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THE CONCEPT OF THE CROSS SECTION

F. Corni, Department of Physics, University of Modena (Italy)

M. Michelini, L. Santi, F. Soramel, A. Stefanel, Research Unit in Physics Education, University
of Udine (Italy) '

When teaching physics in secondary schools, it is possible to use concepts that are related to other
fields in order to approach more topics in a comparative or integrated way. Thus, we highlight not
only basic concepts, but also their involvement with basic physics, research and applied physics. One
such concept is cross section. It is an important concept in classical physics, but it becomes essential
in quantum mechanics where it is not possible to define the trajectory of a particle but only the
probability of finding it in a certain space. Moreover, the concept of cross section is central to the
study of the interactions between elementary particles in nuclear physics at both low and high
energies in atomic collisions. Approaching this topic allows us to move from classical physics, to
wider and more complex fields using a powerful research tool. These are just some of the reasons for
Jooking for an appropriate pedagogic approach to introduce this concept in secondary school,
showing at the same time which associations can be derived from it. To approach the concept of

llisions are needed: specifically the importance of the conservation

cross section, basic notions on co
laws in central collisions, a good knowledge of one-dimensional collisions and the basic statements

about plane collisions (at least for rigid bodies).

1. The Probabilistic Meaning of Cross Section.
Though a geometrical interpretation of the concept of cross section might seem 1o be the easiesl

approach, this is not the case. In fact, this interpretation is consistent only with the classical case of
and this is what needs 1o

rigid spheres. The concept of cross section is generally a probabilistic one,

be highlighted in our approach. Let - -
us look at some typical cases of
collisions, highlighting the general
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body 2

aspects of the phenomena and | SR

showing ~ how to relate D I —~ 3 A
measurements to interpretations, | = 7N T
independently from the traditional | sl \/: /

force/equation model of | e

consider as our first example the

elastic collision of two rigid
a o ]_ o s 1

spheres, .m rh]atip"} _[0 the solid Figure 1. Collision of two rigid spheres. Heavy artows represent tho

center of mass relerence SYSIEM  yeloeity vectors of the two bodies, before and after collision.

(figure 1). From first principles and
an idealization of the system (infimte rigidity, normal collision, identity of the spheres before and

after collision), we derive that the rebound of the two spheres is symmetrical with respect to the line
through their centers. The scattering angle, 6, is connected to the distance b between the lines o
which tlie centers of the two spheres were moving before the collision (impact parameter), as derived

from the following equation:

b= (R+R>) cos(8/2) (1)
The interaction during the collision is characterized by the impulse vector 1 acting between the (Wil
spheres (e.g. from 2 to 1). Eq.(1) and the comparison between the initial and final states of the
system give us all possible information about what happened during the collision. In more complex
cases, this straightforward procedure fails. In particular, when we replace sphere 2 with an irregulig
shaped object, measuring the dependence of the scattering angle 0 from the impact parameter [t
becomes more difficult. Another cause of unpredictability is the finite precision with which the
impact parameter is determined. In fact, even a small variation in b can cause variations of the

motion/trajectory scheme. Let us \
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Figure 2. a) Scheme of a scattering ‘experiment’ of a beam of light particles (from left to right) by an asymmetric rigid
body. The trajectories of the scattered particles are represented by dotted lines, up to the detector (the large circle
centered on the scattering body): the number of the particles detected in a given angular sector is represented by the
height of the strips drawn on the detector. The histogram in b) reports this distribution as a function of the scattering
angle (the central peaks correspond to the unperturbed particles).

