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Abstract

We study a system of particles in the interval [0, ε−1] ∩ Z, ε−1 a positive integer. The
particles move as symmetric independent random walks (with reflections at the endpoints);
simultaneously new particles are injected at site 0 at rate jε (j > 0) and removed at same
rate from the rightmost occupied site. The removal mechanism is therefore of topological
rather than metric nature. The determination of the rightmost occupied site requires
a knowledge of the entire configuration and prevents from using correlation functions
techniques.

We prove using stochastic inequalities that the system has a hydrodynamic limit,
namely that under suitable assumptions on the initial configurations, the law of the density
fields ε

∑
φ(εx)ξε−2t(x) (φ a test function, ξt(x) the number of particles at site x at time

t) concentrates in the limit ε → 0 on the deterministic value
∫
φρt, ρt interpreted as the

limit density at time t. We characterize the limit ρt as a weak solution in terms of barriers
of a limit free boundary problem.

1 Introduction and model definition

This paper is inspired by the analysis in [12] and we are indebted to Pablo Ferrari for discus-
sions and in particular for suggesting the inequalities in Section 6. This is a first in a series
of three papers where we study a particle system whose hydrodynamic limit is described by
a free boundary problem.

Our system is made of particles confined to the lattice [0, ε−1]∩Z, for brevity in the sequel
we shall just write [0, ε−1]. In this notation ε−1 is a positive integer denoting the system size
and we will be eventually interested in the asymptotics as ε→ 0. The evolution is a Markov
process {ξt, t ≥ 0} on the space of particles configurations ξ = (ξ(x))x∈[0,ε−1], the component
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ξ(x) ∈ N is interpreted as the number of particles at site x. The generator is denoted by

L = L0 + Lb + La (1.1)

(the dependence on ε is not made explicit). L0 is the generator of the independent random
walks process, it is defined on functions f by

L0f(ξ) =
1

2

ε−1−1∑
x=0

L0
x,x+1f(ξ) (1.2)

L0
x,x+1f(ξ) = ξ(x)

(
f(ξx,x+1)− f(ξ)

)
+ ξ(x+ 1)

(
f(ξx+1,x)− f(ξ)

)
(1.3)

where ξx,y denotes the configuration obtained from ξ by removing one particle from site x
and putting it at site y, i.e.

ξx,y(z) =


ξ(z) if z 6= x, y,
ξ(z)− 1 if z = x,
ξ(z) + 1 if z = y.

Namely L0 describes independent symmetric random walks which jump with equal probability
after an exponential time of mean 1 to the nearest neighbor sites, the jumps leading outside
[0, ε−1] being suppressed (reflecting boundary conditions).

The term Lb in (1.1) is

Lbf(ξ) = jε
(
f(ξ+)− f(ξ)

)
, ξ+(x) = ξ(x) + 1x=0 (1.4)

It describes the action of throwing into the system new particles at rate εj, j > 0, which then
land at site 0; instead La removes particles:

Laf(ξ) = jε
(
f(ξ−)− f(ξ)

)
, ξ−(x) = ξ(x)− 1x=R(ξ) (1.5)

namely a particle is taken out from the edge Rξ of the configuration ξ defined as

Rξ is such that:

{
ξ(y) > 0 for y = Rξ

ξ(y) = 0 for y > Rξ
(1.6)

Laf(ξ) = 0 if Rξ does not exist, i.e. if ξ ≡ 0.
We interpret L as the generator of a system of independent walkers with “current reser-

voirs” which impose a positive current εj at site 0 and at the edge of the configuration. See
[9, 10] for a comparison with the density reservoirs used in the analysis of the Fourier law.
Here is a list of the main issues which are studied in this and in the other papers in this series.

• The interaction described by La is highly non local as Rξ depends on the positions of
all the particles. This spoils any attempt to use the BBGKY hierarchy of equations for
the correlation functions, as customary in ε perturbations of the independent system,
see for instance [8].
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• The La interaction is “topological rather than metric”, as the influence on a particle i of
a particle j only depends on whether j is to the right or left of i and not on their distance.
Topological interactions appear often in natural sciences as in population dynamics, in
particular the motion of crowds of people [6], or of animals [1]. Our result shows that
there are natural examples in physical systems as well. The relative simplicity of our
model allows a rigorous analysis of such an interaction.

• To the left of Rξ the particles do not feel the La interaction and move freely, but Rξ
depends on the configuration of particles and hence on time as well. Ours therefore
is a microscopic model for a free boundary problem and one may thus guess that the
hydrodynamic limit is also ruled by a free boundary problem. In such a case the
hydrodynamic equations would be the linear heat equation in an open, time dependent
space interval with suitable boundary conditions complemented by a law for the speed
of the right boundary.

• The action of Lb and La is to add from the left and respectively remove from the right
particles at rate εj. They act therefore as “current reservoirs” [11, 9, 10] because they
are imposing a current εj (recall that for density reservoirs [7, 4] the particles current
scales by ε). Supposing the validity of Fick’s law the stationary macroscopic profiles are
then linear functions with slope −2j: there are therefore infinitely many such profiles
(as here the boundary densities are not fixed). Two scenarios are then possible: either
there is a preferential profile or there is a second time scale beyond the hydrodynamical
one, where we see that such profiles are not stationary.

We shall give answers to most of the above issues, our main results being stated in the next
section.

2 Main results

Macroscopic profiles are functions u ∈ L∞([0, 1],R+) that we also regard as positive Borel
measures on [0, 1] via the correspondence u → u dr. For any Borel positive measure µ on
[0, 1] we define

F (r;µ) =

∫ 1

r
µ(dr′), r ∈ [0, 1]

setting, by an abuse of notation,

F (r;u) =

∫ 1

r
u(r′) dr′, r ∈ [0, 1] (2.1)

We then say that u ∈ L∞([0, 1],R+) has “an edge” R(u) if

R(u) = inf{r : F (r;u) = 0} < 1 (2.2)

The definition extends naturally to Borel positive measures µ on [0, 1].
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Definition 2.1 (Assumptions on the initial macroscopic profile). We denote by ρinit the
initial macroscopic profile, we suppose that ρinit ∈ L∞([0, 1],R+).

Remark. For some results we will need extra assumptions, namely that ρinit ∈ C([0, 1],R+)
and/or that it has an “edge”.

We shall next discuss in which way particle systems and evolution of macroscopic profiles
are related.

Hydrodynamic limit.

Particle configurations ξ are elements of N[0,ε−1] which may be regarded as positive measures
µξ on the real interval [0, ε−1] by setting

µξ =

ε−1∑
x=0

ξ(x)Dx

where Dx, the Dirac delta at x, is the probability measure supported by the point x. Analo-
gously to (2.1) we set

Fε(x; ξ) =

∫ ε−1

x
µξ(dx

′) =
∑
y≥x

ξ(y), x ∈ [0, ε−1] (2.3)

and, as for the macroscopic profiles, we say that ξ has an edge Rξ if

Rξ = inf{x : F (x; ξ) = 0} < ε−1 (2.4)

which means that Rξ < ε−1 is the largest integer x such that ξ(x) > 0, in agreement with
(1.6). To compare macroscopic profiles and particles configurations we shall use the functions
Fε(x; ξ) and F (r;u). We define in particular the local averages:

A`(x, ξ) :=
1

`

(
Fε(x; ξ)− Fε(x+ `− 1; ξ)

)
=

1

`

x+`−1∑
y=x

ξ(y) (2.5)

with ` a positive integer and x ∈ [0, ε−1− `+ 1]. The corresponding quantity for macroscopic
profiles u ∈ L∞([0, 1],R+) is

A′`(x, u) =
1

ε`

(
F (εx;u)− F (ε(x+ `);u)

)
(2.6)

Definition 2.2 (Assumptions on the initial particle configuration). We fix b < 1 suitably
close to 1 and a > 0 suitably small, for the sake of definiteness we set b = 9/10 and a = 1/20.
We then denote by ` the integer part of ε−b and suppose that for any ε the initial configuration
ξ verifies

max
x∈[0,ε−1−`+1]

∣∣∣A`(x, ξ)−A′`(x, ρinit)
∣∣∣ ≤ εa (2.7)

and moreover that if ρinit has an edge R(ρinit), see (2.2), then

|εRξ −R(ρinit)| ≤ εa (2.8)

with Rξ as in (2.4). We shall denote by P
(ε)
ξ the law of the process {ξt, t ≥ 0} in the interval

[0, ε−1] with generator L given in (1.1) and started at time 0 from a configuration ξ as above.
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Thus the initial configuration ξ converges to ρinit as ε→ 0 in the sense of (2.7). Our first
result proves that the convergence extends to all positive times (but in a weaker sense).

Theorem 2.1 (Existence of hydrodynamic limit). Let ρinit ∈ L∞([0, 1],R+) and ξ as in
Definition 2.2. Then there exists a non negative, continuous function ρ(r, t), t > 0, r ∈ [0, 1],
such that for any r ∈ [0, 1]

lim
t→0

F (r; ρ(·, t)) = F (r; ρinit(·)) (2.9)

and such that for any t > 0 and ζ > 0

lim
ε→0

P
(ε)
ξ

[
max

x∈[0,ε−1]
|εFε(x; ξε−2t)− F (εx; ρ(·, t))| ≤ ζ

]
= 1 (2.10)

Moreover, if ρinit ∈ C([0, 1],R+) then ρ(r, t) is continuous in [0, 1]×{t ≥ 0} and ρ(r, 0) = ρinit.

The above convergence implies weak convergence of the density fields against smooth test
functions φ:

lim
ε→0

P
(ε)
ξ

[∣∣∣ε∑
x

ξε−2t(x)φ(εx)−
∫ 1

0
φ(r)ρ(r, t)dr

∣∣∣ ≤ ζ] = 1, for all ζ > 0.

The free boundary problem.

Theorem 2.1 states the existence and some regularity properties of the hydrodynamic limit,
but does not say about its qualitative features: in particular which equation is satisfied by the
limit and which equation rules the motion of the edge, if it exists. The continuum analogue
of our particle evolution is

∂ρ

∂t
=

1

2

∂2ρ

∂r2
+ jD0 − jDRt , j > 0 (2.11)

where the first term (on the right hand side) corresponds to the random walk evolution, jD0

to the addition of particles at the origin and jDRt to the removal of the rightmost particles.
In [2] a suitable notion of quasi-solutions for (2.11) in R+ is given and it is proved that

the limit of such quasi-solutions coincide with the hydrodynamic limits found in Theorem 2.1.
The main ingredient in the proof is established here and it is based on the notion of upper
and lower barriers. These are “approximate solutions” of (2.11) which bound from below
and from above the hydrodynamic limit ρ(r, t), the inequalities being in the sense of mass
transport.

This is defined as follows: two positive Borel measures µ and ν on [0, 1] are ordered with
µ ≤ ν if

F (r;µ) ≤ F (r; ν) for all r ∈ [0, 1] .

We shall apply the notion to measures in U defined as follows:

Definition 2.3. (The set U and the partial order). U is the set of all positive Borel measures
u on [0, 1] which have the form u = cuD0 + ρu(r)dr, cu ≥ 0, ρu ∈ L∞([0, 1],R+). By an abuse
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of notation we shall also write the elements of U as u = cuD0 + ρu. For any u, v ∈ U we then
set

u ≤ v iff F (r;u) ≤ F (r; v) for all r ∈ [0, 1] . (2.12)

We also write |u− v| = |cu − cv|D0 + |ρu − ρv| ∈ U so that

|u− v|1 := F (0; |u− v|) = |cu − cv|+
∫ 1

0
|ρu(r)− ρv(r)| dr (2.13)

is the total variation of the measure u− v.

Definition 2.4. (The cut and paste operator). We define for any δ > 0 the subset Uδ ⊂ U as

Uδ := {u = cuD0 + ρu : F (0; ρu) > jδ} (2.14)

and the cut-and-paste operator K(δ) : Uδ → U

K(δ)u = jδD0 + 1r∈[0,Rδ(u)]u, Rδ(u) = inf{r : F (r;u) = jδ} (2.15)

Observe that F (0;K(δ)u) = F (0;u).
In the following definition of barriers we use the Green function Gneum

δ (r, r′) (for the heat
equation in [0, 1] with Neumann boundary conditions):

Gneum
t (r, r′) =

∑
k

Gt(r, r
′
k), Gt(r, r

′) =
e−(r−r′)2/2t
√

2πt
(2.16)

r′k being the images of r′ under repeated reflections of the interval [0, 1] to its right and left
(see for instance [14] pag. 97 for details).

We denote by

Gneum
δ ∗ f(r) =

∫
Gneum
δ (r, r′)f(r′) dr′

and observe that F (0;Gneum
δ ∗ u) = F (0;u) and Gneum

δ ∗ u ∈ L∞([0, 1];R+).

Definition 2.5 (Barriers). Let u ∈ L∞([0, 1],R+) be such that F (0;u) > 0. Then for all δ

small enough u ∈ Uδ and for such δ we define the “barriers” S
(δ,±)
nδ (u) ∈ Uδ, n ∈ N, as follows:

we set S
(δ,±)
0 (u) = u, and, for n ≥ 1,

S
(δ,−)
nδ (u) = K(δ)Gneum

δ ∗ S(δ,−)
(n−1)δ(u) (2.17)

S
(δ,+)
nδ (u) = Gneum

δ ∗K(δ)S
(δ,+)
(n−1)δ(u)

The families {S(δ,+)
nδ (u)}δ>0 are called upper barriers and {S(δ,−)

nδ (u)}δ>0 lower barriers.

The functions S
(δ,±)
nδ are obtained by alternating the map Gneum

δ (i.e. a diffusion) and
the cut and paste map K(δ) (which takes out a mass jδ from the right and put it back at
the origin, the macroscopic counterpart of Lb and La). It can be easily seen that unlike the

original process ξt the evolutions S
(δ,±)
nδ conserve the total mass, that S

(δ,+)
nδ maps L∞ into

C∞ while S
(δ,−)
nδ has a singular component (jδD0) plus a L∞ component (which is C∞ inside

its support).

The name “upper and lower barriers” is justified by the following theorem:
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Theorem 2.2 (Separated classes). Let u ∈  L∞([0, 1],R+), F (0;u) > 0, then

S
(δ,−)
t (u) ≤ S(δ′,+)

t (u) for all δ, δ′, t such that u ∈ Uδ ∩ Uδ′ and t = kδ = k′δ′, with k, k′ ∈ N
(2.18)

where the inequality is in the sense of Definition 2.3.

It thus looks natural to look for elements which separate the barriers:

Definition 2.6 (Separating elements). For a given non negative u ∈ L∞, the function u =

u(r, t), r ∈ [0, 1], t ≥ 0, is below the upper barriers {S(δ,+)
nδ (u)} if

u(·, t) ≤ S(δ,+)
t (u)(·) for all δ > 0 and t such that t = kδ, k ∈ N (2.19)

It is above the lower barriers {S(δ,−)
nδ (u)} if

u(·, t) ≥ S(δ,−)
t (u)(·) for all δ > 0 and t such that t = kδ, k ∈ N (2.20)

If it is both above {S(δ,−)
nδ (u)} and below {S(δ,+)

nδ (u)} then u(·, t) separates the barriers

{S(δ,±)
nδ (u)(·)}.
Observe that if u(·, t) separates {S(δ,±)

nδ (u)} then u(·, 0) = u(·).

