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1 Introduction

Proportional methods offer different recipes to mitigate the unavoidable distortion

arising when votes are translated into seats. Several indexes of disproportionality,

or inequality, have been proposed to measure this distortion; typically, it can be

shown that a certain index (or class of indexes) is minimized by a corresponding

(traditional or ad-hoc) apportionment method, see Grilli di Cortona et al. (1999),

Balinski and Young (2001) and Edelman (2006) for an overview of these results.

This leads to and supports the practice of, quoting Edelman (2006): “. . . evaluating

methods of apportionment based on the objective function they optimize”. In par-

ticular, this approach is followed by Grilli di Cortona et al. (1999), who describe

proportional methods as procedures solving an underlying optimization problem,

where the objective function (the “hidden criterion”) corresponds to some inequal-

ity index. These Authors also suggest that, beyond evaluation, new proportional

methods may be defined based on the optimization approach: minimize a given

index subject to constraints enforcing specific properties, such as the quota prop-

erty. In principle, any well-founded measure of inequality, dispersion or variability

may be adopted as the objective function, including indexes developed in other

application areas. For example, Grilli di Cortona et al. (1999) suggest as a suitable

choice (among others) the Gini index: we pursue this idea in the present work.

The Gini index, hereafter referred to as G, is a measure of statistical dispersion

introduced about one century ago by Corrado Gini (1912, 1921) and commonly

adopted in welfare economics and social sciences (and other disciplines) as an index

of concentration, i.e., unequal distribution of income or wealth among a population.

A discussion of the meaning and interpretation of G would go far beyond the scope
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of this paper; we refer the interested reader e.g. to Xu (2004). Here we adopt the

usual geometric definition of G in terms of Lorenz curves, that are one of the first

historical attempts to represent and compare wealth distributions. In our context,

we consider the number of seats assigned to a party as the “wealth” shared by the

voters of that party. In this way, we use G as an index of unequal distribution of

political representation, or “voting power”, among voters.

In general (we provide a simple example later on) an apportionment minimizing

G may violate the quota property, that requires each party to receive either the

upper or the lower integer rounding of its ideal fractional quota. In this paper we

do not address the minimization of G in the general case, but rather a restricted

version of the problem, where the quota property is explicitly enforced; in other

words, we devise a particular quotient method. This restriction is motivated by the

nice structure of the resulting optimization problem. Indeed, quotient methods

perform a binary choice (rounding quota either up or down) for each party: as

already noticed in Grilli di Cortona et al. (1999), this leads to a problem with a

binary knapsack structure. Here we show that a rounding that gives a minimum

G can be found solving an instance of the (binary) quadratic knapsack problem

(QKP). This problem has been introduced by Simeone (1979) and by Hammer,

Gallo and Simeone (1980), and has been widely studied, see (Kellerer et al., 2004,

Chapter 12) for an overview. From a computational point of view, QKP is known

to be much harder than its linear counterpart, nevertheless, instances with a few

hundred variables can be solved with state of the art methods, see Pisinger et al.

(2007). In our application the number of variables corresponds to the number of

parties, thus the resulting QKP instances are limited in size and rather easy to

solve, as confirmed by some preliminary computational tests.
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Note that QKP is known to be strongly NP-hard, even if all coefficients are

in {0, 1} (Kellerer et al., 2004, Chapter 12) but this does not imply that our

apportionment problem (i.e., minimize G subject to the quota property) is NP-

hard as well. In fact, the true computational complexity of this problem remains

an open issue.

The paper is organized as follows. In the next section we introduce the nec-

essary definitions, and discuss some examples. In Section 3 we provide the QKP

formulation and report computational results. In the last section we draw some

conclusions and suggest directions for further work.

2 Definitions and examples

We consider the apportionment of S seats among n parties given the vector v of

votes, where vi > 0 is the number of votes cast for party i, and V =
∑n

i=1 vi is the

total number of votes. We denote by s a generic apportionment, where si is the

number of seats assigned to party i, and clearly S =
∑n

i=1 si; note that some si

may be zero. Observe that si can be considered as the “power” shared by the vi

voters of party i; in other words, each voter of i owns (or earns) the same voting

power wi = si/vi. In this paper we take voting power as a measure of political

representation, and adopt G as an index of unequal distribution of voting power.

Note that, even if stated in terms of “parties” and “votes”, our results apply to

the case where seats must be assigned to states based on the number of inhabitants,

as happens e.g. for the US Congress and the EU Parliament; indeed, we later report

some computational results for these two cases. In this context, the inverse of the
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voting power 1/wi = vi/si is usually referred to as the district size; thus our

method aims at minimizing inequality in the distribution of district size.