scattering angle of any order of magnitude. A consequence of this is that by driving the two bodies
against each other a number of times with a poor control of initial conditions, the individual results
(final states) obtained are significantly different. Does this mean that such an experiment does not
give any kind of information about the collision or the geometry of the two bodies? Let us look at
figure 2a where the results of a certain number of impacts are depicted. The scattering angles are
distributed over the range (-160°,160°), with fluctuations from bin to bin essentially due to limited
statistics (400 events). A more accurate examination shows a general asymmetry in the distribution,
due to the asymmetrical shape of the scattering body (figure 2b shows the average 'theoretical
behavior', superposed on the histogram). This relation between distribution asymmetry and
asymmetrical shape gives a qualitative example of how to extract the basic properties of the collision
phenomenon from the scattering angle distribution. In general, a complete characterization of the
collision requires the knowledge of the probability P; for any given measurement outcome S;; these

probabilities can be obtained from the averages P- <M / N,o,>

where N; is the number of outcomes S; for N,, observations carried out. This however has the
disadvantage that probability, the element which is more related to the interaction, still depends on
the details of the measuring procedure. For example, if we increase the width of the distribution of
the impact parameter of body 1, there will be a greater number of cases in which body 1 will not
interact at all with body 2, scaling the entire probability distribution. In order to avoid this, it is
necessary to explicitly consider the short range character of the interaction (as are the cases so far
observed).

Figure 3 shows a uniform beam of (identical) particles colliding with a target of evenly distributed
(identical) particles. So an incoming particle, wherever it crosses section (a), finds, on average, the
same target distribution. Therefore the total number N; of scattering events having a certain final
state S; will be proportional to the number of incident particles (there are no border effects due to the
'width' of the beam).

On the other hand, given the limited range of the scattering phenomenon, a certain incident particle
will only interact with the particles of the target within the range of action of the force (represented




194 2. Special Aspects 2.2 Undergraduate Education

I in the figure by the small square of
area A on section (b)).
The probability that any incident
particle of the beam interacts with a
target  particle within area 4,
originating a certain 5 result, will be:
P ::,P ! P 2 fi2 int
where P, is the probability that the
incident particle will cross 4, P, is the
probability that there will be a target
particle in that area and Py, the
probability for that type of interaction.
If the two distributions are sufficiently

sparse (a very important hypothesis

Figure 3. Scheme of a beam of particles colliding on a target, ; ] t
constituted by particles arranged in a bi-dimensional array (section which holds in all the following), £
b). The dotted parallelogram represents the active volume ofabeam and P, are equal to the average

particle (e.g., the region 1n which it can interact with a target number of particles in that area:
particle), P;=<Np>=n; 4, P,=<Ny>=n; 4

where n; and n; represent the surface densities in a projection transversal to the axis of the beam. If

we sum up all the small squares in which the section Ao effectively crossed by the beam can be

divided, we derive the average number of interactions with outcome Sit
] <]Vi> = NA PI PZ Pim: (AIDI/A) (nl A) (l’lz A) Pim: AIDI npn; (A Pinl)-
We can clearly see that the characteristics more closely related to the observed interaction are shown

by the factor o=(4 Pin)-
This quantity is not properly a probability as its dimension is that of an area; for this reason it is

better to call it cross section (for the reaction channel considered) and to rewrite the previous
equation as follows:

<N>=A 1 N2 Ci -

2. Total and differential Cross Sections
Let us go back to the example in figure 1 and ask ourselves which is the cross section of the proces

in which the two particles are effectively scattered in the final state. Such a section will be called total
as it includes all the possible results in which the final state of the system does not coincide with the
initial state. The two spheres will interact with each other only if b<R/*+R.. In this case, the two

spheres will certainly collide (Pi=1)- Thus:
Gt = A Pim =7 (Rl"'RZ)2
This result (valid for any reference system) can be used for a geometrical interpretation of the
concept of cross section. Let us assume that R;<<R;: subsequently G~ xR, that is to say i
equal to the area of the projection of body 2 on a plane transversal to the direction of the collision
This result does not depend on the shape of body 2, the latter in fact could well be made of o
separated set of single bodies. If the single bodies do not overlap along the direction of the collision,
the total cross section is equal to the sum of the areas of each constituting body. What kind ol
information does the total cross section give? As an integral quantity, it gives information only on the
strength of the interaction (or, alternatively, on its range); a deeper insight of the phenomenon cai I
achieved only by considering explicitly each possible result S; of the collision. Let us consider thie
histogram in figure 2, that represents the angular distribution of the results of collision. The i-th hiil
of the histogram contains the number N, of the outcomes for which the scattering angle is includud
between the extremes (0, 0 + A®) of the bin itself. Thus the cross section for the collisions witly w