Theorem 2.3 (Existence and uniqueness of separating elements). Let u ∈ L∞([0, 1],R+)
and F (0;u) > 0. Then there exists a unique function u(r, t) which separates the barriers

{S(δ,±)
nδ (u)}. u(r, t) is continuous on the compacts of [0, 1] × (0,∞) and u(·, t) converges

weakly to u(·) as t→ 0.

More properties of the separating elements are established in Section 8, in particular we
show that they can be obtained as monotonic limits of the upper or the lower barriers.

Theorem 2.4 (Characterization of hydrodynamic limit). The hydrodynamic limit ρ(r, t) of

Theorem 2.1 separates the barriers {S(δ,±)
nδ (ρinit)}.

Super-hydrodynamic limit and further results.

In [3] we shall study the stationary solutions of (2.11), they are linear functions with slope
−2j. We shall prove that any weak solution (in the sense of barriers) converges as t → ∞
to a linear profile, the one with the same total mass as the initial state. We shall also prove
that at super-hydrodynamic times, i.e. times of order ε−3 the particle processes is “close” to
the manifold of linear profiles performing a brownian motion on such a set.

We conclude the list of results in this paper by a last theorem where we identify the limit
equation for ρ(·, t) when ρinit(·) has no edge:

Theorem 2.5 (Hydrodynamic limit in the absence of an edge). Let ρinit such that F (r; ρinit) ≥
α(1− r), α > 0, then there exists T > 0 such that ρ(1, t) > 0 for t ∈ [0, T ] and ρ(r, t) is given
by

ρ(r, t) = Gneum
t ∗ ρinit(r) + j

∫ t

0
{Gneum

s (r, 0)−Gneum
s (r, 1)}ds, t ∈ [0, T ] (2.21)

Gneum
t (r, r′) being the Green function of the heat equation in [0, 1] with Neumann conditions,

see (2.16).
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Strategy of proof.

The key observation is that if we anticipate/posticipate the addition and removal of the
particles which occur in the true process in a given time interval then we stochastically
increase/decrease the final configuration (in the sense of mass transport to the right, i.e. the
microscopic version of (2.12)).

To implement this we introduce the processes ξ
(δ,±)
kε−2δ

, k ∈ N. If for the true process the
number of added and removed particles in the time interval [kε−2δ, (k + 1)ε−2δ] is equal

to Nk;± then ξ
(δ,−)
(k+1)ε−2δ

is obtained from ξ
(δ,−)
kε−2δ

by letting it evolve with generator L0 and

at the end adding Nk;+ particles at 0 and then removing the rightmost Nk;− particles. In

a similar fashion ξ
(δ,+)
(k+1)ε−2δ

is obtained by reversing the order of the operations: first the

addition/removal and then after the free evolution. We then have for all δ > 0 and all k ∈ N

ξ
(δ,−)
kε−2δ

≤ ξkε−2δ ≤ ξ
(δ,+)
kε−2δ

stochastically (2.22)

(see Section 6 for details, in particular the definition of microscopic notion of partial order).
The probabilistic part of the paper is essentially concentrated in the analysis of the hy-

drodynamic limit of the process ξ
(δ,±)
kε−2δ

: in Section 4 we prove that it converges to S
(δ,±)
kδ (u) (if

the initial ξ “approximates” u) where convergence is in the sense of (2.10). This is important
because it implies that the inequalities are preserved in the limit.

The hydrodynamic limit for the independent random walks process is easy and well known
in the literature, but in our case there is an extra difficulty related to a macroscopic occupation
at the origin, ξ(0) ≈ ε−1, due to the cut and paste operations. This severely limits the choice
of the parameters (b close to 1, a close to 0 which in normal situations have a much larger
range of values) but luckily some room is left. Instead the convergence of the microscopic cut
and paste to its macroscopic counterpart is easy, as the variables Nk;± are modulo negligible
deviations independent Poisson variables with mean jε−1δ.

Once we have convergence to S
(δ,±)
kδ (u) we are left with the analytic problem of studying

the limits of the latter as δ → 0. We first prove some regularity properties uniform in δ, see
Section 7, and then complete the proof of all theorems.

Sections content.

In Section 3 we introduce the δ-approximate processes {ξ(δ,±)
t } and prove that the law of the

total particles number process |ξt| is a symmetric random walk on N with reflection at the
origin (a result which follows directly from the definition of the process ξt). We then state
some consequences of such a result which will be used in the sequel.

In Section 4 we prove that if the initial configuration ξ approximates a profile u ∈ U then

ξ
(δ,±)
ε−2kδ

converges in law to S
(δ,±)
kδ (u) as ε→ 0. The proof exploits duality for the independent

process but is not a consequence of well known results on the hydrodynamic limit for inde-
pendent particles because we need to take into account the case when there is a macroscopic
occupation number at the origin. As a consequence the bounds are not as strong as those
which appear in the literature.

In Section 5 we introduce a probability space (Ω, P ) where we can realize simultaneously

all the processes ξt and ξ
(δ,±)
ε−2kδ

for all ε.

In Section 6 we relate the true process ξε−2kδ and the auxiliary ones ξ
(δ,±)
ε−2kδ

by stochastic
inequalities, in the sense of mass transport theory, exploiting the realization of the process

8



of Section 5. By using the convergence proved in Section 4 the inequalities extend to flows

S
(δ,±)
kδ , thus proving Theorem 2.2.

In Section 7 we prove regularity properties of the flows S
(δ,±)
kδ which are uniform in δ.

In Section 8 we prove we first prove existence and uniqueness of the separating element
of barriers (Theorem 2.3) and then deduce our main results (Theorems 2.1 and 2.4). We
conclude by giving the proof of Theorem 2.5.

3 The δ-approximate particle processes

In this Section we define the stochastic processes ξ
(δ,±)
kε−2δ

, k ∈ N which are analogous to the

barriers S
(δ,±)
kδ of Definition 2.5. As we shall explain below, these processes are defined in such

a way that the number of added and removed particles in the time interval [kε−2δ, (k+1)ε−2δ],
denoted by Nk;±, are the same as those in the true process {ξt}.

The variables Nk;±, k ∈ N are determined by the increments of process |ξt| yielding the
particles’ number at time t. This last process, despite the complexity of the full process ξt, is
very simple:

Theorem 3.1 (Distribution of the particles’ number). |ξt| has the law of a random walk
(nt)t≥0 on N which jumps with equal probability by ±1 after an exponential time of parameter
2jε, the jumps leading to −1 being suppressed.

Proof. For any bounded function f on N we have

Lf(|ξ|) = jε
{(
f(|ξ|+ 1)− f(|ξ|)

)
+ 1|ξ|>0

(
f(|ξ| − 1)− f(|ξ|)

)}
(3.1)

which coincides with the action of the generator of the random walk (nt)t≥0 on the function
f(n). This proves that the law of |ξt| is the same as that of the random walk.

To introduce the δ−approximate process we define

Nk;+ = number of upwards jumps of |ξt| for t ∈ [kε−2δ, (k + 1)ε−2δ] (3.2)

Nk;− = number of downwards jumps of |ξt| for t ∈ [kε−2δ, (k + 1)ε−2δ] (3.3)

Definition 3.1 (The δ−approximated processes). The processes ξ
(δ,±)
t are defined succes-

sively in the time intervals [kε−2δ, (k + 1)ε−2δ], k ≥ 0. We first distribute the variables Nk;±

as the increments of the Markov process (|ξt|)t≥0 starting from |ξ(δ,±)
0 |. Given such variables we

use an induction procedure and suppose ξ
(δ,−)
kε−2δ

= ξ given. Then ξ
(δ,−)
t , t ∈ [kε−2δ, (k+1)ε−2δ)

has the law of the process ξ0
t with generator L0 defined in (1.3) starting from ξ at time kε−2δ.

ξ
(δ,−)
(k+1)ε−2δ

is then obtained from ξ0
(k+1)ε−2δ by adding Nk;+ particles all at the origin and then

removing the Nk;− rightmost particles.

ξ
(δ,+)
t , t ∈ (kε−2δ, (k + 1)ε−2δ]], is defined as the independent random walk evolution

starting at time kε−2δ from ξ′: ξ′ is obtained from ξ = ξ
(δ,+)
kε−2δ

by adding Nk;+ particles all at
the origin and then removing the Nk;− rightmost particles.
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Thus in the ξ
(δ,±)
t processes births and deaths are concentrated at the times kε−2δ, in

between such times the particles are independent random walks. While the analysis of the
true process (ξt)t≥0 is rather complex due to the non local nature of La, the study of the

hydrodynamical limit for ξ
(δ,±)
t is much simpler because the number of rightmost particles to

delete is macroscopic and becomes deterministic, the analysis will be carried out in the next
section.

We shall often use in the sequel the following explicit realization of the random walk
process (nt)t≥0.

Definition 3.2 (The probability space (Ω0, P0)). We set Ω0 = {ω0 = (t0, σ0)}, where t0 =
(t1;0, t2;0, . . .), σ0 = (σ1;0, σ2;0, ...) are infinite sequences of increasing positive “times” th;0 and
of symmetric “jumps”, σh;0 = ±1. (Ω0, P0) is the product of a Poisson process of intensity
2jε for the increments of the time sequence t0 and of a Bernoulli process with parameter 1/2
for the jump sequence σ0.

Given n0 ∈ N and ω0 ∈ Ω0 we define (nt)t≥0, iteratively: we set nt = nth;0 in the time
interval [th;0, th+1;0), h ≥ 0, (t0;0 ≡ 0) and define

nth+1;0
=

{
nth;0 + σh+1;0 if nth;0 + σh+1;0 ≥ 0

0 if nth;0 + σh+1;0 < 0

It is readily seen that the law of (nt)t≥0 as a process on (Ω0, P0) (for a given initial value
n0) is the same as the Markov process of Theorem 3.1 and hence of the particles’ number |ξt|
in our original process once n0 = |ξ0|.

When realized on (Ω0, P0), Nk,+ ≡ Nk,+(ω0, n0) (n0 the initial particles’ number) is the
number of times th;0 ∈ [kε−2δ, (k + 1)ε−2δ] where σh;0 = 1 (which does not depend on n0) ,
while the number of times th;0 ∈ [kε−2δ, (k + 1)ε−2δ] where σh;0 = −1 is an upper bound for
Nk,− ≡ Nk,−(ω0, n0) as the values σh;0 = −1 do not produce a jump if nth;0 = 0 (hence the
dependence on n0).

Under the assumptions on the initial datum ξ, see Definition 2.2, the process of adding
and removing particles becomes quite simple. For any integer k > 0 define on Ω0

B0
k(ω0) =

∑
h

1σh;0=+1 1th;0∈[kε−2δ,(k+1)ε−2δ] (3.4)

A0
k(ω0) =

∑
h

1σh;0=−1 1th;0∈[kε−2δ,(k+1)ε−2δ] (3.5)

B0
k and A0

k are independent Poisson distributed variables with average ε−1jδ.

Definition 3.3 (Good sets). Given T > 0 and γ > 0 we define for any δ and ε positive

G =
{
ω0 ∈ Ω0 : |A0

k(ω0)− ε−1jδ| ≤ ε−
1
2
−γ ; |B0

k(ω0)− ε−1jδ| ≤ ε−
1
2
−γ , k : kδ ≤ T

}
(3.6)
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Theorem 3.2 (Reduction to Poisson variables). Given ξ as in Definition 2.2, T > 0 and
γ > 0 there is δ∗ > 0 so that for any δ < δ∗ and any ε > 0 small enough the following holds.
For any ω0 ∈ G (see (3.6)) and any k such that kδ ≤ T ,

Nk,−(ω0, |ξ|) = A0
k(ω0), Nk,+(ω0, |ξ|) = B0

k(ω0) (3.7)

where Nk,±(ω0, |ξ|)) denote the variables Nk,± when realized on Ω0.
Finally, for any n there is cn so that

P0[G] ≥ 1− cnεn (3.8)

Proof. By Definition 2.2 the initial number of particles |ξ| is bounded from below by
ε−1

∫
ρinit− ε−1+a ≥ ε−1C, C > 0. We choose δ∗ := C/(2j) and shall prove by induction that

for any δ < δ∗ and all ε small enough we have in G

ntk ≥ ε
−1C − k2ε−

1
2
−γ , k ≤ T

δ
, tk = kε−2δ

Suppose that the inequality holds for k and let us prove it for k + 1. Since Nk,−(ω0, |ξ|) ≤
A0
k(ω0)

nt ≥ ntk − ε
−1jδ − ε−

1
2
−γ ≥ ε−1(C − jδ∗)− (2k + 1)ε−

1
2
−γ , t ∈ [tk, tk+1]

which is strictly positive for any k ≤ T/δ if ε is small enough. Thus (3.7) holds and

ntk+1
≥ ntk −A

0
k(ω0) +B0

k(ω0) ≥ ntk − 2ε−
1
2
−γ

because ω0 ∈ G. This proves the induction hypothesis and for what seen in the proof, (3.7)
holds as well.

The variables A0
k(ω0) and B0

k(ω0), k ≤ T/δ, are independent Poisson variables with mean
ε−1jδ hence (3.8).

Once restricted to G the processes ξ
(δ,±)
t , 0 ≤ t ≤ ε−2T , become quite simple. The particles

move as independent random walks in the finitely many intervals [kε−2δ, (k + 1)ε−2δ], while
births and deaths at the times kε−2δ are “essentially deterministic” like in the δ-approximated

evolutions S
(δ,±)
t of Definition 2.5. Such considerations are made precise in Section 4 where

we prove convergence of ξ
(δ,±)
t to S

(δ,±)
t (ρinit) in the hydrodynamic limit.

4 Hydrodynamic limit for the approximating processes

The main result in this section is in Theorem 4.1 below. It states that the δ-approximate

processes ξ
(δ,±)
t of Definition 3.1 converge in the hydrodynamic limit to the evolutions S

(δ,±)
t (·)

of Definition 2.5.
Here we exploit duality to prove convergence in a very strong form of the independent

system to the heat equation.
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For any fixed δ and T > 0, the processes ξ
(δ,±)
t , t ≤ ε−2T are obtained by alternating inde-

pendent random walk evolutions to cut and paste operations. The latter involve macroscopic
quantities and can be controlled by means of Theorem 3.2 once we have the hydrodynamic
limit for the independent process. This is well studied and very detailed estimates are avail-
able but in the present case we have the extra difficulty that the initial configurations may
have a macroscopic occupation number at the origin ξ(0) ≈ ε−1. This is because in the the
cut and paste we actually paste ≈ jδε−1 particles at the origin. This is not a case studied
in the literature (as far as we know) and indeed it affects greatly the decay of correlations in
the hydrodynamic limit.

