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This presentation deals with the use of some concrete geometry artefacts (called 
Mathematical Machine)ii for the purpose of drawing curves and realizing geometric 
transformations within the MMLab-ER project developed by UNIMORE. In the 
ancient Greece, at the time of Euclid, some concrete artefacts (such as the 
straightedge and compass) were used in both practical and theoretical geometry. 
Other artefacts were known in the ancient age and were considered again by the most 
important European mathematicians as from the 16th century. This presentation 
reports today’s use of working copies of those instruments (complementary to 
dynamic geometry system) in secondary school teacher education and development 
for the purpose of realizing laboratory activities in their own classrooms. 
INTRODUCTION 
The MMLab-ER project is being conducted by the Mathematical Machines 
Laboratory, of the University of Modena and Reggio Emilia, Italyiii. The Laboratory 
is a research centre for the teaching and learning of mathematics by means of 
instruments. The name comes from the most important collection of the Laboratory, 
the Mathematical Machines, which are working reconstructions of mathematical 
instruments taken from the history of mathematics. Most of the machines concern 
geometry: “a mathematical (geometrical) machine is a tool that forces a point to 
follow a trajectory or to be transformed according to a given law” (Bartolini Bussi & 
Maschietto, 2008). The simplest mathematical machine is the pair of compasses; 
there are also more complex curve-drawing devices and pantographs to represent 
geometric transformations.  
The MMLab-ER project was founded in 2008 by the Emilia Romagna Region, in 
agreement with the Regional School Office. The project was designed to facilitate the 
implementation of a laboratory approach in the teaching and learning of mathematics, 
focusing mainly, but not exclusively, on geometry. The goal of the project was 
agreed by the steering committee, in which researchers, teachers, policy makers and 
school administrators were represented. This goal was twofold: 
• to create a network of mathematical laboratories in different provinces of the 
Emilia-Romagna region with a selected collection of mathematical machines; 
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• to prepare a network of local groups of teachers to be able to implement a 
laboratory approach in their classrooms. 
The participating teachers, who were selected by school principals, were mainly from 
secondary schools (from grade 6 to grade 13, that is, students aged 11-18 years). The 
pedagogical focus of the project was the introduction of the laboratory approach, the 
use of historical machines, and the analysis of exploration and proving processes 
(Antonini & Martignone, 2011). More information about this project are available at 
(Bartolini Bussi & Martignone, 2013). 
The tasks faced by teachers during the MMLab-ER educational program were similar 
to classroom tasks, but designed for teachers. The tasks sequence focused on the 
proving processes, from conjecture and arguments production to proof construction. 
Teachers knew that these processes are fundamental in mathematics, but often found 
difficult to implement them in the classroom. In the following, we shall report about 
an example of exploration of a mathematical machines, as it was realized in the 
teacher education program. 
AN EXAMPLE OF LABORATORY ACTIVITY WITH THE SCHEINER’S 
PANTOGRAPH 