2.1 Apportionment methods

Given v, we can define for each party i its natural quota qi = vi · S/V ; we let

qi = ui + ri, where ui = ⌊qi⌋ is the integer part of qi, and ri is the remainder of

party i. In a quotient method, qi is assumed as the ideal fraction of seats to be

assigned to party i, and each party i is assigned either ui = ⌊qi⌋ or ⌈qi⌉ seats;

clearly, i is assigned exactly qi seats in the (rather unlikely) case that qi is integer,

i.e., ri = 0. We denote by K = S −
∑n

i=1⌊qi⌋ =
∑n

i=1 ri the number of seats yet

to be assigned after each party is allotted its minimum ui. We assume that K > 0,

i.e., there exist some ri > 0; clearly, we have K < n. An actual quotient method

is defined by a rounding rule selecting the K parties receiving ⌈qi⌉ seats instead of

⌊qi⌋. The most commonly adopted rounding rule is Largest Remainders, where the

K seats are assigned to the K (parties with the) largest ri. Some other examples

of rounding rule are described later.

In the forthcoming examples we also consider divisor methods, see Balinski and

Young (2001); Grilli di Cortona et al. (1999). A divisor method is defined by an

increasing sequence of divisors d(t), for t = 0, 1, 2, . . ., such that t ≤ d(t) ≤ t + 1

and d(t) < d(t+1); for each party i and divisor t the ratio vi/d(t) is computed, and

seats are assigned to the largest S ratios (actually to the corresponding parties)

breaking ties arbitrarily. In particular, we denote by D(a) a generic divisor method

where d(t) = t+ a for each t. Recall that some well known divisor methods fall in

this category, e.g., D(0) is Smallest Divisors, D(1/3) is the Danish method, D(1/2)
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is Sainte-Laguë and D(1) is d’Hondt. Notable exceptions are Equal Proportions,

where d(t) =
√

t · (t+ 1), and Harmonic Mean, where d(t) = t · (t+ 1)/(t+ 1/2).

2.2 Lorenz curves and the Gini index

The usual geometric definition of G is based on the Lorenz curve L, which is a plot

of cumulative share of wealth, normalized within a unit square. For a population of

N individuals, L is a piecewise linear curve with N+1 breakpoints ph, 0 ≤ h ≤ N ;

p0 = (0, 0) is the bottom-left corner, pN = (1, 1) is the top-right corner, and each

ph has cohordinates (h/N,Wh), where Wh is the cumulated wealth share of the

“poorest” h individuals. In other words, individuals appear from left to right in

non-decreasing order of wealth. It follows that L is convex, since the slopes of

the linear pieces (ph, ph+1) are non-decreasing with h; moreover, L lies below the

diagonal D joining p0 and pN . Let A be the area delimited by A and D, and let

B the area of the square lying below L (see the left part of Figure 1); note that

A+B = 1/2. The Gini index is defined as

G =
A

A+B
= 2A = 1− 2B. (1)

Note that G = 0 in case of perfect equality, i.e., if L coincides with D, and

G = 1− 1/N if a single individual owns the whole wealth.

In our application we consider the number of seats S as the total wealth of

a population consisting of the V voters. In particular, each voter of party i owns

the same wealth wi. As a consequence, all the voters of party i can be represented

by a single linear piece Pi of L, spanning vi/V (the share of votes) horizontally,

and si/S (the share of seats) vertically; see the right part of Figure 1. Then, L is

made up of n linear pieces Pi, 1 ≤ i ≤ n; clearly, these pieces appear from left to
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Fig. 1 Definition of L and G (left) and a linear piece Pi of L (right)

right in nondecreasing order of slopes, i.e., parties appear in nondecreasing order

of voting power.

2.3 Examples

The following examples show that traditional proportional methods, or simple

variants of them, are not guaranteed to minimize G. This amounts to say that

minimizing G is not a trivial problem, even if we restrict to quotient methods.

For easiness of presentation, in our examples we directly provide the vector

q of quotas rather than the vector of votes v. Moreover, when applying divisor

methods we consider the ratios ρi,t = qi/d(t) = (S/V ) · vi/d(t) instead of vi/d(t).

According to this choice, in Figures 2–4 we represent Lorenz curves normalized

within their corresponding S×S square, rather than within a unit square. In this

way, the vote share vi/V of party i is replaced by its quota qi = S · vi/V , and the

seat share si/S is replaced by the number of seats si. As a result, areas A and B

are scaled by a factor S2, but this does not affect the value G = A/(A + B); in

particular, note that minimizing G is equivalent to maximizing B.