As in our iterative procedure we have initial data with macroscopic occupation at the
origin, we may as well take more general initial conditions (than those in Definition 2.2) with
macroscopic occupation at the origin, this will be actually useful in the sequel. Thus the
“macroscopic initial profile v0 ” is here taken in U , namely it is the sum of a non negative
L∞ function plus cD0, with c either equal to 0 or to jδ, we suppose that

∫
v0 = F (0; v0) > 0.

Analogously to (2.7) for any ε > 0 we choose the initial configuration ξ0 so that

max
x∈[0,ε−1−`+1]

∣∣∣A`(x, ξ0)−A′`(x, v0)
∣∣∣ ≤ εa (4.1)

Theorem 4.1. Given any T > 0 for any δ > 0 small enough, any k : kδ ≤ T and any ζ > 0

lim
ε→0

P
(ε)
ξ0

[
max

x∈[0,ε−1]
|εFε(x; ξ

(δ,±)
kε−2δ

)− F (εx;S
(δ,±)
kδ (v0))| ≤ ζ

]
= 1 (4.2)

where v0 and ξ0 are as above; P
(ε)
ξ0

as in Definition 2.2; F and Fε as in (2.1).

The theorem is proved at the end of the section, as we shall see stronger results actually
hold but what stated is what needed for Theorem 2.1. In the course of the proof we shall
introduce several positive parameters: b, a, a∗, γ: b should be close to 1 and the others close
to 0, for the sake of definiteness we take:

a = γ =
1

20
, b =

9

10
, a∗ =

1

100
(4.3)

We prove the theorem only for the process ξ
(δ,−)
t , the analysis of ξ

(δ,+)
t is similar and omitted.

The first step is a spatial discretization of the flow S
(δ,−)
kδ :

Definition 4.1 (The discrete evolution). Denote by p0
t (x, y), t ≥ 0, x, y ∈ [0, ε−1], the

transition probability of a continuous time, simple symmetric random walk with reflections
at 0 and ε−1 (i.e. the random walker jumps by ±1 with equal probability after an exponential
time of mean 1, the jumps which would lead outside [0, ε−1] are suppressed). For δ small
enough we define functions uk(x), x ∈ [0, ε−1] ∩ Z, with the property that mass is conserved:
Fε(0;uk) = Fε(0;u0) for all k. The definition is iterative, we set u0(x) := v0(εx); then
supposing that uk−1 has been already defined and that Fε(0;uk−1) = Fε(0;u0) we define uk
as follows. We first call

u0
k(x) =

∑
y

p(x, y)uk−1(y), p(x, y) := p0
ε−2δ(x, y) (4.4)
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uk is then obtained from u0
k by adding particles at 0 and removing particles on the right. To

make this precise let Rk be an integer such that Fε(Rk;u
0
k) ≥ ε−1jδ while Fε(Rk + 1;u0

k) <
ε−1jδ. The existence of Rk for δ small enough follows from the assumption Fε(0;u0) ≥ cε−1,
c > 0, observing that Fε(0;u0

k) = Fε(0;uk−1) = Fε(0;u0) by the inductive assumption and
Fε(0;u0) = ε−1F (0; v0). We then set vk(x) = u0

k(x) for x < Rk, vk(x) = 0 for x > Rk and

vk(Rk) := Fε(Rk;u
0
k)− ε−1jδ

We can then finally define uk as
uk := vk + ε−1jδ10 (4.5)

where 10 is the Krönecker delta at 0. To complete the induction we observe that Fε(0;uk) =
ε−1jδ + Fε(0; vk), Fε(0; vk) = Fε(0;u0

k)− ε−1jδ so that Fε(0;uk) = Fε(0;u0
k) = Fε(0;uk−1).

In the next proposition we show that in (4.2) we can replace S
(δ,−)
kδ (v0) by the sequence

uk with a negligible error:

Proposition 4.2. In the same context as in Theorem 4.1,

lim
ε→0

max
x∈[0,ε−1]

|εFε(x;uk)− F (εx;S
(δ,−)
kδ (v0))| = 0 (4.6)

Proof. In this proof we shorthand by g(r, r′) the Green function Gneum
δ (r, r′), r, r′ ∈ [0, 1],

defined in (2.16) and also write for brevity p(x, y) := p0
ε−2δ(x, y), as in Definition 4.1. Let uk,

u0
k and Rk be as in Definition 4.1. We define for any real r between 0 and ε−1,

ψk(r) := [S
(δ,−)
kδ (v0)− jδD0](εr)

Analogously to (1.6) we denote by R′k the real number in [0, ε−1] such that ψk(r) > 0 for
r < R′k and ψk(r) = 0 for r > R′k. We also call

ψ0
k(r) = jδg(εr, 0) +

∫ 1

0
dr′g(εr, r′)ψk−1(ε−1r′)

so that

ψ0
k(r) = ψk(r), r < R′k;

∫ ε−1

R′k

ψ0
k(r) = ε−1jδ

Claim. There are strictly positive constants C± which depend on δ so that for all k,

C− ≤ ψ0
k ≤ C+, C− ≤ u0

k ≤ C+; | d
dr
ψ0
k| ≤ εC+

|
∑

x∈Z:x∈[Rk,ε−1]

ψ0
k(x)− ε−1jδ| ≤ C+, |Fε(x;ψ0

k)−
∫ ε−1

x
ψ0
k| ≤ C+ (4.7)

The proof of the claim follows from classical estimates on random walks and Green func-
tions:

c1√
δ
≤ g(r, r′) ≤ c2√

δ
;

c1ε√
δ
≤ p(x, y) ≤ c2ε√

δ
(4.8)

| d
dr
g(r, r′)| ≤ c3

δ
; |p(x, y)− p(x, y + 1)| ≤ (

c3ε√
δ

)2

jδ + ε

∫ ε−1

0
ψk = F (0; v0)

13



The crucial step in the proof of the proposition is the following statement:

There are α > β > 1 so that |u0
k(x)− ψ0

k(x)| ≤ ε√
δ
αk, |Rk −R′k| ≤ βαk (4.9)

We prove (4.9) by induction. We thus suppose that it holds for k− 1. Calling R∗k the largest
integer smaller or equal than Rk and R′k

|u0
k(x)− ψ0

k(x)| ≤ jδ|ε−1p(x, 0)− g(εx, 0)|

+
∑

y≤R∗k−1

∣∣∣p(x, y)u0
k−1(y)−

∫ ε(y+1)

εy
g(εx, r)ψ0

k−1(ε−1r)
∣∣∣

+

Rk−1∑
y=R∗k−1+1

p(x, y)u0
k−1(y) +

∫ εR′k−1

εR∗k−1

g(εx, r)ψ0
k−1(ε−1r)

We use the local central limit theorem to bound:∣∣∣p(x, y)− εg(εx, εy)
∣∣∣ ≤ c5ε

2

δ
(4.10)

Thus

|u0
k(x)− ψ0

k(x)| ≤ jδ c5ε

δ
+ max

x
|u0
k−1(x)− ψ0

k−1(x)|

+
∑

y≤R∗k−1

∣∣∣p(x, y)ψ0
k−1(y)−

∫ ε(y+1)

εy
g(εx, r)ψ0

k−1(ε−1r)
∣∣∣

+2
c2ε√
δ
|Rk−1 −R′k−1|C+

We write ∣∣∣ ∫ ε(y+1)

εy
g(εx, r)ψ0

k−1(ε−1r)− εg(εx, εy)ψ0
k−1(y)

∣∣∣ ≤ c6ε
2

and get using the induction assumption

|u0
k(x)− ψ0

k(x)| ≤ jc5ε+
ε√
δ
αk−1 + 2

c2ε√
δ
βαk−1C+

+ε−1{c6ε
2 + C+

c5ε
2

δ
}

Choosing α ≥ 1 + j
√
δc5 + 2c2C+β +

√
δ{c6 + C+

c5
δ }, we have

|u0
k(x)− ψ0

k(x)| ≤ ε√
δ
αk−1

(
j
√
δc5 + 1 + 2c2C+β +

√
δ{c6 + C+

c5

δ
}
)
≤ ε√

δ
αk

As a consequence:

|Fε(x;u0
k)− Fε(x;ψ0

k)| ≤ (ε−1 − x+ 1)
ε√
δ
αk (4.11)
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Recalling that ψ0
k(x) ≥ C− and u0

k(x) ≥ C− we get

|Fε(R′k;u0
k)− jδε−1| ≤ C+ + (ε−1 −R′k + 1)

ε√
δ
αk

|Fε(R′k;u0
k)− Fε(Rk;u0

k)| ≤ 2C+ + ε−1 ε√
δ
αk

C−|R′k −Rk| ≤ |Fε(R′k;u0
k)− Fε(Rk;u0

k)| ≤ 2C+ +
αk√
δ

which is smaller than βαk if β ≥ C−1
− (2C+ + δ−1/2), thus completing the proof of (4.9).

Using (4.11) we then conclude the proof of the proposition, details are omitted.

The proof of Theorem 4.1 is thus reduced to showing that: for all n so that nδ ≤ T ,

lim
ε→0

P
(ε)
ξ

[
ε|Fε(x; ξ

(δ,−)
nε−2δ

)− Fε(x;un)| ≤ ζ for all x ∈ [0, ε−1]
]

= 1 (4.12)

which will be done in the sequel. Both sequences {ξ(δ,−)
nε−2δ

} and {un} are determined by
alternating free evolution and a cut and paste procedure. We first study the free evolution
part proving that the independent random walk configuration ξ0

ε−2δ is well approximated by
its average. Call Pξ and Eξ law and expectation of the independent process starting from ξ,
define for x ∈ [0, ε−1]

w(x|ξ) := Eξ[ξ0
ε−2δ(x)] =

ε−1∑
y=0

p(x, y)ξ(y), p(x, y) := p0
ε−2δ(x, y) (4.13)

with p0
t the transition probability used in Definition 4.1.

Proposition 4.3. Let c∗ and a∗ be strictly positive and

Xc∗,a∗ :=
{
ξ : |ξ| ≤ c∗ε−1, max

x6=0
ξ(x) ≤ ε−a∗

}
(4.14)

Then for any ξ ∈ Xc∗,a∗

max
x∈[0,ε−1]

w(x|ξ) ≤ c2c
∗

√
δ

(4.15)

(c2 as in (4.8)). Moreover let c∗, a∗ and b be strictly positive and such that

a∗ <
b

2
, b+ a∗ < 1 (4.16)

(a condition which is satisfied by the choice (4.3)). Let ` be the integer part of ε−b and A` be
as in (2.5), then for any integer n there is c′n so that

Pξ

[
ξ0
ε−2δ ∈ Xc∗,a∗

]
≥ 1− c′nεn (4.17)

Finally there is a constant c so that

sup
x≤ε−1−`+1

Eξ
[∣∣A`(x, ξ0

ε−2δ)−A`(x,w(·|ξ))
∣∣4] ≤ cε2b (4.18)
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Proof. For brevity in this proof we shall write w(x) instead of w(x|ξ). Recalling that p(x, y)
is defined in (4.4) and bounded in (4.8), we have for any ξ ∈ Xc∗,a∗

w(x) =
∑
y

p(x, y)ξ(y) ≤ c2ε√
δ

∑
y

ξ(y) ≤ c2ε√
δ
c∗ε−1 (4.19)

hence (4.15). The proof of (4.17) and (4.18) uses in a crucial way duality:

Duality. Given ξ ∈ N[0,N ] and a labeled configuration x = (x1, .., xn), n ≥ 1, xi ∈ [0, ε−1],
we define

D(ξ, x) =
∏
x

dx(x)(ξ(x)), dk(m) = m(m− 1) · · · (m− k + 1), d0(m) = 1 (4.20)

x(x) =

n∑
i=1

1xi=x

dk(m) are called Poisson polynomials. We then have:

Eξ
[
D(ξ0

t , x)
]

= Ex
[
D(ξ, x0

t )
]

(4.21)

where x0
t is the independent random walks evolution.

• Proof of (4.17). Call x = (x1, .., x2k) with xi = x for all i = 1, .., 2k. Then by (4.21) and
(4.19)

Eξ[d2k(ξ
0
ε−2δ(x))] = Ex[

∏
x

dx0
ε−2δ

(x)(ξ0(x))] ≤ Ex[
∏
x

ξ(x)x
0
ε−2δ

(x)]

=
[∑

y

p(x, y)ξ(y)
]2k
≤
(c2ε|ξ|√

δ

)2k
≤
(c2c

∗
√
δ

)2k
(4.22)

By (4.22) we have that for any k there is c′′k (independent of ε) so that

max
x∈[0,ε−1]

Eξ
[
ξ0
ε−2δ(x)k

]
≤ c′′k (4.23)

Moreover by the Chebishev inequality and (4.22)

Pξ
[

max
x∈[0,ε−1]

ξ0
ε−2δ(x) ≤ ε−a∗

]
≥ 1− c′mεm (4.24)

which proves (4.17) because |ξ0
ε−2δ| = |ξ| ≤ ε

−1c∗.

To prove (4.18) we shall use again duality but also several maybe non totally straightfor-
ward algebraic manipulations. We start by expanding the product in the expectation:

Eξ

[∣∣A`(x, ξ0
ε−2δ)−A`(x,w)

∣∣4] =
1

`4

∑
x∈B`

Eξ

[ 4∏
i=1

(
ξ0
ε−2δ(xi)− w(xi)

)]
(4.25)

where x ∈ [0, ε−1 − `+ 1] and B` = {x = (x1, ...x4) : xi ∈ [x, x+ `− 1], i = 1, .., 4}.
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Call B(i)
` , i = 1, 2, 3, 4, the set of x ∈ B` such that there are i mutually distinct sites. We

then have for i ≤ 2:

1

`4

∑
x∈B(i)`

|Eξ
[ 4∏
i=1

(
ξ0
ε−2δ(xi)− w(xi)

)]
| ≤ c`−2 (4.26)

as the expectation of products of ξ0
ε−2δ(·) is bounded, which is proved using (4.23).