scattering angle at such an interval is:
o = AP ~ AN, [(N.A)=N,/n,
1 ! 1 11
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This value depends on the bin width A6. To avoid such dependency, the following quantity is
. dce .. o© . <N, > 1
introduced: — = lim — = lim L=

dB  40-0A0 460 n,  AB
This is called differential cross section. The quantity thus introduced is a continuous function of the
variable to which it is referred (in this case, the scattering angle). Practically, though, it is preferable
to introduce a differential cross section which is not referred to the plane scattering angle but to the

solid angle: Ll = lim 2 VEME 3)
dQ) sa-o n, AQ

where AQ =A cosfA$ and ¢ is the azimuthal scattering angle, with respect to the axis of the beam.
As a practical example, let us calculate the differential section for the scattering of the material point
on a sphere with radius R. As the system has cylindrical symmetry around the axis of the beam, the
number d¥; of incident bodies which have a collision parameter included between b and b+db is:

dN/ =n;(27tbdb)
These bodies are all scattered at the same angle © which is linked to b by:

b =R cos(6/2)
Substituting in the equation of the cross section, we derive:

4o R

a4
which is independent from 6. The integral on all the solid angle gives the total cross section which
obviously coincides with the area of the section of the sphere.
The calculation can be extended, in a more complex way but still using the elements of the secondary
school syllabus, even to cases of scatiering bodies with a more complex profile, for example that

generated by the rotation of an ellipse of x; and y, semi-axes, around the x axis (oriented as the
beam). In this case we derive:

do _ )% G20, Yo 8
O aly, 2 X% 2

In figure 4, the differential cross section (in arbitrary units) is shown, calculated for three different
cases: a) xp = 0.9 yy, b) x4 = yy (sphere),
c) xp = yo/ 0.9. We can see how the

-2

—~ 0.4
dependence of the differential cross S L
section on the scattering angle gives an G
information on the collision. In case a), 00'35 T
where do/dQ is larger at small angles, N B
the interaction proceeds mainly by 8 03

peripheral collisions; this implies that the <
scattering body shows an obtuse end to

the beam. The opposite happens in case . __/N
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derive from the model used to describe the dynamic part of the process).

3. The Coulomb Scattering of pointlike bodies
Let us now examine a case that involves a more complex type of interaction than that taking place

between two ideal rigid bodies: the collision of two pointlike bodies with Z Z' charge, which

interactaccording to a repulsive Coulomb potential. Let us also assume that the mass of one of the
; P e e )

two bodies (scatterer) 1s

much bigger than the other Vi
(incident) ~ sO that its
position does not vary n
the collision process and we |
can therefore consider it |
otill at rest. The calculation |
of the differential cross

section for this process is Mz < |
1 v ": —_— _\/ r
done in the same way as for | 7. ; . AT/ \e
the previous section: i N ‘! |
calculation of the relation- c M, Z' A

|

ship between the collision
parameter and  scattering Figure 5. Scheme of collision of two charged bodies to ¢
angle and subsequent appli-  cross section.

cation of the definition.
The Coulomb force on the incident body is central and conservative, thus the conservation principles

of angular momentum and energy apply. We derive that the speed of the incident body is the samu
before and after the collision, and so the variation of its momentum is equal to:

AP, =2 M, vy, sin(®/2) n
where the versor n s directed according to the bisector of the angle between the directions of

incidence and scattering (figure 5). Using the theorem of impulse we derive:

o (x0)2 2 (n-8)/2 2
AP;=n«AP;= [Fcosddf = ZZF_‘:C cos¢§éd¢ = ZZiEe cos ¢ df
(e-w)'2

b, we considered the conservation of the angulu

alculate the Rutherford

_o @72
in which, in order to substitute the factor dt/d
momentum.

