional models like (1.5), the estimation of impulse-response functions and pre-
dictions by the dynamic method is by far better than those obtained via the static
method; (ii) when the data are generated by (1.3), still the dynamic method performs
slightly better. Quite similar results are obtained if the data-generating processes are
data-driven, i.e. if their coefficients result from applying the static or dynamic approach
to a large macroeconomic dataset.

Though not conclusive, the Monte Carlo results in Forni et al. (2014) strongly
suggest that the model proposed in the present paper is a competitive specification for

dynamic factor models.

5 Conclusion

We have argued that assuming a finite-dimensional factor space strongly restricts the
applicability of dynamic factor models, as even models as simple as x;; = [a;/(1 — o, L)] us+
& are ruled out. On the other hand, without that assumption, only two-sided estima-

tors have been proposed in the literature so far.
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The present paper provides a solution to this problem by means of a feasible autore-
gressive representation of the high-dimensional common-component vector x,;. The
key result is that if a stochastic vector x,; has dimension n and rank ¢, where ¢ is
fixed whereas n is huge and growing, then, under some mild assumptions, for generic
values of the parameters, an autoregressive representation for x,, can be determined
piecewise. We do not need a huge, unfeasible, n x n VAR, in which each y;; is projected
on all yj;—r, 7 =1,2,...,n. A sequence of small (¢ + 1) x (¢+ 1) VAR’s is sufficient.

Using the autoregressive representation of x,:, we transform the original variables
x; into variables z; that are governed by a static factor model. All the steps of our

construction have a natural counterpart in an estimation procedure.
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Appendix

A

Proof of Proposition 1

A polynomial of the form

p(L)=ay+a L +---+aL",

where the coefficients ay, are either scalar or matrices, is said to have degree not greater

than r; we say that p(L) has degree r if a, # 0. We need some preliminary results.
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Lemma A.1 Assume that vi = (vit U ... Ug) is orthonormal white noise and let
Yir = Yir (L)v1e + Yie(L)vay + - - - + Yig(L)vge,
fori=1,2,... ,n, where the filters ~;¢(L) are square-summable. In compact form,
yt = L(L)vy,
where T'(L) is n X q. For R > 1 consider the nR-dimensional stack
Yi=(y:¥ie1 " Yiere1)
and the 1 x q filter
W(L) = (Bi(L) B(L) - (L)) D(D)

where B;(L) is a finite-degree polynomial in L, i = 1,2,... ,n. The entries of Y, are
linearly dependent if and only if there exist polynomials [;(L) of degree not greater
than R — 1, with B;(L) # 0 for some i, such that W (L) = 0. Equivalently, the entries
of Y, are linearly independent if and only if W (L) = 0 implies that either 5;(L) =0
for all i or that the degree of B;(L) is greater than R — 1 for some i.

PROOF. If the entries of Y, are linearly dependent, there exists

a= (o1 Qo 01 Qi SQR-1,1 " QR—1,n) 7 0
such that
a(y; yi 1 - Vi) =0, (A1)
that is, setting ay = (g1 -+ agn),

aol'(L)vi + o T'(L)viy + -+ ar 1 L(L)Vi gy =

(A.2)
(g +a1L+ - +ar L""HD(L)v, = 0.

Because v, is orthonormal white noise, (A.2) implies that

(Ofo 4oL+ + aR_lLR_l)F(L) =0,
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that is, setting 3;(L) = ap; + ay; L+ -+ +ap ;L% i=1,2,...,n,

(Br(L) Po(L) --- By (L))T(L) = 0. (A.3)

Since a # 0, §;(L) # 0 for some i. Conversely, starting with (A.3), where the degree
of B;(L) is not greater than R — 1 and (;(L) # 0 for some i, we easily obtain an a # 0

such that (A.1) holds. Q.E.D.
Lemma A.2 Assume that vi = (vi Vo ... Vg) s orthonormal white noise and

Yit = Pt (L)v1s + pia(L)vae + - - - + pig(L)vg, (A.4)
with

pif(L) = piso +piga L+ +pig, L7,

fori=1,2,....q+1, f=1,2,...,q. In compact form,
Yt = POVt + Pth_l —+ -+ P?”Vt—’r‘ = P(L)Vt, (A5)

where the matrices Py are (¢ + 1) X q. Let R = rq. Assume that the entries of the
stack Yy = (Y;_1 Yi_o -+ Yi_g) are linearly independent. Then,

ye =Hiyi1 + -+ Hryi—r + Povy, (A.6)
for some (q+ 1) x (¢ + 1) matrices Hy.