We are thus left with the sum over x ∈ B(i)
` with i = 3, 4. When i = 4, x = (x1, .., x4)

with the entries mutually distinct. Call σ = (σ1, .., σ4), σi ∈ {−1, 1}, and |σ|− the number of
−1 in σ, then

4∏
i=1

(
ξ0
ε−2δ(xi)− w(xi)

)
=
∑
σ

(−1)|σ|−D(ξ0
ε−2δ; {xi : σi = 1})

∏
j:σj=−1

w(xj) (4.27)

and using duality:

Eξ[
4∏
i=1

(
ξ0
ε−2δ(xi)− w(xi)

)
] =

∑
y

p(x, y)
∑
σ

(−1)|σ|−D(ξ; {yi : σi = 1})

×Π(ξ; {yj : σj = −1})
Π(ξ; {yj : σj = −1}) :=

∏
j:σj=−1

ξ(yj) (4.28)

Suppose there is a singleton h, namely such that yh 6= yj for all j 6= h, then∑
σ

(−1)|σ|−D(ξ0
ε−2δ; {yi : σi = 1})Π(ξ; {yj : σj = −1}) = 0 (4.29)

Indeed let σ a sequence with σh = 1 and σ′ the one obtained from σ by changing only σh,
then

(−1)|σ|−D(ξ0
ε−2δ; {yi : σi = 1})Π(ξ; {yj : σj = −1})

= (−1)|σ|−D(ξ0
ε−2δ; {yi : σi = 1, i 6= h})Π(ξ; {yh, yj : σj = −1})

= −(−1)|σ
′|−D(ξ0

ε−2δ; {yi : σ′i = 1})Π(ξ; {yj : σ′j = −1})

We have thus proved that calling Xn.s. the set of all y with no singletons then

Eξ[

4∏
i=1

(
ξ0
ε−2δ(xi)− w(xi)

)
] = Φ4(x) (4.30)

Φ4(x) =
∑

y∈Xn.s.

p(x, y)
∑
σ

(−1)|σ|−D(ξ; {yi : σi = 1})Π(ξ; {yj : σj = −1})

A similar property holds also when x ∈ B(3,∗)
` which is the set of all x such that x1 = x2,

x3 6= x4, x1 and x4 6= x1 (modulo permutation of labels all x ∈ B(3)
` are in B(3,∗)

` ). We write(
ξ(x)− w(x)

)2
= {ξ(x)[ξ(x)− 1]− 2w(x)ξ(x) + w(x)2}+ {ξ(x)− w(x)}+ w(x)
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Then analogously to (4.27) but with x ∈ B(3,∗)
` ,

4∏
i=1

(
ξ0
ε−2δ(xi)− w(xi)

)
=

∑
σ∈{−1,1}4

(−1)|σ|−D(ξ0
ε−2δ; {xi, σi = 1})

∏
j:σj=−1

w(xj)

+
∑

σ=(σ2,σ3,σ4)

(−1)|σ|−D(ξ0
ε−2δ; {xi, σi = 1, i ≥ 2})

∏
j≥2:σj=−1

w(xj)

+w(x1)
∑

σ=(σ3,σ4)

(−1)|σ|−D(ξ0
ε−2δ; {xi, σi = 1, i ≥ 3})

∏
j≥3:σj=−1

w(xj)

(4.31)

Eξ[
4∏
i=1

(
ξ0
ε−2δ(xi)− w(xi)

)
] = Φ4(x) + Φ3(x2, x3, x4) + w(x1)Φ2(x3, x4) (4.32)

where

Φ3(x2, x3, x4) =
∑

(y2,y3,y4)∈Xn.s.

4∏
i=2

p(xi, yi)
∑

σ2,σ3,σ4

(−1)|σ|−D(ξ; {yi, σi = 1, i ≥ 2})

×Π(ξ; j ≥ 2 : σj = −1)

Φ2(x3, x4) =
∑

(y3,y4)∈Xn.s.

4∏
i=3

p(xi, yi)
∑

σ=(σ3,σ4)

(−1)|σ|−D(ξ; {yi, σi = 1, i ≥ 3})

×Π(ξ; j ≥ 3 : σj = −1)

with Φ4(x) as in (4.30).
Going back to (4.25), using (4.26) and (4.15)

Eξ

[∣∣A`(x, ξ0
ε−2δ)−A`(x,w)

∣∣4] ≤ c

`2
+ max
x∈B(4)`

Φ4(x) +
6

`

(
| max
x∈B(3,∗)`

Φ4(x)|

+| max
(x2,x3,x4):distinct

Φ3(x2, x3, x4)|+ c2c
∗

√
δ
| max

(x3,x4):distinct
Φ2(x3, x4)|

)
(4.33)

Let us bound one by one the functions Φi starting from Φ4. Recalling (4.30) the condition
y ∈ Xn.s. is realized (modulo label permutations) in only two cases: (i) y1 = y2 6= y3 = y4;
(ii) y1 = ... = y4.

∑
σ

(−1)|σ|−D(ξ; {yi : σi = 1})Π(ξ; {yj : σj = −1}) =

{
ξ(y1)ξ(y3), in case (i)

3ξ(y1)2 − 6ξ(y1), in case (ii)
(4.34)

so that from (4.8) and since ξ ∈ Xc∗,a∗

|Φ4(x)| ≤ (
c2ε√
δ

)4
(

6(c∗ε−1)2 + 3(c∗ε−1)2
)
≤ cε2 (4.35)

The condition (y2, y3, y4) ∈ Xn.s. in Φ3 implies y2 = y3 = y4 and for such a y:∑
σ=(σ2,σ3,σ4)

(−1)|σ|−D(ξ; {yi, σi = 1, i ≥ 2})Π(ξ; j ≥ 2 : σj = −1) = 2ξ(y2) (4.36)
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so that from (4.8) and since ξ ∈ Xc∗,a∗

|Φ3(x2, x3, x4)| ≤ (
c2ε√
δ

)32(c∗ε−1) ≤ cε2 (4.37)

Finally if (y3, y4) ∈ Xn.s. then y3 = y4 and for such a y,∑
σ=(σ3,σ4)

(−1)|σ|−D(ξ; {yi, σi = 1, i ≥ 3})Π(ξ; j ≥ 3 : σj = −1) = −ξ(y3) ≤ 0 (4.38)

Thus (4.18) follows from (4.33) together with the above inequalities.

The cut and paste sequence of operations which appear in the definition of {ξ(δ,−)
tk

, k ≤ k∗},
k∗ the largest integer such that δk∗ ≤ T , tk = kε−2δ, is independent of the motion of the

particles so that we have a rather explicit expression for the law of the variables {ξ(δ,−)
tk

,
k ≤ k∗}, see (4.42) below. We first write (with ξ0 below the initial condition in Theorem 4.1)

p({n±k , k = 1, .., k∗}) = P
(ε)
ξ0

[
Nk−1,− = n−k , Nk−1,+ = n+

k , k ≤ k
∗
]

(4.39)

where Nk,± are defined in (3.3) and (3.2), their law depends only on |ξ0|.
We also write

π(ξ′|ξ) = Pξ

[
ξ0
ε−2δ = ξ′

]
, |ξ| = |ξ′|, a.s. (4.40)

(ξ0
t the independent random walk process). We finally denote by K(n−,n+)ξ the configuration

obtained from ξ by adding n+ particles at 0 and then removing the n− rightmost particles
(the definition requires that |ξ|+n+−n− ≥ 0, condition automatically satisfied below as the
variables n± are the increments of the particles’ number nt). Then, writing

P
[
{n±k , ξ

0
k, k = 1, .., k∗}

]
= p({n±k , k ≤ k

∗})
k∗∏
k=1

π(ξ0
k|ξk−1)

ξk := K(n−k ,n
+
k )ξ0

k (4.41)

with n±0 := 0, we have

P
(ε)
ξ0

[
{ξ(δ,−)
kε−2δ

) = ξ̄k, k = 1, .., k∗}
]

=
∑

n±k ,ξ
0
k, k=1,..,k∗

1ξk=ξ̄k, k=1,..,k∗P
[
{n±k , ξ

0
k, k ≤ k∗}

]
(4.42)

By (3.8) for any n there is cn so that∑
{n±k , k=1,..,k∗}∈G

p({n±k , k ≤ k
∗}) ≥ 1− cnεn (4.43)

G := {n±k , k = 1, .., k∗ : |n±k − ε
−1jδ| ≤ ε−

1
2
−γ}

The strategy now is to fix {n±k , k = 1, .., k∗} ∈ G and prove estimates uniform in the choice
of {n±k , k = 1, .., k∗}, as the contribution to (4.2) of the complement of G has negligible
probability. We have

max
k=1,..,k∗

|ξ(δ,−)
kε−2δ

| ≤ c̄ε−1, for all {n±k , k = 1, .., k∗} ∈ G (4.44)
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where c̄ε−1 ≥ |ξ0|+ 2k∗ε−
1
2
−γ .

Recalling (4.41) for notation and that w is defined in (4.13), having fixed {n±k , k =
1, .., k∗} ∈ G, see (4.43), with n±0 ≡ 0, we call

C =
{
ξ0
k, k = 1, .., k∗ : max

k=1,..,k∗
max
x
|A`(x, ξ0

k)−A`(x,w(·|ξk−1)| ≤ εa;

max
k=1,..,k∗

‖ξ0
k‖∞ ≤ ε−a

∗
}

(4.45)

Then by Proposition 4.3 and (4.43) after using Chebishev with the fourth power,

P
[
{n±k , ξ

0
k, k = 1, .., k∗} ∈ G ∩ C

]
≥ 1− cε−1−4a+2b = 1− cε6/10 (4.46)

The proof of (4.12) continues by showing that in the set G ∩ C, ξk (as defined in (4.41)) is
“close” to uk (as in Definition 4.1). More precisely call Xk and Rk the integers such that

Fε(Xk + 1; ξ0
k) < n+

k ≤ Fε(Xk; ξ
0
k); Fε(Rk + 1;u0

k) < ε−1jδ ≤ Fε(Rk;u0
k)

(see again Definition 4.1 for notation). Then the analogue of (4.9) holds:

Proposition 4.4. There are α > β > 1 so that if {n±k , ξ
0
k, k = 1, .., k∗} ∈ G ∩ C then for all

k = 1, .., k∗

max
x
|A`(x, ξ0

k)−A`(x, u0
k)| ≤ αkεa, |Xk −Rk| ≤ βαkε−1+a (4.47)

Proof. By (4.45)

|A`(x, ξ0
k)−A`(x, u0

k)| ≤ εa + |A`(x, u0
k)−A`(x,w(·|ξk−1)| (4.48)

Supposing for instance that Rk−1 ≤ Xk−1 we get

|w(x|ξk−1)− u0
k(x)| = |

∑
y

p(x, y)[ξk−1(y)− uk−1(y)]|

≤ p(x, 0)|n+
k−1 − ε

−1jδ|+ |
∑

y<Rk−1

p(x, y)[ξ0
k−1(y)− u0

k−1(y)]|

+p(x,Rk−1)[ξ0
k−1(Rk−1) + u0

k−1(Rk−1)] +
∑

Rk−1<y≤Xk−1

p(x, y)ξ0
k−1(y)

(4.49)

By (4.8)

p(x, 0)|n+
k−1 − ε

−1jδ| ≤ c2ε√
δ
ε−

1
2
−γ

We decompose the interval [1, Rk−1 − 1] into consecutive intervals [zi, z
′
i] of length ` with the

last interval which may have length < ` and get using (4.8)

|
∑

0<y<Rk−1

p(x, y)[ξ0
k−1(y)− u0

k−1(y)]|

≤
∑
i

{p(x, zi)`αk−1εa +
∑

zi≤y≤z′i

|p(x, zi)− p(x, y)|2ε−a∗}+
c2ε√
δ
`2ε−a

∗

≤ c2ε√
δ
ε−1αk−1εa + (

c3ε√
δ

)22ε−a
∗

+
c2ε√
δ

2ε−b−a
∗ ≤ c2√

δ
αk−1εa + cε1−b−a

∗
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We also have
p(x,Rk−1)[ξ0

k−1(Rk−1) + u0
k−1(Rk−1)] ≤ c2ε√

δ
2ε−a

∗

By (4.8) and (4.15) and decomposing as before the interval [Rk−1 + 1, Xk−1] into consecutive
intervals of length `,∑

Rk−1<y≤Xk−1

p(x, y)ξ0
k−1(y) ≤

∑
Rk−1<y≤Xk−1

p(x, y)w(y|ξk−2)

+|
∑

Rk−1<y≤Xk−1

p(x, y)[ξ0
k−1(y)− w(y|ξk−2)]|

≤ c2ε√
δ

c2c
∗

√
δ
|Xk−1 −Rk−1|+

c2ε√
δ
|Xk−1 −Rk−1|αk−1εa + (

c3ε√
δ

)22ε−a
∗

+
c2ε√
δ

2ε−b−a
∗

≤ c
(
ε|Xk−1 −Rk−1|+ ε1−b−a

∗
)

By collecting the above bounds and using the induction hypothesis:

|w(x|ξk−1)− u0
k(x)| ≤ c2ε√

δ
ε−

1
2
−γ +

c2√
δ
αk−1εa + 2cε1−b−a

∗
+

c2√
δ

2ε1−a
∗

+ cβαk−1εa

≤ αk−1εa
( c2√

δ
ε
1
2
−γ−a + { c2√

δ
+ cβ}+ 2cε1−b−a

∗−a +
c2√
δ

2ε1−a
∗−a
)

≤ αk−1εa
(
{ c2√

δ
+ cβ}+ εa

′
C
)

where a′ = min{1
2 − γ − a, 1− b− a

∗ − a, 1− a∗ − a} > 0. Hence

|A`(x, ξ0
k)−A`(x, u0

k)| ≤ εa[1 + αk−1
(
{ c2√

δ
+ cβ}+ εa

′
C
)

]

For ε small enough Cεa
′ ≤ 1,

|A`(x, ξ0
k)−A`(x, u0

k)| ≤ αkεa, α = 2 + { c2√
δ

+ cβ} (4.50)

By (4.50)
|Fε(x; ξ0

k)− Fε(x;u0
k)| ≤ (ε−1 − x)αkεa + 2ε−b−a

∗
(4.51)

hence, recalling (4.7),

|Fε(Rk;u0
k)− jδε−1| ≤ C+, |Fε(Xk; ξ

0
k)− jδε−1| ≤ ε−a∗ + ε−

1
2
−γ ≤ 2ε−

1
2
−γ

|Fε(Xk;u
0
k)− jδε−1| ≤ 2ε−

1
2
−γ + |Fε(Xk;u

0
k)− Fε(Xk; ξ

0
k)| ≤ 2ε−

1
2
−γ + ε−1+aαk + 2ε−b−a

∗

C−|Rk −Xk| ≤ |Fε(Rk;u0
k)− Fε(Xk;u

0
k)| ≤ C+ + 2ε−

1
2
−γ + ε−1+aαk + +2ε−b−a

∗

which proves (4.47) with β = C−1
− (5 + C+).

Proof of Theorem 4.1. We need to prove (4.12). By (4.46) we can reduce to configurations
in G ∩ C and want to prove that in such a set

lim
ε→0

max
x∈[0,ε−1]

ε|Fε(x; ξk)− Fε(x;uk)| = 0 (4.52)
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Let us suppose for the sake of definiteness that Rk ≤ Xk. Then for x ≤ Rk

|Fε(x; ξk)− Fε(x;uk)| ≤
∣∣∣Rk−1∑
y=x

(ξ0
k − u0

k)
∣∣∣+

Xk∑
y=Rk

ξ0
k + u0(Rk)

Calling R̄k ≤ Rk the largest integer so that R̄k − x is a multiple integer of `, we get from
(4.47):

∣∣∣Rk−1∑
y=x

(ξ0
k − u0

k)
∣∣∣ ≤ (R̄k − x)αkεa + 2ε−a

∗
ε−b ≤ αkε−1+1/20 + 2ε−1+1/10−1/100

Call X̄k the smallest integer ≥ Xk such that X̄k −Rk is a multiple integer of `, then

Xk∑
y=Rk

ξ0
k ≤ |X̄k −Rk|

(c2c
∗

√
δ

+ εa
)

+ `ε−a
∗ ≤ c{ε−1+a + ε−b−a

∗} ≤ 2cε−1+ 1
20

Analogous bounds hold for x > Rk and (4.52) then follows.