  
Fig.1: An historical picture of Scheiner’s 

pantograph 
Fig.2: Photograph of MMLab-ER 

pantograph reconstruction 

 
Fig.3: a virtual copy  

One of the oldest artefacts for making geometrical transformation is the articulated 
parallelogram, that has been used in the past and is used also today, for drawing or 
engraving proportional figures. Since the end of the ‘500 this type of artefacts was 
practically used by painters and described by Scheiner in 1631 but the mathematical 
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theory incorporated in the artefact was understood only in the ‘800 when geometric 
transformation theory developed, as the pantograph realizes a plane homothethy 
In the development program, the teachers studied the history of these articulated 
systems and also explored and analysed their working reconstruction (figures 1, 2, 3). 
During the laboratory sessions, the teachers, divided in small groups, examined the 
pantographs following a key questions script. This script guides and scaffolds the 
processes of exploration, production of arguments and construction of proof about 
what the artefact does and why it does that. It is worthwhile to observe that the script 
is very similar to the one used in pre-school and primary school for the exploration of 
a whichever artefact (Bartolini Bussi, these proceedings) as both projects are framed 
by the theory of semiotic mediation after a Vygotskian approach (Bartolini Bussi & 
Mariotti, 2008). 
Task 1: How is the artefact made?  
This question focuses the attention on the pantograph physical components that is 
hence analyzed as an artefact, that is an object designed for answering a specific need 
(Rabardel, 1995). For example, what is in the foreground is the length of rods, the 
presence of pivot points and of fixed points. During the artefact examination there are 
two intertwined levels linked respectively to physical and to geometrical aspects. For 
instance, the teachers said: "the rods form a rhombus" and “if I imagine a line 
between the fixed point and the tracer points, I can see two equal triangles”. The 
teachers explored also the possible movements of the articulated system 
configurations and identified the region reachable by the tracer points. A common 
language to identify the components and characteristics of the artefact was created 
and shared: e.g. constraints, degrees of freedom of points, limit configurations, etc.  
Task 2: What does the artefact do?  
This task shifts the focus from the pantograph as artefact to the pantograph as 
instrument (Rabardel, 1995), that is the hybrid entity with an artefact type component 
and a cognitive component, called utilization schemes (Martignone & Antonini, 
2009). These activities lead to the generation of conjectures about how the machine 
works and about the implemented mathematical law. In the production of conjecture 
about what the artefact does teachers analysed the relationship between the tracer 
points (see the fig. 3: "if it moves P, Q also moves" or " if the first tracer goes on a 
little bit, the other goes on the double") and identified the invariant properties of 
drawn figures (“this figure is an enlargement of the other", “They are similar!”). At 
this stage teachers developed the skill linked to the management of the artefact and 
analysed the possible products: for example they discussed the role of the choice of 
figure type (the figure to be enlarged or reduced) and position for the identification of 
the transformation proprieties. 
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Task 3: Why does it do that? 
The question prompts the production of arguments for supporting the hypotheses 
produced about the geometric transformation realized by the pantograph. The 
arguments may be based on physical and mechanical considerations linked to the 
machine structure and movement, or on the identification of mathematical properties 
incorporated in the machine; as a matter of fact, the arguments may be different: "if I 
move one tracer also the other one moves, but twice because the distance from the 
fixed point is twice”. It is important to move quickly from physical arguments to the 
mathematical properties.  
During the pantograph analysis the teachers found elements that characterize the 
structure: i.e. "the rods remain parallel during movement", "the rods form a 
rhombus." Moreover they identified the figures obtained by completing parts of the 
structure (additional elements): "we recognize two equal triangles" or "it's as if there 
were a large isosceles triangle and two similar ones" "connecting a tracer and the 
fixed point the other tracer is one the same straight line". These topics are crucial for 
the subsequent proof construction, in particular for showing that during the 
articulated system movements the tracer points remain aligned and with a 
proportional distance from the fixed point. Teachers constructed different proofs in 
order to validate their hypothesis about what the machine does. Examples follow. 

 
 
OB=BP=2AQ, AQ=CQ and A and C are pivoted in the midpoints respectively of OB 
and BP. The isosceles triangle OBP is similar to the isosceles triangle OAQ because 
their angles are congruent (parallel lines intercepted by an intersecting line).The 
ratio is 1:2. In all the possible articulated system configurations the points O, P and Q 
remain aligned because the angle BOQ is equal to the angle BOP (correspondent 
angles of similar triangles). 

Fig. 4: the first proof  
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In the pantograph OA=AB=BC=CP=AQ=QC. We can identify two isosceles 
triangles OAQ and QCP, which are congruent according to SAS (Side-Angle-Side) 
condition: OA = QA = QC = CP and the angles OAQ and QCP are congruent (AQ is 
parallel to BP and OB is parallel to CQ, because AQCB is a rhombus). For these 
reasons OQ=PQ and therefore the ratio OP/OQ is constant (1:2). In addition, O, P 
and Q are aligned because OQA + AQC + PQC is a straight angle congruent to the 
sum of the internal angles of the triangle OAQ: in fact CQP = OQA=AOQ and AQC 
= QAO. 