PRroOOF. Consider the stack

Y, 1= (y;—1 y2_2 y;s—R)/ = ,PR(Vili—l Vz,e—2 V;—R—T)/
where
P, P, --- P, o --- 0
o P, --- P, P, -~ 0
Pr =
o o0 --- o P,

The matrix Pg is (¢ + 1)R X ¢(R + ). Setting R = rq, Pg is square. By assumption,
the entries Y,;_; are linearly independent. Thus the matrix Pg is non singular, so that
(ViaVig o+ Vig ) =Pr'(¥i1 ¥ia -+ ¥i_g)'- Substituting vi_y, viy ..., Vip

into (A.5), we get (A.6). Q.E.D.
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Lemma A.3 Rewrite (4.1) in compact form
y: = E(L)Vt7 (A7>

where
eif(L) = cif(L) _ cipo+Cigali+ -+ cigs L™

dﬁ(L) 1+dif71L+ "'—f-dif’@Ls?
fori=1,2,....q+1, f =1,2,...,q. Let S = s51q + s2¢>. For generic values of the

parameters, the entries of the stack (y; yi_, -+ Yi_g41) are linearly independent.

PROOF. Using the notation of Section 4, let u = (¢ + 1)g(s; + s3 + 1). Denote by
p=(p1p2 -+ p,) the p-dimensional vectors of II*"! (the entries of p are the parameters

c and d). In this proof, we deal with scalar polynomials in L
ap+a L +---+a.L",

where the coefficients a,, are polynomials in the parameters, of the form
ki, k
Z Qg g,k D1 Do " -p,kj‘. (A.8)
ki+ko+-+k <K
Because 177! is the closure of an open set in R*, the polynomial (A.8) is generically
non zero in 11971 if and only if at least one coefficient Qky ks, k, 18 nON zero. Note also

that (A.8) can be rewritten as a polynomial in one of the variables, p; for example,
dgp + ApM o A, (A.9)

where the coefficients A; are polynomials in ps,...,p,, and that (A.8) is generically
non zero in IT91 if and only if at least one of the coefficients 4; in (A.9) is generically
non zero.

By Lemma A.1, we must prove that, for generic values in IT19F!, if

(8i(L) (L) - B.L))E(L) =0, (A.10)

where (3;(L) is a finite-degree polynomial and 3;(L) # 0 for some i, then the degree
of B;(L) is greater than S — 1 for some i. Let E (L) be the square submatrix obtained
by dropping E(L)’s last row. We can write
q
det(E, (L)) = h(L)/ ][ dis (L), (A1)
if=1
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where numerator and denominator have degree not greater than S; = ¢s; + (¢* —
q)sy and Sy = syq?, respectively. The coefficient of L% in the denominator is the
product ¢ j=1dif,s, and is therefore generically non zero. The coefficient of L' in the

numerator contains the term

C11,5,C22,51 " * * Caqsn || dif,s,

i,f=1,q
i#f

and no other term with the same exponents for the ¢’s and the d’s. Thus, generically,
numerator and denominator in (A.11) have degrees S; and Ss, respectively.
Using the same argument, the (7, f) entry of the adjoint matrix of E, (L) can be

written as

hip(L)) T dun(L),

h,k=1,...q
hf, ki
where generically the degrees of the numerator and the denominator are S3 = (¢ —

)s1+[(g—1)*—=(¢—1)]s2 and Sy = (g —1)%sy, respectively. Thus, the matrix E (L) is
generically invertible, as a matrix of rational functions in L, and the entries of [E,(L)] ™

can be written as

his(L) [T dne(L)/P(L) = hig (L) /R(L),

h,j=1,...,q

h=f or k=t
where generically the degrees of the numerator and the denominator are S5 = (¢ —
1)s1 + (¢ — (¢ — 1))s9 and Sg = gs1 + (¢* — ¢)s2, respectively.