5 Realization of the process

Following [13] we introduce a graphical construction of the process. It is also convenient to
enlarge the physical space [0, ε−1] by adding two extra sites {−1, ε−1+1} so that configurations
ξ are functions on [−1, ε−1 + 1]. We denote by X the subset of all configurations ξ such that
ξ(−1) = ∞ while ξ(x) is finite for all x ∈ [0, ε−1 + 1] By default in the sequel ξ denotes
elements of X , thus ξ is determined by its values for x ≥ 0. Physical configurations are
recovered by restricting ξ to [0, ε−1]. We shall often work in the sequel with labeled particles:

Definition 5.1 (Ordered configurations in the enlarged space). We denote by X ord the space
of ordered sequences x = (x1, x2, .., xn, ..), xi ≥ xi+1, with values on [−1, ε−1 + 1], such that
there are finitely many entries with xi ≥ 0, their number is denoted by N(x), so that xi = −1
for i > N(x) and xi ≥ 0 for i ≤ N(x). We also define M(x) as the largest integer n such that
xn = ε−1 + 1. To each x we associate the configuration ξx ∈ X

ξx(x) =
∑
i≥1

1xi=x for all x ∈ [0, ε−1 + 1], ξx(−1) =∞ (5.1)

Viceversa, given any ξ ∈ X we define xξ by labeling the particles of ξ consecutively starting
from the right. Finally, given a sequence y with finitely many entries in [0, ε−1 + 1], say
yi1 ...yik , its re-ordering is the sequence x where x1 is the largest element in yi1 ...yik , x2 the
second largest and so on; xn = −1 for n ≥ k + 1.

We shall be exploiting the fact that the physically relevant quantities are the unlabeled
configurations and we are therefore free to label the particles as we like.
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Definition 5.2 (The probability space (Ω, P )). We set

Ω =
∏
i≥0

Ωi, P =
∏
i≥0

Pi

where Ωi = {ωi = (ti, σi)}, ti = (t1;i, t2;i, ...) are infinite sequences of increasing positive
“times” tk;i and σi = (σ1;i, σ2;i, ...) infinite sequences of symmetric “jumps”, σk;i = ±1. For
i ≥ 1 Pi is the product probability law of a Poisson process of intensity 1 for the time sequences
ti and of a Bernoulli process with parameter 1/2 for the jump sequences σi. (Ω0, P0) is the
probability space introduced in Definition 3.2.

Graphical representation. For each label i ≥ 0 we draw a vertical time axis R+ (called the
i-th time axis) and on each of them we put “marks” (with values ±) as described below. For
any element ωi ∈ Ωi, i ≥ 1, we draw on the i-th time axis a sequence of arrows, at heights
tk;i pointing to right or left if σk;i = ±1 respectively (the σk;i are called marks). The marks
on the 0-time axis are specified by ω0: they are + or − crosses which are put at the times
tk;0 with ± being the value of σk;0. To each arrow we associate a displacement operator and
to each cross a creation or annihilation operator. Roughly speaking an arrow on the i-th axis
indicates the displacement at that time of the i-th particle, provided it is in [0, ε−1] before and
after the displacement (otherwise the displacement is canceled). The creation operator moves
a particle from −1 to 0, while the annihilation operator takes to ε−1 +1 the rightmost particle
in [0, ε−1] (if such a particle exists, otherwise the operation aborts). The precise definitions
are given below:

Definition 5.3. Creation, annihilation and displacement operators on X ord, denoted respec-
tively by a±0 and a±i , i ≥ 1.

• Let i ≥ 1. Then a±i x = x, x ∈ X ord, if xi = −1 or if xi = ε−1 + 1. If instead
xi ∈ [0, ε−1] then a±i x is the re-ordering (see Definition 5.1) of y where yj = xj for j 6= i
and yi = xi ± 1 if xi ± 1 ∈ [0, ε−1] while yi = xi if xi ± 1 /∈ [0, ε−1].

• a+
0 x =: y+ is defined as follows: y+

j = xj for j 6= k ≡ N(x) + 1 and yk = 0, (see

Definition 5.1). Thus N(a+
0 x) = N(x) + 1.

• a−0 x =: y− is defined as follows: y− = x if N(x) = M(x) (i.e. no xi ∈ [0, ε−1]), otherwise

let m := M(x) + 1 ≤ N(x), so that xm ∈ [0, ε−1]. Then y−m = ε−1 + 1; while y−j = xj
for j 6= m; thus N(a−0 x) = N(x) and M(a−0 x) = M(x) + 1.

The enlarged space has been introduced to make simpler the proof of the inequalities of the
next section, but in the end what is relevant is the restriction x∩ [0, ε−1] of the configuration
to the physical space. To this end we shall use the following lemma:

Lemma 5.1. Let x and x′ be such that N(x) = N(x′) and M(x) = M(x′) then

N(aσi x) = N(aσi x
′); M(aσi x) = M(aσi x

′); for any i ≥ 0 and any aσi (5.2)

N(aσi x) = N(x); M(aσi x) = M(x); for any i ≥ 1 and any aσi (5.3)
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and for any sequence a
σij
ij

, j = 1, .., n,

N
( n∏
j=1

a
σij
ij
x
)

= N
( n∏
j=1

(a
σij
ij

)1ij=0x
)
, M

( n∏
j=1

a
σij
ij
x
)

= M
( n∏
j=1

(a
σij
ij

)1ij=0x
)

(5.4)

Proof. aσi x, i ≥ 1, differs from x only if xi ∈ [0, ε−1] and in such a case it is obtained by
rearranging the particles in x ∩ [0, ε−1], hence (5.3). Thus (5.2) is a consequence of (5.3) for
i ≥ 1. When i = 0, a+

0 x increases N(·) by 1 leaving M(·) unchanged. a−0 x = x if N(x) = M(x)
while if N(x) > M(x) then M(a−0 x) = M(x) + 1, N(a−0 x) = N(x). (5.4) follows by applying
repeatedly (5.2).

Definition 5.4. Fix t > 0. Then with P probability 1 t0 ∩ [0, t] has finitely many elements
which are all mutually distinct. We define

Ct(ω0) = card
{
tk,0 ∈ t0 : tk,0 ≤ t, σk;0 = +

}
(5.5)

and given x ∈ X ord let n ≥ Ct(ω0) +N(x). Thus it is well defined (with P probability 1) the
sequence t = (t1, .., tk), 0 ≤ tj < tj+1 ≤ t of all times tk;i ∈ [0, t], k ≥ 1, i = 0, .., n. We call ij ,
j = 1, .., k, the label of the time axis to which tj belongs and σj the corresponding ± mark.

Definition 5.5 (The time flows). T 0
t (x, ω) and Tt(x, ω), t > 0, x ∈ X ord and ω ∈ Ω, are

defined (P almost surely) as follows. Let t be as in the previous definition, then using the
same notation,

T 0
t (x, ω) =

k∏
i=1

(aσii )1i>0x, Tt(x, ω) =

k∏
i=1

aσii x (5.6)

To define T
(δ,±)
Nδε−2(x, ω), N a positive integer, we split t (defined as in Definition 5.4 with

t→ Nδε−2) in N groups: t(1), .., t(N) where t(h) = t∩ [(h− 1)ε−2δ, hε−2δ] (with P probability
1 we may suppose that all such times are mutually distinct). We then set

T
(δ,−)
Nδε−2(x, ω) =

N∏
h=1

{ kh∏
i=1

(a
σ
(h)
i
i )1i=0

kh∏
i=1

(a
σ
(h)
i
i )1i>0

}
x (5.7)

T
(δ,+)
Nδε−2(x, ω) =

N∏
h=1

{ kh∏
i=1

(a
σ
(h)
i
i )1i>0

kh∏
i=1

(a
σ
(h)
i
i )1i=0

}
x (5.8)

We finally define T
(δ,−)
t (x, ω), t ∈ ((N−1)ε−2δ,Nε−2δ) by dropping from the product in (5.7)

all operators of the last group with t
(N)
i > t, i ≥ 1, as well as all the creation-annihilation

operators of t(N). Also for T
(δ,+)
Nδε−2(x, ω), t ∈ ((N − 1)ε−2δ,Nε−2δ) we drop from the product

in (5.8) all operators of the last group with t
(N)
i > t, i ≥ 1, but we retain the creation-

annihilation operators of t(N).
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In other words in T
(δ,+)
Nδε−2 the creation-annihilation operators of the N -th group occur all at

time (N − 1)δε−2, while in T
(δ,−)
Nδε−2 they occur at time Nδε−2, thus the above rule for defining

T
(δ,±)
t (x, ω) means that we drop all the operators which appear at times larger than t.

It is easy to see that the marginal over unlabeled configurations of each one of the processes

{T 0
t (x, ω), Tt(x, ω), T

(δ,±)
t (x, ω)} has the law respectively of the free process ξ0

t , the interacting

process ξt and the auxiliary processes ξ
(δ,±)
t . It also follows from (5.4) that

N(T
(δ,±)
nε−2δ

(x, ω)) = N(Tnε−2δ(x, ω)), M(T
(δ,±)
nε−2δ

(x, ω)) = M(Tnε−2δ(x, ω)) (5.9)
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Figure 1: Graphical construction of the flow Tt (left panel) and of the process with generator (1.1)
(right panel) for a system of size ε−1 = 6. The legend for the left panel is as follows: continuous vertical
line denotes the clocks of the particles involved in the dynamics; the clock of the boundaries is that on
the left; the clock that rings first is depicted with a bold line with color red if it has associated a jump
+1 and color black if corresponds to a jump −1. After jumps particles are re-ordered (if needed). On
the right panel the motion in the physical space [0, 6] is displayed.

6 Mass transport inequalities

In this section we introduce a partial order among measures based on moving mass to the
right, we are evidently in the context of mass transport theory from where we are borrowing
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the notions used in this section. We work first in the space of particle configurations ξ
regarding ξ as a distribution of masses and then in the space U , considering u ∈ U as a mass
density (which may have a Dirac delta at 0), the notions are the same except for a change of
language.

The main goal is to prove inequalities between ξt and the auxiliary processes ξ
(δ,±)
t (recall

that the hydrodynamic limit of the latter is known since Section 4) and then derive analogous

inequalities for S
(δ,±)
t (u) and their limit as δ → 0.

We tacitly suppose in the sequel that the configurations ξ are in X as specified in the
beginning of Section 5.

Definition 6.1 (Partial order). For any ξ, ξ′ ∈ X , we say that ξ ≤ ξ′ iff

Fε(x; ξ) ≤ Fε(x; ξ′) for all x ∈ [0, ε−1 + 1] . (6.1)

Observe that ξ ≤ ξ′ has not the usual meaning, i.e. ξ(x) ≤ ξ′(x) for all x ! The notion of
order has rather to be interpreted in the sense of “the interfaces” Fε(x; ξ) =

∑
y≥x ξ(y), see

Definition 2.3 and Figure 2 for a visual illustration. One can easily check that the above “≤”
relation has indeed all the properties of a partial order. Same considerations apply to the
case of continuous mass distributions as in (2.12) where the notion is well known and much
used in mass transport theory.

The equivalence with the previous statement about moving mass to the right is established
next. We first introduce a partial order in X ord by saying that x ≤ x′ iff xi ≤ x′i for all i.
Since there is a one-to-one correspondence between X (see Definition 6.1) and X ord this
defines a priori a new order in X , but the two orders are the same as proved in the following
Proposition.

Proposition 6.1. The conditions: (1) ξ ≤ ξ′; (2) xξ ≤ xξ′ (see Definition 5.1) are equiva-
lent. Moreover, let x = (x1, .., xm) and x′ = (x′1, .., x

′
n) be sequences with values in [0, ε−1 + 1]

then ξx ≤ ξx′ (see (5.1)) iff n ≥ m and there is a one to one map ij from {1, ..,m} into
{1, .., n} so that x′ij ≥ xj for all j = 1, ..,m.

Proof. Equivalence of (1) and (2). Shorthand x = xξ, x
′ = xξ′ .

Suppose (2) holds, then

Fε(x; ξ) =
∑
i≥1

1xi≥x ≤
∑
i≥1

1x′i≥x = Fε(x; ξ′) for all x ≥ 0 (6.2)

hence (2)⇒ (1).
Suppose (1) holds and let x = (x1, .., xm) and x′ = (x′1, .., x

′
n). Then n ≥ m because

otherwise Fε(0; ξ) > Fε(0; ξ′). We also have that xi ≤ x′i for i ≤ m: suppose by contradiction
that xk > x′k then Fε(xk; ξ) ≥ k while Fε(xk; ξ

′) < k, hence the contradiction. Thus (1)⇒ (2).
Let x = (x1, .., xm) and x′ = (x′1, .., x

′
n) be sequences with values in [0, ε−1 + 1] such that

n ≥ m and with a one to one map ij as in the text of the proposition. Then

Fε(x; ξx) =
m∑
j≥1

1xj≥x ≤
m∑
j≥1

1x′ij≥x
≤ Fε(x; ξx′) (6.3)
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Figure 1: Schematic description of the Symmetric Exclusion Process SIP(2j). The arrows represent
the possible transitions and the corresponding rates, while the two cylinders represent the boundary
reserovoirs. Each site can accomodate up to 2j particles.

Figure 2: An example of two particle configurations (ξ, ξ′) related by the inequality ξ ≤ ξ′ for
ε−1 = 10. Note that for the sites x ∈ {1, 2, 8, 9} one has ξ(x) > ξ′(x). However the interface of ξ is
below the interface of ξ′ for all x ∈ [0, 10].

hence ξx ≤ ξx′ . To prove the converse statement we suppose that x = (x1, .., xm) and
x′ = (x′1, .., x

′
n) are such that ξ := ξx ≤ ξ′ := ξx′ . Then y := xξ ≤ y′ = xξ′ , and there are

one to one maps `j : {1, ..,m} onto itself and `′j : {1, .., n} onto itself so that y`j = xj and
x′`′h

= y′h. Then xj ≤ x′ij with ij = `′`j .

As a corollary we have
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Lemma 6.2. If x ≤ x′ then

a±i x ≤ a
±
i x
′, i ≥ 0; x ≤ a±0 x

′

(6.4)

a+
0 x ≤ x

′ if N(x) < N(x′) a−0 x ≤ x
′ if M(x) < M(x′)

Proof. The inequality x ≤ a±0 x′ holds trivially because a±0 x
′ does not decrease the entries of

x′. Let us next consider the other inequalities involving a+
0 . Let k = N(x) + 1, then y := a+

0 x
has yk = 0, while xk = −1 (all the other entries are unchanged). If N(x′) > N(x) then x′k ≥ 0
and the last inequality in (6.4) is satisfied. If N(x′) = N(x) then x′k = −1 but y′k = 0, where
y′ = a+

0 x
′, hence the first equality in (6.4).