Fig. 5: the second proof 
Some crucial aspects emerged: the proof that the three points (O, P, Q) are aligned 
and the identification of the ratio of proportionality related to the articulated system 
structure. In the first proof the teachers work on similar triangles OAQ and OBP: it is 
usually produced by teachers who, during the examination of the machine, focus on 
the similar isosceles triangles (OAQ, OBP) visualized connecting the points O, Q and 
P. The core of the second proof is the identification of different figures in the 
structure of the machine: that is, the rhombus (AQCB) and congruent triangles (OQA 
and QPC). 
The collective discussion following the production of these and other proofs dealt 
with the links between the figures and proprieties identified during the artefact 
examination and the arguments that support the proving chains. In this way teachers 
realized the close connection between the processes of conjectures, arguments 
production and the following proof construction. In particular cognitive unity 
(Mariotti, 1996) was in the foreground with continuity (and possible break) between 
the conjecture production and the proof construction.  
During the teacher education program, and then also in the classroom teaching 
experiments, much time was devoted to think over the relationship between the 
conjectures genesis and the development of the argumentation processes because, as 
argued abovehs, the focus is on process, rather than only on the final mathematical 
product. 
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Task 3: What would happen if …? 
The further task is focused on problem posing and solving activities. This task fosters 
the solution of open-ended problems and connects problem posing and problem 
solving (Watson & Sullivan, 2008). Teachers were asked to explore the variations of 
the parts of the artefact and the consequent variation of the parameters defining the 
homothety: Is it possible to modify the artefact in order to get a ratio of 1:3? What 
could happen exchanging the fixed point O with the point Q in the fig. 3? 
At first teachers were asked to figure out how to change the pantograph structure, 
with regards to the figure formed by the articulated system rods, maintaining the 
geometric transformation implemented with a different ratio. In order to solve this 
problem teachers had to clearly understand how the transformation properties are 
embodied in the artefact structure and to be able to modify the artefact maintaining 
the main features of the transformation: the fixed and tracers points remain aligned 
and at a proportional distance during the movement. (Fig. 6). 
In the second question the structure of the articulated system remained the same and 
another parameter is changed: the location of the fixed point (D instead of O). This 
artefact implements an homothety of ratio -1: the central symmetry. (Fig. 7) 
 

  

Fig. 6: Homothety of ratio 1:3 Fig. 7: Central symmetry 
Teachers imagined the changes and then created the modified artefacts with dynamic 
geometry software. At last a Cartesian coordinate system was introduced in order to 
identify the equations of the transformations. Also the activities of finding the 
equation of a given law represented on plane (and not vice versa) were discussed with 
teachers highlighting the educational potential of the use of different theoretical tools 
and different processes to study the same mathematical objects. 
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DISCUSSION 
The example about Scheiner’s pantograph exploration shows how the teachers 
recognized and analysed the propriety of the homothety in a not conventional 
environment focusing on processes. The artefact was analysed first in a cultural 
perspective, as the teachers studied the historical developments of geometrical 
transformations exploring an instrument used in the history for different purposes, 
both practical and theoretical ones. Later, teachers manipulated the mathematical 
artefact and discovered the mathematical law incorporated. It is worthwhile to 
observe that their exploration was not much different from the one realized later by 
their students in the classroom experiments. They both were guided by specific tasks 
that focus on the development of mathematical processes, as problem posing and 
solving, production of conjectures and argumentation and proof construction. A 
strong attention was given to the proof construction and to the processes that lead to 
it. Despite the undeniable differences between "deductive organization of thinking" 
and "argumentative organization of thinking" (Duval, 1991), there is a fundamental 
link between the production, during the conjecturing phase, of the arguments that will 
be used later during the proving phase (Mariotti, 2006). In the example of Scheiner’s 
pantograph, the first questions (How is the artefact made? What does the artefact do?) 
refer to different elements of the pantographs (the structure, the movement, the 
drawing traced by the artefact) and to different components (figural and conceptual) 
of the geometrical figures representing the linkages (Antonini & Martignone, 2011). 
The other questions exploit again the above elements. The argumentations that justify 
why the pantograph does a homothety are closely related to three elements: the 
drawings traced by the artefact, the structure of the artefact, and the artefact 
movements. The drawing help teachers to recognize the geometrical transformation 
and its proprieties, but in order to proof why the artefacts does that, they have to use 
arguments linked to the articulated system. In the case of argumentations referring to 
the artefact structure, there is cognitive unity between argumentation and proof: the 
arguments about the congruence or similarity of the triangle are used in the proof 
construction. On the other hand, the argumentations based on movement lead to 
further argumentations that explain the motion through the structure of the articulated 
system, and a cognitive unity may or may not occur. These types of arguments about 
the points movement and the relationship between different coordinated movements 
are not suitable for the proof constructions in the Euclidean geometry framework. 
The relationship between the tracers movements can be better studied using analytic 
geometry tools: for example choosing a Cartesian coordinate system and defining the 
homothety function.  
As the Scheiner’s pantograph played a role in the history of transformation geometry 
in the West, the delicate issue of cultural transposition comes to the foreground 
(Bartolini Bussi & Martignone, 2013): first, cultural artefacts may reveal valuable 
information about the society that made or used them; second, the exploration of the 
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artefact draws on very deep systems of beliefs about activity in the mathematics 
classroom. Does is make sense to transpose this activity to other cultures? 
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