Consider now the system of equations

(p1(L) pa(L) -+ pg(L)) Eg(L) = — (egr1.1(L) egy12(L) -+ egy14(L))

in the unknown rational functions py(L). Generically, the system has the unique solu-

tion
(1 (L) 72(L) -+ 74(L)) = —(equ1,1(L) eqra(L) -+ eqirq(L))[Eg(L)] 7
We have
(L) = — Cqr1i(L)hip(L) B _22:1 Car1,i(L)hix(L) Hﬂ':jl%;q dgy1,5(L) (L)
h i=1 dg114(L)(L) B h(L) ngl dgt1,:(L) a d(L)
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where generically both vy, (L) and §(L) are polynomials of degree S = ¢gs; + ¢*s3. More-
over, for generic values of the parameters, v,(L) and §(L) have no roots in common.

To show this, recall that the polynomials
l/k(L) = l/k7sLS + l/kVS_lLS_l —+ ...+ Vko and 5([/) = 55'[/3 + 55_1[/5_1 —+ ...+ 50,

both of degree S, have roots in common if and only if their resultant vanishes. That
resultant is a polynomial in the coefficients v ; and d;, involving the term vy 465 (see
van der Waerden 1953, pp. 83-5). All other terms contain powers V,i gh with0 < h < S.
We have

q
~ S ~
S S _ 2 : ] [ S_ S S S S
Vk,550 - [ Cq+1,i,81hikﬂg dq+1,j,82} h(O) = Cti1,1,5 |:h1k,S5 dq+1,j,52h(0> +...
, v )

=1 Jj=1,..., J=2,...,q

(A.12)
where A, g, is the coefficient of order S5 of A(L). Note that k(L) and hf(L) do not
contain any of the parameters c,11,,. As a consequence, all other terms in (A.12)
and in the resultant of v4(L) and §(L) contain powers chJ:lh,iM, with 0 < h < S. Thus
the three-term product within square brackets in the right-hand side of (A.12) is the
coefficient of ch 111, I the representation of the resultant as a polynomial in ¢ 411,
As each of the three terms is generically non zero, the coefficient is generically non

zero, so that the resultant is generically non zero.

Suppose now that the polynomials i (L)’s are such that (A.10) holds, that is

(Br(L) Bo(L) -+ Bg(L)Ey(L) = —Beri(L)(eqr11(L) egi12(L) -+ eqr1q(L)).

Because the matrix E,(L) is generically non singular, as a matrix of rational func-
tions, fy41(L) = 0 implies f;(L) = 0 for all ¢ = 1,2,...,¢ + 1. Assuming that
By+1(L) # 0, we have

Bi(L)
(L) = — .
M = 5@
The results above on 74 (L) imply that generically the degree of 8,41(L) and fx(L) is
at least S. Q.E.D.
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We now can proceed with the proof of Proposition 1. Rewrite (A.7) as

hi(L) 0 -+ 0
0 ho(L) - 0
yi = G(L)vy, (A.13)
0 0 - hen(D)

where

hi(L) = [T dis(L), gis(L) = cip(L) 1] dig(L). (A.14)
F=1

Let us focus on the moving average on the right-hand side. The polynomial ma-

trix G(L) has degree not greater than S = s; + s5(¢ — 1). Suppose that

(BL) BoL) - fpn(l)) G(L) =0, (A1)

where the degree of 8;(L) is not greater than Sq — 1. This implies that

(BKLVMUD Ba(L)ho(L) - /%+ﬂLﬂ%{JLDIﬂL):(L (A.16)

The polynomials 5;(L)h;(L) have degrees not greater than Sq—1+s2q = s1q+52¢>—1.
Lemmas A.3 and A.1 imply that generically 5;(L)h;(L) =0 for all i = 1,2,...,¢+ 1.
Because h;(L) # 0 for all i, then generically (A.15) implies ;(L) = 0 for all i. Using
Lemma A.2, G(L)v, generically has an autoregressive representation of degree s1q +

s2q(g—1), so that, by (A.13)-(A.14), y; generically has an autoregressive representation
yi =Kiyi1 + Koyr o+ + Koy s + E(0) vy (A.17)

of degree S = s1q+s2q®. Moreover, Lemma A.3 proves that generically the components

of the stack
(Yio1 Yio = ¥ios)

are independent. The uniqueness part of the proposition follows. Q.E.D.
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