Let us next consider a−0 . If M(x) = N(x) then a−0 x = x and therefore is ≤ x′ ≤ a−0 x
′.

Let then m = M(x) + 1 ≤ N(x). Then y := a−0 x has ym = ε−1 + 1. If M(x′) > M(x), then

x′m = ε−1 + 1. If instead M(x′) = M(x) then xm ≤ x′m hence x′m ∈ [0, ε−1] and y′ = a−0 x
′ has

y′m = ε−1 + 1.
Let next y = a±i x and y′ = a±i x

′ with i ≥ 1 and for the sake of definiteness let us just
consider the + case. y = x if i ≤ M(x) and i > N(x). In the former case x′i = ε−1 + 1
is also unchanged, in the latter xi = −1 and again the inequality holds trivially. Let us
then suppose that M(x) < i ≤ N(x) and suppose that this holds as well for x′ (otherwise
x′i = ε−1 +1). Then min{xi+1, ε−1} ≤ min{x′i+1, ε−1} hence the desired inequality applying
the last statement in Proposition 6.1.

As already mentioned we ultimately need inequalities for the restrictions x∩ [0, ε−1] of the
configurations to the physical space. We shall use the following simple observation:

Lemma 6.3. If x ≤ x′ then N(x) ≤ N(x′) and M(x) ≤ M(x′), however (x ∩ [0, ε−1]) ≤
(x′ ∩ [0, ε−1]) requires that M(x) = M(x′). In particular if x ≤ x′:

(x ∩ [0, ε−1]) ≤ (x′ ∩ [0, ε−1]) if N(x) = N(x′), M(x) = M(x′) (6.5)

Definition 6.2 (Stochastic order). A process (ξt)t≥0 is stochastically smaller than a process
(ξ′t)t≥0, writing in short ξt ≤ ξ′t (stochastically), if they can be both realized on a same space
where the inequality holds pointwise almost surely.

We shall prove stochastic order by realizing the processes on the same space (Ω, P ) of
Definition 5.2.

Definition 6.3. A map f : X ord → X ord preserves order if x ≤ x′ implies f(x) ≤ f(x′).

The first inequality in (6.4) proves that all the maps a±i preserve order and since all the
flows have been defined in terms of products of such maps:

Theorem 6.4 (Stochastic inequalities). All the maps T
(δ,±)
mε−2δ

(·, ω), T 0
t (·, ω) and Tt(·, ω), pre-

serve order.

To compare the flows T
(δ,±)
t and Tt we shall use the following lemma:
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Lemma 6.5. Let i ≥ 1, then
aσ00 aσii x ≤ a

σi
i a

σ0
0 x (6.6)

Proof. Let σ0 = +. Call y = a+
0 x, then by the second inequality in (6.4), x ≤ y. Since

aσii preserves order: aσii x ≤ aσii y and since N(y) = N(x) + 1 we have (6.6) (having used the

third inequality in (6.4)). Let σ0 = −. Call y = a−0 x, then by the second inequality in (6.4),
x ≤ y. Since aσii preserves order: aσii x ≤ aσii y and since M(y) = M(x) + 1 we have again
(6.6) (having used the fourth inequality in (6.4)).

Corollary 6.6. Let {(ij , σj)} a sequence of n > 1 pairs with ij ≥ 0, σj ∈ {+,−}. An
exchange at (h, h + 1), h + 1 ≤ n, is the new sequence {(i′j , σ′j)} where (i′j , σ

′
j) = (ij , σj) for

j 6= h, h+1 and (i′h, σ
′
h) = (ih+1, σh+1), (i′h+1, σ

′
h+1) = (ih, σh). We then say that an exchange

at (h, h+ 1) is “allowed” if ih = 0 and ih+1 > 0.
Then if π is a permutation obtained by applying repeatedly allowed exchanges starting from

{(ij , σj)} so that the final sequence is {(iπ(j), σπ(j))}

n∏
j=1

a
σj
ij
x ≤

n∏
j=1

a
σπ(j)
iπ(j)

x (6.7)

Call {(aj , σj)} the sequence associated to T
(δ,−)
mε−2δ

(x, ω) and {(a′j , σ′j)} the one associated

to T
(δ′,−)
mε−2δ

(x, ω), δ = kδ′: then the latter is obtained by repeated allowed exchanges from the
former, hence

T
(δ,−)
mε−2δ

(x, ω) ≤ T (δ′,−)
mε−2δ

(x, ω)

Also the sequence {(a′′j , σ′′j )} associated to Tmε−2δ(x, ω) is obtained by repeated allowed ex-
changes from {(a′j , σ′j)}, hence

T
(δ′,−)
mε−2δ

(x, ω) ≤ Tmε−2δ(x, ω)

The sequence {(a′′′j , σ′′′j )} associated to T
(δ′,+)
mε−2δ

(x, ω) is obtained by repeated allowed exchanges
from {(a′′j , σ′′j )}, hence

Tmε−2δ ≤ T
(δ′,+)
mε−2δ

(x, ω)

Finally the sequence {(a∗j , σ∗j )} associated to T
(δ,+)
mε−2δ

(x, ω) is obtained by repeated allowed
exchanges from {(a′′′j , σ′′′j )}, hence

T
(δ′,+)
mε−2δ

(x, ω) ≤ T (δ,+)
mε−2δ

(x, ω)

We have thus proved:

Theorem 6.7 (Stochastic inequalities). Denoting by ξ
(δ,±)
mε−2δ

and ξ
(δ,±)
t the configurations

ξ
T

(δ,−)

mε−2δ
(x,ω)

and ξTt(x,ω) restricted to x ∈ [0, ε−1] we have for any δ = kδ′, k a positive integer,

ξ
(δ,−)
mε−2δ

≤ ξ(δ′,−)
mε−2δ

≤ ξmε−2δ ≤ ξ
(δ′,+)
mε−2δ

≤ ξ(δ,+)
mε−2δ

(6.8)
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Proof. We have already proved the inequality for the configurations on [−1, ε−1 + 1], thus
the proof of (6.8) follows from (6.5) and (5.9).

The theorem has its continuum analogue which can be proved directly, see Section 4 of
[3], but it can also be deduced from Theorem 6.7, as we shall see.

Theorem 6.8 (Macroscopic inequalities). Let u ∈ L∞([0, 1],R+), F (0;u) > 0. Let δ : jδ <
F (0;u) and δ′ such that δ = kδ′ with k a positive integer. Then

S
(δ,−)
mδ (u) ≤ S(δ′,−)

mδ ≤ S(δ′,+)
mδ ≤ S(δ,+)

mδ (6.9)

Moreover the maps K(δ), Gneum
t ∗ and S

(δ,±)
t on Uδ, see (2.14), preserve order.

Proof. (6.9) follows from (6.8) and (4.2). Proof that K(δ)u ≤ K(δ)v, u, v ∈ Uδ. We have

K(δ)u−K(δ)v = (cu − cv)D0 + (ρu − ρv)1r≤Rδ(u) − ρv1Rδ(u)<r≤Rδ(v)

where Rδ(w) : F (Rδ(w);w) = jδ. Hence

F (r;K(δ)u)− F (r;K(δ)v) =
(
F (r;u)− F (r; v)

)
1r≤Rδ(u) − 1r>Rδ(u)

∫ Rδ(v)

r
ρv(r

′)

which is therefore ≤ 0.
The property that Gneum

t ∗ preserves the order is inherited from the same property for the
independent flow T 0

t . As a consequence of the two previous statements we have that also

S
(δ,±)
t preserves the order (see the definition in (2.14)).

7 Regularity properties of the barriers

In this section we shall prove some regularity properties of the barriers S
(δ,±)
t (u), u ∈

L∞([0, 1],R+), F (0;u) > jδ (the barriers are defined in Definition 2.5).

By the smoothness of Gneum
t (r, r′), t > 0, it is easy to prove that for any n > 0, S

(δ,+)
nδ (u)

is in C∞ while S
(δ,−)
nδ (u) is equal to jδD0 plus a function which is C∞ in the interior of its

support. Such a smoothness however, being inherited from Gneum
δ , depends on δ, while we

want properties which hold uniformly as δ → 0.
The properties of the Green functions that we use in this section are:

Gneum
t (r, r′) = Gneum

t (r′, r) ≤ c(1 +
√
t)√

t
, | d

dr
Gneum
t (r, r′)| ≤ c

t
(7.1)

∫
dr′Gneum

t (r, r′) = 1 (7.2)∫
|r′−r|>X

dr′Gneum
t (r, r′) ≤

√
2e−X

2/(4t), ∀X > 0 (7.3)
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(7.3) is proved by writing∫
|r′−r|>X

dr′Gneum
t (r, r′) ≤

∫
|r′−r|>X

dr′Gt(r, r
′), Gt(r, r

′) =
e−(r−r′)2/(2t)
√

2πt

and then bounding ∫
|r′−r|>X

dr′Gt(r, r
′) ≤ e−X2/(4t)

√
2

∫
dr
e−r

2/(4t)

√
4πt

Such bounds are verified also by the Green function for the Neumann problem in [0, `] for
any ` > 0 and ` = ∞ as well, so that the analysis in this section extends to all such cases.
Observe that if ` is finite and positive the bound on the derivative is much better:∣∣∣ d

dr
Gneum
t (r, 0)

∣∣∣ ≤ ce−bt

t
, b > 0, c > 0

but we shall only use (7.1), (7.2) and (7.3) to have what follows valid also in the spatial
domain [0,∞).

The main results in this section are:

Theorem 7.1 (Space and time equicontinuity). Let u ∈ L∞([0, 1],R+), F (0;u) > 0. Then

• F (0;S
(δ,±)
t (u)) = F (0;u) for all δ > 0 such that F (0;u) > jδ and all t = nδ, n ∈ N.

• There is a constant c so that for any δ > 0: F (0;u) > jδ

‖S(δ,+)
t (u)‖∞ ≤ c

{
j + ‖u‖∞ for all t ∈ δN, t ≤ 1
j + F (0;u) for all t ∈ δN, t > 1

(7.4)

Same bounds hold for {S(δ,−)
t (u)− jD0}.

• Given any time σ > 0 the following holds. For any ζ > 0 there are τζ > 0 and dζ > 0 so
that for any δ ∈ (0, σ): F (0;u) > jδ, for any t ≥ σ in δN, for any t′ ∈ δN, t′ ∈ (t, t+τζ)
and for any r and r′ such that |r − r′| < dζ ,

|S(δ,+)
t (u)(r)− S(δ,+)

t (u)(r′)| < ζ, |S(δ,+)
t′ (u)(r)− S(δ,+)

t (u)(r)| < ζ (7.5)

• For all δ > 0 such that F (0;u) > jδ and all t > 0 in δN

F
(

0; |S(δ,+)
t (u)− S(δ,−)

t (u)|
)
≤ 4jδ (7.6)

Proof.
• F (0;S

(δ,±)
t (u)) = F (0;u) because by (7.2) Gneum

δ preserves the mass, as well as K(δ),
by its very definition, see (2.15)).
• Proof of (7.4). Let t = nδ, n a positive integer, then

S
(δ,+)
t (u)(r) ≤

∫
dr′Gneum

δ (r, r′)S
(δ,+)
t−δ (u)(r′) + jδGneum

δ (r, 0)
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The inequality is because we are not taking into account the “loss part” in the action of K(δ).
Iterating we get for s = mδ, m < n a non negative integer,

S
(δ,+)
t (u)(r) ≤

∫
dr′Gneum

t−s (r, r′)S(δ,+)
s (u)(r′) + jδ

n−m∑
k=1

Gneum
kδ (r, 0) (7.7)

Let nδ be the smallest integer such that δnδ ≥ 1 and suppose that in (7.7) t < δnδ and s = 0.
By (7.2) the integral in (7.7) is bounded by ‖u‖∞ whereas by (7.1) the sum is bounded by
c′′j
√
nδ ≤ c′′j. Thus (7.4) is proved for t ≤ 1.

Let us next take t = δnδ and s = 0 in (7.7). Then using (7.1) we bound the integral
in (7.7) by c′F (0;u)(δnδ)

−1/2 ≤ c′F (0;u). As before the last term in (7.7) is bounded by
c′′j
√
δnδ ≤ 2c′′j so that (we may suppose c′ < 2c′′)

‖S(δ,+)
nδδ

(u)‖∞ ≤ 2c′′(F (0;u) + j)

By the same argument for any integer k ≥ 1

‖S(δ,+)
knδδ

(u)‖∞ ≤ 2c′′{F
(

0;S
(δ,+)
(k−1)δnδ

(u)
)

+ j} = 2c′′(F (0;u) + j) (7.8)

the last equality because we have already proved that mass is conserved. Thus (7.4) is proved
for t ∈ (δnδ)N. Let now m = knδ and knδ < n ≤ (k+1)nδ k a positive integer. The last term

in (7.7) is bounded again by 2c′′j, whereas the integral is smaller than ‖S(δ,+)
knδδ

(u)‖∞. Thus
(7.4) follows from (7.8) when t ≥ 1.

We next prove the analogue of (7.4) for

ρ
(δ,−)
t := S

(δ,−)
t (u)− jδD0, t > 0 ∈ δN (7.9)

Let t = nδ, s = mδ, n > m in N, just as before. Recalling the definition (7.9), we have

ρ
(δ,−)
nδ = K(δ)[Gneum

δ ∗ S(δ,−)
(n−1)δ(ρ0)]− jδD0 = 1[0,R] G

neum
δ ∗

[
ρ

(δ,−)
(n−1)δ + jδD0

]
where 1[0,R] is the characteristic function of the set [0, R] and R is such that∫ 1

R
Gneum
δ ∗

[
ρ

(δ,−)
(n−1)δ + jδD0

]
(r) = jδ

Then

ρ
(δ,−)
nδ (r) = 1r≤R

(
jδGneum

δ (r, 0) +Gneum
δ ∗ ρ(δ,−)

(n−1)δ(r)
)

≤ jδGneum
δ (r, 0) +Gneum

δ ∗ ρ(δ,−)
(n−1)δ(r) (7.10)

After iterating (7.10) we get

ρ
(δ,−)
t (r) ≤ jδ

n−m∑
k=1

Gneum
kδ (r, 0) +

∫
dr′Gneum

t−s (r, r′)ρ(δ,−)
s (r′) (7.11)

which has the same structure as (7.7). The analysis after (7.7) extends to the present case

and yields the proof of (7.4) for ρ
(δ,−)
t .