The value of the inte

AP19

gral is easy 10 calculate and we obtain, by comparing the two expressions o1

2z e cot, 9
g2

s the initial kinetic energy of the particle. Finally,

i (22 . 4(6]
—_— = sin — (4)
i\ 4E 2

In order to calculate the total cross section, we integrate eq.(4) in the range (e<9<l 80% (g > 0)

2N\2
180 i
c(e)= j—inndcose =2n A [—L——lj
. dQ 4E l—cose 2
0.

Thus, the total cross section diverges as € —*
This fact reflects the long-range nawre O
corresponds Lo very large impact parameters. However, a ¢
angle € iS introduced by the experimental conditions: the transverse sizi
the screening effect of electrons (in targets cons

impact parameter.

b=

where E i by applying the definition (3), we obtain:

f the electromagnetic force; small-angle scaticrin
utoff in the smallest possible scattciing
¢ of the beam and targel, anl

tituted by atoms) both limit the largest permisaihle
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4. The 'Rutherford’ Experiment

Expression (4) was derived in the historical context of the study of the structure of the atom, carried
out by Rutherford and other experimenters at the begining of century. In this period, it was well
known that the atom, electrically neutral, contains negatively charged electrons of a mass which is
much lower than the mass of the atom itself The problem therefore was to understand how the
greater part of the mass of the atom, which is positively charged, is distributed through the volume
of the atom. Beginning with Geiger and Marsden in 1909, in order to choose among different
hypotheses, a series of measurements of scattering of o particles (produced by the decay of Po*'%) on
athin leaf of gold was performed. The experimental results demonstrate the non-applicability of the
Thompson model: in particular, the predictions of the Thompson model are in clear contrast with the
relatively high fraction of a particles scattered at large angles. Quoting Rutherford: /¢ seems
reasonable to suppose that the deflection through a large angle is due to a single atomic encounter,
Jor the chance of a second encounter of a kind to produce a large deflection must in most cases be
exceedingly small. A simple calculation shows that the atom must be a seat of an intense electric
Jield in order to produce such a large deflection. Passing to a more quantitative level, Rutherford
demonstrated that the results obtained were consistent with the predictions derived from the
hypothesis that the mass of the atom, positively charged, was concentrated in a small area of the
volume of the atom: in practice, eq.(4). How small? The data then available agreed with (4)
assuming a nuclear radius less than 4.5 10"*m: subsequent measurements have shown deviations
from the sin*(6/2) law, corresponding to impact parameters less than 10"*m, under which another
potential, due to the strong interaction, becomes effective in addition to Coulomb potential: the
structure of the nucleus reveals itself,

5. ’Rutherford’ Scattering inside the Nucleus
Dealing with reactions where the impact parameter b is close to the nucleus radius R or even
smaller, the two nuclei will now be able to "touch’ each other during the collision and therefore the
result of the interaction will be governed by nuclear forces rather than Coulomb forces (nuclear
forces are stronger than Coulomb forces for b=R). The result of such a collision will depend on how
much the two nuclei touch, or, in other words, how big is the overlap between the cross section
areas of the two nuclei. If the nuclei come very close but do not touch, they will just be able to
exchange some energy and they will be left in an excited state after the interaction; if only the
peripheral parts of the nuclei overlap they will exchange some nucleons too (protons and neutrons)
and the result will be two new nuclei in an excited state with masses close to the original values;
moving to bigger overlapping areas the nuclei could be able to fuse forming final nuclei with masses
very close to the sum of the original nuclei, high excitation energy and high angular momentum (of
course mass, energy and angular momentum must be conserved during all these processes). As for all
processes in physics the three scenarios briefly described (they are not the only possible ones), do not
happen in a sharply defined 4 range but are the dominant processes for specific b ranges. This implies
that, to know the total cross section, one has to measure all the processes in a specific b range, The
cross section, though remaining an area, will then give the probability for different nuclear processes.
In a similar way one can understand that Rutherford scattering will be observed too even if b<R.
How do we measure a cross section for a nuclear reaction?
One has to keep in mind a basic thing: due to the high number of nucleons involved in a nuclear
reaction (for example for *Ni + *Ni there are 122 nucleons involved: 56 protons and 66 neutrons),
we are not able to write down a simple expression for the nuclear force and can not derive a simple
equation for the cross section like in Rutherford's case. To overcome the problem one remembers
that we could have, at the same time, some nuclei interact via the nuclear field and some others via
the Coulomb field and then write the following equation :