The proof of (7.5) and (7.6) will be given after the following lemma.
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Lemma 7.2. There is a constant c so that the following holds. For all δ > 0 such that
F (0;u) > jδ and for all 0 ≤ s < t, s, t ∈ δN, t− s ≤ 1, we write

w
(δ,+)
s,t (r) :=

∫
dr′Gneum

t−s (r, r′)S(δ,+)
s (u)(r′), v

(δ,+)
s,t := S

(δ,+)
t (u)− w(δ,+)

s,t (7.12)

Then

sup
r,r′∈[0,1]

|w(δ,+)
s,t (r)− w(δ,+)

s,t (r′)| ≤ c‖u‖∞
|r − r′|
t− s

(7.13)

F (0; |v(δ,+)
s,t |) ≤ 2j(t− s), ‖v(δ,+)

s,t ‖∞ ≤ cj
√
t− s (7.14)

Proof. By (7.4) and the second inequality in (7.1) we get

|w(δ,+)
s,t (r)− w(δ,+)

s,t (r′)| ≤ ‖S(δ,+)
s (u)‖∞

∫
|Gneum

t−s (r, z)−Gneum
t−s (r′, z)| dz ≤ c |r

′ − r′′|
t− s

‖u‖∞

which proves (7.13).

We already have an upper bound for S
(δ,+)
t (u)(r) as given by (7.7) and want to find a

lower bound. We first define for any τ ∈ δN

v(δ)
τ (r) = 1r≥RS

(δ,+)
τ (u)(r), R :

∫
v(δ)
τ (r) = jδ (7.15)

By (7.4)

‖v(δ)
τ ‖∞ ≤ C, C = c

(
j + ‖u‖∞

)
(7.16)

By neglecting the contribution of jD0 we get:

S
(δ,+)
t (u) ≥ Gneum

δ ∗
(
S

(δ,+)
t−δ (u)− v(δ)

t−δ

)
and by iteration:

S
(δ,+)
t (u) ≥ Gneum

t−s ∗ S(δ,+)
s (u)−

n−1∑
k=m

Gneum
(n−k)δ ∗ v

(δ)
kδ

Combining the upper and the lower bound and recalling (7.12)

|v(δ,+)
s,t | ≡ |S

(δ,+)
t (u)−Gneum

t−s ∗ S(δ,+)
s (u)| ≤

n−1∑
k=m

Gneum
(n−k))δ ∗ v

(δ)
kδ + jδ

n−m∑
k=1

Gneum
kδ (r, 0) (7.17)

By (7.15) and (7.1)

‖
n∑

k=m+1

Gneum
(n−k)δ ∗ v

(δ)
kδ ‖∞ ≤ cj

√
δ
√
n−m = cj

√
t− s

and by (7.1)

‖jδ
n−m∑
k=1

Gneum
kδ (r, 0)‖∞ ≤ cj

√
δ
√
n−m = cj

√
t− s
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so that ‖v(δ,+)
s,t ‖∞ ≤ cj

√
t− s and the second inequality in (7.14) is proved. To prove the first

one we use (7.17), (7.12) and (7.2) to write

F (0; |v(δ,+)
s,t |) ≤ jδ(t− s) + F

(
0;

n−1∑
k=m

Gneum
(n−k)δ ∗ v

(δ)
kδ

)
≤ 2jδ(t− s)

which concludes the proof of (7.14).

We resume the proof of Theorem 7.1 by proving:

• Proof of the first inequality in (7.5) (space equicontinuity). Recalling that δ < σ we
may suppose (with no loss of generality) that

ζ < 2c′
√
σ − δ, c′ := c(j + ‖u‖∞) (7.18)

with c the constant in (7.13)–(7.14). Then, given any such ζ > 0, we must find dζ > 0 so that

sup
|r−r′|<dζ

|S(δ,+)
t (u)(r)− S(δ,+)

t (u)(r′)| < ζ, t ∈ δN, t ≥ σ (7.19)

By (7.13) and (7.14)

|S(δ,+)
t (u)(r)− S(δ,+)

t (u)(r′)| ≤ c′ |r − r
′|

t− s
+ c′
√
t− s (7.20)

We shall prove (7.19) with

dζ < ζ3 min
{ 1

4c′(2c′)2
;

1

c′′(2c′)2

}
(7.21)

where c′′ is a constant which will be specified later.
We first consider the case when (2c′)2δ < ζ2. We then choose s < t as the smallest time

in δN such that 2c′
√
t− s < ζ. Since t − s = kδ, for s to exist it must be that (2c′)2δ < ζ2

which is indeed the case presently considered. On the other hand by (7.18), s ≥ δ. Then, by
the minimality of s, 2c′

√
t− s+ δ ≥ ζ so that

2(t− s) ≥ t− s+ δ ≥ ζ2

(2c′)2

By choosing dζ as in (7.21) the first term on the right hand side of (7.20) is bounded by

c′
2(2c′)2

ζ2
dζ <

ζ

2

hence |S(δ,+)
t (u)(r)− S(δ,+)

t (u)(r′)| < ζ.
It remains to consider the case when (2c′)2δ ≥ ζ2. Observe that

S
(δ,+)
t (u) = Gneum

δ ∗ (jδD0 + v), v = 1r≤RS
(δ,+)
t−δ (u) (7.22)
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where R is such that
∫ 1
R S

(δ,+)
t−δ (u) = jδ. Hence by (7.1) the space-derivative of S

(δ,+)
t (u)(r) is

bounded by
c

δ

(
jδ + F (0;S

(δ,+)
t−δ (u))

)
=:

c′′

δ

with c′′ = c(jδ + F (0;u)), having used that F (0;S
(δ,+)
s (u)) = F (0;u).

By (7.21) we then get

|S(δ,+)
t (u)(r)− S(δ,+)

t (u)(r′)| ≤ c′′δ−1|r − r′| ≤ c′′( ζ2

(2c′)2
)−1dζ < ζ (7.23)

• Proof of the second inequality in (7.5) (time equicontinuity). Let t′ > t ≥ σ, t′− t ≤ 1.
Then by (7.17) with t→ t′ and s→ t,

|S(δ,+)
t′ (u)−Gneum

t′−t ∗ S
(δ,+)
t (u)| ≤

n−1∑
k=m

Gneum
(n−k))δ ∗ v

(δ,+)
kδ + jδ

n−m∑
k=1

Gneum
(n−k)δ(r, 0)

≤ cj
√
t′ − t

Hence calling ζ ′ = ζ/4 and with C ≥ ‖S(δ,+)
t (u)‖∞ (see (7.4)),

|S(δ,+)
t′ (u)(r)− S(δ,+)

t (u)(r)| ≤
∫
r′:|r−r′|≥dζ′

CGneum
t′−t (r, r′) dr′ + ζ ′ + cj

√
t′ − t

We choose τζ = aζ8, a a positive constant whose value will be specified later. If δ > τζ there
is no t′ : t < t′ < t+ τζ and the second inequality in (7.5) is automatically satisfied. Let then

δ ≤ τζ . We choose a so that cj
√
aζ4 < ζ ′. By the decay properties of the Green function, see

(7.3), ∫
r′:|r−r′|≥dζ′

Gneum
t′−t (r, r′) dr′ ≤

√
2e
−cd2

ζ′/(4τζ)

Since dζ = cζ3 (see the proof of space continuity) for a small enough the above integral is
< ζ ′ as well.

We shall resume the proof of Theorem 7.1 after the following lemma:

Lemma 7.3. Let u and v be both in Uδ, see (2.14), then

F
(

0; |K(δ)u−K(δ)v|
)
≤ F

(
0; |u− v|

)
, F

(
0; |K(δ)u− u|

)
≤ 2jδ (7.24)

Proof. Supposing Rδ(u) > Rδ(v), see (2.15),

F
(

0; |K(δ)u−K(δ)v|
)

=

∫ Rδ(v)

0
|u− v|+

∫ Rδ(u)

Rδ(v)
u

= F
(

0; |u− v|
)

+

∫ Rδ(u)

Rδ(v)
(u− |u− v|)−

∫ ∞
Rδ(u)

|u− v|
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We have ∫ ∞
Rδ(u)

|u− v| ≥ |
∫ ∞
Rδ(u)

(u− v)| = jδ −
∫ ∞
Rδ(u)

v =

∫ Rδ(u)

Rδ(v)
v

so that

F
(

0; |K(δ)u−K(δ)v|
)
≤ F

(
0; |u− v|

)
−
∫ Rδ(u)

Rδ(v)
(v − u+ |u− v|) ≤ F

(
0; |u− v|

)
The second inequality in (7.24) follows because

K(δ)u− u = jδD0 − 1r>Rδ(u)u

• Proof of (7.6). The proof is actually a corollary of Lemma 7.3 and the maximum
principle

F
(

0; |Gneum
t ∗ u−Gneum

t ∗ v
)
≤ F

(
0; |u− v|

)
Shorthand G for the operator Gneum

δ ∗ and

φ := K(δ)G · · ·K(δ)Gu, ψ := GK(δ) · · ·GK(δ)u

so that we need to bound the total variation of φ− ψ. Call

v = K(δ)u, vn = GK(δ) · · ·Gv, un = GK(δ) · · ·Gu

Thus un and vn are obtained by applying G(K(δ)G)n−1 to u and respectively v. Since
G(K(δ)G)n−1 is a contraction we get, using (7.24),

F (0; |ψ − φ|) ≤ F (0; |K(δ)un − vn|) ≤ F (0; |K(δ)un − un|) + F (0; |vn − un|)
≤ 2jδ + |vn − un|1 ≤ 2jδ + |u− v|1 ≤ 4jδ

The proof of Theorem 7.1 is concluded.

In the proof of Theorem 2.5 we shall use the following Lemma.

Lemma 7.4. Let σ > 0. Then there is c > 0 such that, for any δ and for any t ∈ δN, t ≥ σ,

|S(δ,+)
t (u)(r)− S(δ,+)

t (u)(r′)| ≤ cmax{|r − r′|
1
3 ,
√
δ} (7.25)

Proof. It is clearly sufficient to bound the left hand side of (7.25) when |r − r′| and δ are
such that:

2δ < σ, 2|r − r′|2/3 < σ

We first consider the case when |r − r′|2/3 ≥ δ. We then have

1 ≤ |r − r
′|2/3

δ
≤ σ

δ
− 1
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Then there exists a positive integer k∗ such that k∗δ ≤ σ and

|r − r′|2/3

δ
≤ k∗ ≤ |r − r

′|2/3

δ
+ 1

We then apply (7.20) with s = t− k∗δ getting

|S(δ,+)
t (u)(r)−S(δ,+)

t (u)(r′)| ≤ c′
(
|r−r′|1/3 +

√
|r − r′|2/3 + δ

)
≤ c′(1+

√
2)|r−r′|1/3 (7.26)

Suppose next |r − r′|2/3 ≤ δ. Choose s = t− δ then (7.20) gives:

|S(δ,+)
t (u)(r)− S(δ,+)

t (u)(r′)| ≤ 2c′
√
δ (7.27)

so that (7.25) follows from (7.26) and (7.27).

We conclude the section with a corollary of the proof of Theorem 7.1.

Theorem 7.5. Let u ∈ C([0, 1],R+), F (0;u) > 0. Then for any ζ > 0 there are τζ > 0 and
dζ > 0 so that for any δ : F (0;u) > jδ, for any t ∈ δN, for any t′ ∈ δN, t′ ∈ (t, t + τζ) and
for any r and r′ such that |r − r′| < dζ ,

|S(δ,+)
t (u)(r)− S(δ,+)

t (u)(r′)| < ζ, |S(δ,+)
t′ (u)(r)− S(δ,+)

t (u)(r)| < ζ (7.28)

Proof. It follows from (2.16) and the continuity of u that for any ζ there is d∗ζ so that for
any t ≥ 0

|Gneum
t ∗ u(r)−Gneum

t ∗ u(r′)| < ζ

2
, |r − r′| < d∗ζ (7.29)

Recalling (7.21) we then set

dζ < min
{
d∗ζ ;

ζ3

4c′(2c′)2
;

ζ3

c′′(2c′)2

}
(7.30)

As in the proof of Theorem 7.1 we first consider the case when (2c′)2δ < ζ2. We then choose
s < t as the smallest time in δN such that 2c′

√
t− s < ζ; in the present case where t is not

bounded away from 0 it may happen that s = 0; if not the analysis is just as in the proof of
Theorem 7.1. If instead s = 0 we use (7.29) to replace the bound in (7.13) with s = 0. Then
we can replace (7.20) by

|S(δ,+)
t (u)(r)− S(δ,+)

t (u)(r′)| ≤ ζ

2
+ c′
√
t < ζ (7.31)

The proof for the case when (2c′)2δ ≥ ζ2 is just as in the proof of Theorem 7.1 so that the
first inequality in (7.28) is proved.

The second inequality in (7.28) follows from the first one by the same argument used in
the proof of Theorem 7.1 and since the first one has been proved without restrictions on t the
second one has also no restriction in t.
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8 Hydrodynamic limit

Proof of Theorem 2.3. We fix an element u ∈ L∞([0, 1],R+) such that F (0;u) > 0. We

first restrict to δ ∈ ∆τ := {2−nτ, n ∈ N}, τ > 0 and prove convergence of S
(δ,+)
t (u) as δ → 0 in

∆τ when t is restricted to the interval [σ, S], 0 < σ < S. More precisely we define a function
ψ(n)(r, t) on [0, 1]× [σ, S] by setting

ψ(n)(r, t) = S
(2−nτ,+)
t (u)(r), r ∈ [0, 1], t ∈ [σ, S] ∩ (2−nτ)N

and defining ψ(n)(r, t) when t ∈ [σ, S] by linear interpolation.
By Theorem 7.1 the family {ψ(n)} is equibounded and equicontinuous hence by the Ascoli-

Arzelà theorem it converges in sup norm by subsequences to a continuous function ψ(r, t) on
[0, 1]× [σ, S]. On the other hand for any r ∈ [0, 1] and t ∈ [σ, S] ∩ {k2−nτ, n, k ∈ N}:

lim
m→∞

F (r;S
(2−mτ,+)
t (u)) = F (r;ψ(·, t))

because, by (6.9), F (r;S
(2−mτ,+)
t (u)) is a non increasing function of m which thus converges

as m→∞. Thus all limit functions ψ(r, t) agree on t ∈ [σ, S] ∩ {k2−nτ, n, k ∈ N} and since
they are continuous they agree on the whole [σ, S], thus the sequence ψ(n)(r, t) converges in
sup-norm as n→∞ to a continuous function ψ(r, t).

By the arbitrariness of σ and T the function ψ(r, t) extends to the whole [0, 1] × (0,∞)
and summarizing we have

lim
n→∞

‖S(2−nτ,+)
t (u)− ψ(·, t)‖∞ = 0, t > 0, t ∈ (2−nτ)N (8.1)

the convergence being uniform in t ∈ {(2−nτ)N} when it varies on the compacts not containing
0.

Proposition 8.1. For any r ∈ [0, 1]

lim
t→0

F (r;ψ(·, t)) = F (r;u) (8.2)

Proof. Let t = k2−nτ , k and n positive integers. Then by (6.9)

F (r;ψ(·, t)) = lim
n→∞

F (r;S
(2−nτ,+)
t (u)) ≤ F (r;S

(t,+)
t (u))

Let X > 0, rX := max{r −X, 0}, then

F (r;S
(t,+)
t (u)) ≤ F (rX , u) + F (0;u) sup

r′

∫
|r−r′|>X

Gneum
t (r, r′) dr

By (7.3)

F (r;S
(t,+)
t (u)) ≤ F (r;u) + ‖u‖∞X + F (0;u)

√
2e−X

2/(4t)

By choosing X = t1/4

F (r;S
(t,+)
t (u)) ≤ F (r;u) + ‖u‖∞

(
t1/4 +

√
2e−t

−1/2/4
)
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To prove a lower bound we write

F (r;ψ(·, t)) = lim
n→∞

F (r;S
(2−nτ,+)
t (u)) ≥ F (r;S

(t,−)
t (u))

and have

F (r;S
(t,−)
t (u)) ≥ F (r +X,u)− F (0;u) sup

r′

∫
|r−r′|>X

Gneum
t (r, r′) dr

F (r;S
(t,−)
t (u)) ≥ F (r;u)− ‖u‖∞

(
t1/4 +

√
2e−t

−1/2/4
)

Thus
|F (r;ψ(·, t))− F (r;u)| ≤ ‖u‖∞

(
t1/4 +

√
2e−t

−1/2/4
)
, t = k2−nτ > 0

By the continuity of ψ(·, t) and because the set {k2−nτ , k ∈ N+, n ∈ N} is dense in R+, it
follows that

sup
t≤S
|F (r;ψ(·, t))− F (r;u)| ≤ ‖u‖∞

(
S1/4 +

√
2e−S

−1/2/4
)

hence (8.2).

Proposition 8.2. For any t ∈ {k2−nτ , k ∈ N+, n ∈ N},

lim
n→∞

∫
dr|ψ(r, t)− S(2−nτ,−)

t (u)(r)| = 0 (8.3)

F (r;ψ(·, t)) ≥ F (r;S
(2−nτ,−)
t (u)), r ∈ [0, 1] (8.4)

Proof. (8.3) follows from (8.1) and (7.6). By (8.3)

F (r;ψ(·, t)) = lim
n→∞

F (r;S
(2−nτ,−)
t (u))

which implies (8.4) because, by (6.9), F (r;S
(2−nτ,−)
t (u)) is a non decreasing function of n.

By (6.9) we then have for all r ∈ [0, 1] and all δ and t in {k2−nτ , k ∈ N+, n ∈ N},

F (r;ψ(·, t)) ≥ F (r;S
(δ,−)
t (u)), F (r;ψ(·, t)) ≤ F (r;S

(δ,+)
t (u)) (8.5)

(8.5) does not yet prove that ψ separates the barriers because we have to consider all t and
δ and not only those above. To this end we observe that the function ψ(r, t) that we have
defined so far actually depends on the initial choice of τ , to make this explicit we write ψτ (r, t).
Of course we have for all τ > 0:

F (r;S
(δ,−)
t (u)) ≤ F (r;ψτ (·, t)) ≤ F (r;S

(δ,+)
t (u)), δ, t ∈ {k2−nτ, k ∈ N+, n ∈ N} (8.6)

so that we only need to show that ψτ does not depend on τ . To prove independence of τ we
use the following lemma:

Lemma 8.3. There is c so that for any 0 < δ < δ′, u ∈ Uδ and n ≥ 1

|S(δ,−)
nδ (u)− S(δ′,−)

nδ′ (u)|1 ≤ c|u|1n
δ′ − δ
δ3/2

(8.7)
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Proof. In order to compare S
(δ,−)
δ and S

(δ′,−)
δ′ we shall use the following bounds:

|K(δ)(w)−K(δ′)(w)|1 ≤ 2j(δ′ − δ), |Gneum
δ ∗ w −Gneum

δ′ ∗ w|1 ≤
c(δ′ − δ)
δ3/2

|w|1 (8.8)

together with |K(δ)(w)−K(δ)(w)|1 ≤ |v −w|1, see (7.24). Indeed we can bound |S(δ,−)
δ (w)−

S
(δ′,−)
δ′ (v)|1 by

≤ |K(δ){Gneum
δ ∗ w −Gneum

δ′ ∗ v}|1 + |(K(δ′) −K(δ))Gneum
δ′ ∗ v}|1

≤ |Gneum
δ ∗ w −Gneum

δ′ ∗ v|1 + 2j(δ′ − δ)
≤ |Gneum

δ ∗ w −Gneum
δ ∗ v|1 + |Gneum

δ ∗ v −Gneum
δ′ ∗ v|1 + 2j(δ′ − δ)

getting

|S(δ,−)
δ (w)− S(δ′,−)

δ′ (v)|1 ≤ |w − v|1 + c
δ′ − δ
δ3/2

|v|1 + 2j(δ′ − δ) (8.9)

By using (8.9) with w = S
(δ,−)
(n−1)δ(u) and v = S

(δ′,−)
(n−1)δ′(u), then, by iteration, we get (8.7).

Theorem 8.4. ψτ is independent of τ .

Proof. We shall prove that for any τ and τ ′

F (r;ψτ (·, t)) = F (r;ψτ ′(·, t)), r ∈ [0, 1], t > 0

and this will prove Theorem 8.4. We suppose that τ ′ /∈ {kτ2−n, k, n ∈ N} (otherwise the
statement trivially holds). We fix t′ = nδ′, δ′ = τ ′2−m. Let δ = kτ2−q, δ < δ′. By the
previous lemma, for all r ∈ [0, 1]

F (r;S
(δ′,−)
t′ (u)) ≤ F (r;S

(δ,−)
nδ (u)) + cF (0;u)n

δ′ − δ
δ3/2

Write δ = kpτ2−p so that kp = k2p−q is a positive integer for p large enough. Then by (6.9)

F (r;S
(δ,−)
nδ (u)) ≤ F (r;S

(τ2−p,−)
nδ (u))

By taking p→∞:

F (r;S
(δ′,−)
t′ (u)) ≤ F (r;ψτ (·, nδ)) + cF (0;u)n

δ′ − δ
δ3/2

We then let δ → δ′ on {kτ2−n, k, n ∈ N}. In this limit nδ → t′ and by the continuity of
ψτ (·, s) in s we get

F (r;S
(δ′,−)
t′ (u)) ≤ F (r;ψτ (·, t′))

We next take m→∞, recall δ′ = τ ′2−m, and get

F (r;ψτ ′(·, t′)) ≤ F (r;ψτ (·, t′)), for any t′ ∈ {kτ ′2−n, k, n ∈ N}

In an analogous fashion we get

F (r;ψτ (·, t)) ≤ F (r;ψτ ′(·, t)), for any t ∈ {kτ2−n, k, n ∈ N}
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Then ψτ (·, t) = ψτ ′(·, t) for all t in a dense set, hence they are equal everywhere being both
continuous.

The proof of Theorem 2.3 is concluded.

Proof of Theorem 2.4. It follows from the reasoning above and the use of Theorem 6.8
with the choice m = 2n and δ = t2−n.

Proof of Theorem 2.1. The proof of Theorem 2.1 is an immediate consequence of Theorem
8.4.

We are left with the proof of Theorem 2.5, that we explain in the remaining part of this
section. We fix ρinit such that ρinit(1) > 0 and we call ρt the function of Theorem 2.1.

For any a > 0 arbitrarly small we define

Ta = sup{t > 0 : ρt(1) ≥ a}

Lemma 8.5. For any a > 0 there exists 0 < a′ < a such that

S
(δ,+)
nδ ρinit(1) ≥ a′ for any n such that δn < Ta (8.10)

Proof. Let t ∈ δN with t < Ta then ρt(1) ≥ a. From Theorem 2.4, for any r ∈ [0, 1],
t ∈ δN we have

F (r;S
(δ,−)
t (ρinit)) ≤ F (r; ρt) ≤ F (r;S

(δ,+)
t (ρinit)) (8.11)

On the other hand, from (7.6), for any r ∈ [0, 1], t ≥ 0,∣∣F (r;S
(δ,−)
t (ρinit))− F (r;S

(δ,+)
t (ρinit))

∣∣ ≤ 4jδ . (8.12)

As a consequence, writing ρ
(δ,+)
t := S

(δ,+)
t (ρinit) and choosing r = 1−

√
δ, we have∫ 1

1−
√
δ
ρ

(δ,+)
t (r) dr ≥

∫ 1

1−
√
δ
ρt(r) dr − 4jδ (8.13)

From Lemma 7.4, for r ∈ [1−
√
δ, 1],

|ρ(δ,+)
t (r)− ρ(δ,+)

t (1)| ≤ cmax{|1− r|
1
3 ,
√
δ} ≤ cδ

1
6

hence ∫ 1

1−
√
δ
ρ

(δ,+)
t (r) dr ≤ (ρ

(δ,+)
t (1) + c δ

1
6 )
√
δ (8.14)

Combining (8.13) and (8.14) we have

ρ
(δ,+)
t (1) + c δ

1
6 ≥ 1√

δ

∫ 1

1−
√
δ
ρ

(δ,+)
t (r) dr ≥ 1√

δ

∫ 1

1−
√
δ
ρt(r) dr − 4j

√
δ (8.15)

thus

ρ
(δ,+)
t (1) ≥ 1√

δ

∫ 1

1−
√
δ
ρt(r) dr − c′ δ

1
6 (8.16)
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From the space continuity of ρt obtained in Theorem 2.1, for any a > 0 there exists δ > 0
small enough such that, for |r − 1| ≤

√
δ,

ρt(r) ≥ ρt(1)− a/2 ≥ a/2

where the last inequality holds for all t < Ta. Then the statement of the Lemma follows from
(8.16) with a′ = a/2− c′δ

1
6 which is positive for δ small enough.

Lemma 8.6. For any a > 0 there is Ca > 0 such that for any t ∈ δN, t < Ta

Rδ(S
(δ,+)
nδ (ρinit)) ≥ 1− Ca δ (8.17)

Proof. Fix C > 0 and denote ρ
(δ,+)
t := S

(δ,+)
t (ρinit). From Lemma 7.4 we know that there is

c > 0 so that for any r ∈ [1− Cδ, 1], t ∈ δN,

ρ
(δ,+)
t (r) ≥ ρ(δ,+)

t (1)− cδ
1
3 (8.18)

then, from Lemma 8.5, for any a > 0 there is 0 < a′ < a such that∫ 1

1−Cδ
ρ

(δ,+)
t (r) dr ≥ Cδ(a′ − cδ

1
3 ) ∀t < Ta (8.19)

now it is sufficient to chose C = Ca > (a′ − cδ
1
3 )/j, δ small enough to get∫ 1

1−Caδ
ρ

(δ,+)
t (r) dr > jδ ∀t < Ta, (8.20)

that gives (8.17).

Proof of Theorem 2.5. We define the dynamics

Ŝ
(δ,+)
nδ (u) := Gneum

δ ∗ · · · ∗QδGneum
δ ∗Qδu n times

= Gneum
δ ∗QδŜ(δ,+)

(n−1)δ(u) (8.21)

with
Qδu = u+ jδD0 − jδD1 (8.22)

then

Ŝ
(δ,+)
nδ (u) = Gneum

nδ ∗ u+ jδ

n−1∑
k=0

Gkδ ∗D0 − jδ
n−1∑
k=0

Gkδ ∗D1 (8.23)

hence Ŝ
(δ,+)
t (u) converges as δ → 0 to the dynamics defined by (2.21). It remains to prove

that S
(δ,+)
nδ (u)− Ŝ(δ,+)

nδ (u) converges weakly to zero for nδ < supa Ta.
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From (8.21) and (2.17), we can write

S
(δ,+)
nδ (u)− Ŝ(δ,+)

nδ (u) =

= Gneum
δ ∗

(
KδS

(δ,+)
(n−1)δ −Q

δŜ
(δ,+)
(n−1)δ

)
(u) =

= Gneum
δ ∗

(
Kδ −Qδ

)
S

(δ,+)
(n−1)δ(u) +Gneum

δ ∗Qδ
(
S

(δ,+)
(n−1)δ − Ŝ

(δ,+)
(n−1)δ

)
(u) =

= Gneum
δ ∗

(
Kδ −Qδ

)
S

(δ,+)
(n−1)δ(u) +Gneum

δ ∗QδGneum
δ ∗

(
KδS

(δ,+)
(n−2)δ −Q

δŜ
(δ,+)
(n−2)δ

)
(u) =

=
n∑
k=1

Gneum
δ ∗QδGneum

δ ∗ · · · ∗QδGneum
δ ∗ (Kδ −Qδ)S(δ,+)

(n−k)δ(u) (by iteration) (8.24)

where the Gneum
δ appears k times in the k-th term of the sum and

(Kδ −Qδ)v := j δ D1 − 1[Rδ(v),1] v (8.25)

Then, in order to prove the convergence of (8.24) to 0 we prove that each term in the sum
(8.24) converges to 0 as δ → 0. This is true since for any n : nδ < supa Ta

(Kδ −Qδ)S(δ,+)
nδ u→ 0 weakly as δ → 0 (8.26)

The proof of this last statement follows form the following argument. We first fix a > 0
arbitrarily small, then, from (8.17), there exists Ca > 0 so that∣∣∣∣supp

(
1
Rδ(S

(δ,+)
kδ u)

S
(δ,+)
nδ u

) ∣∣∣∣ ≤ Caδ, for any n : nδ ≤ Ta (8.27)

Then for any test function φ, nδ ≤ Ta,∣∣∣ 1

jδ

∫ 1

Rδ(S
(δ,+)
nδ u)

S
(δ,+)
nδ u(r) · φ(r) dr − φ(1)

∣∣∣
=
∣∣∣ 1

jδ

∫ 1

Rδ(S
(δ,+)
nδ u)

S
(δ,+)
nδ u(r) · (φ(r)− φ(1)) dr

∣∣∣
≤ sup

r∈[Rδ(S
(δ,+)
nδ u),1]

∣∣φ(r)− φ(1)
∣∣ ≤ sup

|r−1|≤Caδ

∣∣φ(r)− φ(1)
∣∣ (8.28)

that vanishes as φ is continuous. Hence, for any a > 0,

lim
δ→0

∣∣∣ 1

jδ

∫ 1

Rδ(S
(δ,+)
nδ u)

S
(δ,+)
nδ u(r) · φ(r) dr − φ(1)

∣∣∣ = 0 for kδ ≤ Ta (8.29)

then (8.29) is certainly true as long as nδ ≤ supa Ta, this yields the convergence in distribution
to equation (2.21) for any time t such that ρt(1) > 0. We know that the convergence of

S
(t2−n,+)
t (ρinit) to ρt as n → ∞ in the sense of the interfaces (see Theorem 2.4) implies

weak convergence against smooth test functions. This and the uniqueness of the weak limit
univocally characterizes ρt as the function given by (2.21) for t such that ρt(1) > 0. Then the
Theorem is proved.
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