_— onve = A op Nyy/ N
with oz the Rutherford cross section, Nyyc the number of nuclear events, Nz the number of
Rutherford events and 4 a parameter depending on detectors’ solid angles and intrinsic efficiencies.
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The only thing we do not know yet is how do we measure Nywe. This number depends on the nuclear

process we want t0 observe, so let's think about a nuclear reaction where the two nuclei come close
enough to fuse and form final nuclei at high excitation energy and angular momentum. Let's pick one
of these nuclei: it has to dissipate the extra energy and angular momentum and will achieve it
removing nucleons from high energy levels to lower energy ones and emitting photons with energy
equal to the difference of the two levels (these photons are called y rays).

The deexcitation pattern is then a cascade of y rays. For each nuclear fusion event we will have a y
ray cascade. The cascades could have different origins (in energy and angular momentum), but they
will all end up at the same point (called the ground state level of the nucleus with zero excitation
energy and the lowest possible angular momentum) as if they were going down 2 funnel. At the
bottom all y cascades will follow a common path; this means that every time we measure a y ray
which makes the deexcitation from the first excited state to the ground state (usually denoted as the

2*_50" transition), we can say we had a fusion event. If we now denote the total number of 20"

transitions with N, and with oy the nuclear fusion cross section we can finally write
Ofus = AGRNy /NR .
We can now conclude that measuring both y rays and Rutherford scattering events allows to deduce

the cross section for the nuclear process called fusion. In a similar way it is possible to measure the

cross section for other nuclear processes.
6. Closing Remarks

In basic physics courses the concept of the cross section is often introduced as a semi-qualitative
definition, mostly on a geometrical basis, as required or after the study of impact in mechanics. It is
rarely studied in detail and its significance as a paramelter of measurement in many areas of physics
(from the field of solids, from the point of view of the analysis techniques, to the nuclear physics at
high and low energies). A cultural analysis for teacher training which may produce the necessary
knowledge for a pedagogic follow-up suitable to the tole that such a parameter plays in all
experimental research, gives us some su ggestions fora teaching proposal.
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CREATION AND DETECTION OF “THERMAL" WAVES THROUGH ABSORPTION OF
MODULATED LIGHT BY SOLIDS
F.J. Macedo, J.A. Ferreira, Department of Physics, University of Minho, Braga (Portugal)

1. Introduction
Place the substance to be experimented within a glass test-tube, connect a rubber tube with the

mouth of the test-tube, placing the other end of the pipe to the ear. Then focus the intermittent beam
upon the substance in the tube. I have tried a large number of substances in this way with greal
success, although it is extremely difficult to get a glimpse of the sun here, and when it does shint
the intensity of the light is not lo be compared with that to be obtained in Washington. | gol
splendid effects from crystals of bichromate of polash, crystals of sulphate of copper and fron

tobacco-smoke. A whole cigar placed in the test-tube produced a very loud sound....!
The text presented above is the transcription of part of a letter, written
colleague in 1880. It represents a proo
he was investigating the photophone. Although the discovery was
interesting” by many scientist
because they had no acoustic detectors better
not much interest in the photoacous

by A. G. Bell to an Americin

£ of his accidental discovery of the photoacoustic effect whilé
classified as “extremely

s at that time, it was very difficult for them to quantify any results
than their ears. Because of this limitation, therc wis
tic effect for many years. Some studies took place in the 194(
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