8 Daniele Pretolani

The first example shows that an apportionment minimizing G does not neces-

sarily satisfy the quota property; this implies that any quotient method (like ours)

may miss optimal solutions.

Example 1 Let S = 5, n = 4, q1 = 3 + ε and q2 = q3 = q4 = (2 − ε)/3, where

ε is a small positive number. Breaking ties in favour of parties 2 and 3, the two

apportionments satisfying quota are: s(0) = (3, 1, 1, 0), yielding B = 10−(1+7ε)/6,

and s(1) = (4, 1, 0, 0), yielding B = 9 + ε/2. The apportionment s∗ = (2, 1, 1, 1)

does not satisfy quota, and yields B = 10 − 5ε/2; the remaining apportionments

yield B < 9. It is easy to check that for ε < 1/8 the maximum B is attained only

by s∗; the minimum value G = 1/5 is obtained for ε = 0. Figure 2 shows the

three apportionments s∗, s(0) and s(1), for ε = 0; note that the quota values q are

ordered according to voting powers. ⊓⊔

q
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Fig. 2 Example 1: curve L and area B for apportionments s∗, s(0) and s(1) (5× 5 square)

The next example shows that Largest Remainders, as well as other similar

rounding rules, are not guaranteed to find the solution minimizing G, even if

this solution satisfies the quota property. Besides the remainder ri, we consider

other three values associated with party i: the quota qi, the ratio ri/qi, and the

ratio (1− ri)/qi. For each value φ we define two opposite rounding rules, say
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“largest φi” and “smallest φi”. All the eight resulting rules (some of which rather

counterintuitive) may “fail”, i.e., miss the solution minimizing G. Moreover, the

same example shows that any divisor method D(a) with a < 1/2 may fail.

Example 2 Let S = 2, n = 3, q1 = 1 + r1 with 0 < r1 < 1 and q2 = q3 = r,

where r = (1 − r1)/2; note that r1 > r if and only if r1 > 1/3. Breaking ties

in favour of 2, there are two apportionments that satisfy quota: s(0) = (1, 1, 0),

yielding B = 1+(1−r1)/4, and s(1) = (2, 0, 0), yielding B = 1+r1. The remaining

apportionments yield B < 1; s(0) and s(1) are shown in Figure 3 for r1 = 1/5.

The maximum B is given by s(0) for 0 < r1 < 1/5 and by s(1) for 1/5 < r1 < 1;

for r1 = 1/5, s(0) and s(1) are equivalent, and give B = 6/5 and G = 2/5. All the

rounding rules defined above fail for some values of r1:

– for 1/5 < r1 < 1/3 “largest ri” chooses s(0) and fails;

– for 0 < r1 < 1/5 “smallest ri” chooses s(1) and fails;

– “smallest vi”, as well as “largest ri/qi” and “largest (1−ri)/qi”, always choose

s(0), and fail if r1 > 1/5;

– “largest vi”, as well as “smallest ri/qi” and “smallest (1 − ri)/qi”, always

choose s(1), and fail if r1 < 1/5.

Now consider a divisor method D(a): this method assigns the first seat to party

1 for the ratio ρ1,0 = q1/a, and the second seat based on the comparison between

ρ1,1 = (1 + r1)/(1 + a) and ρ2,0 = (1 − r1)/2a. It is easy to check that there is a

tie ρ1,1 = ρ2,0 if r1 = r̂(a), where:

r̂(a) =
1− a

1 + 3a
;

if r1 > r̂(a) then ρ1,1 > ρ2,0 and D(a) chooses s(1), while if r1 < r̂(a) then D(a)

chooses s(0). Note that for a = 1/2 we have r̂(a) = 1/5, thusD(1/2) (Sainte-Laguë)
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Fig. 3 Example 2: curve L and area B for apportionments s(0) and s(1) (2× 2 square)

always obtains the minimum G. However, if a < 1/2 then r̂(a) > 1/5, since r̂(a)

is strictly decreasing in a for a ∈ [0, 1]; for each r1 such that 1/5 < r1 < r̂(a) the

method D(a) chooses s(0), while the minimum G is given by s(1). In other words,

for any a < 1/2 there exist some r1 such that D(a) fails. Note also that Equal

Proportions and Harmonic Mean, as well as D(0), always choose s(0), and fail for

r1 > 1/5. ⊓⊔

The last example shows that any divisor method D(a) with a ≥ 1/2 (in par-

ticular, Sainte-Laguë) may fail. Combined with the previous example, this shows

that no divisor method D(a) is guaranteed to minimize G in all cases.

Example 3 Let S = 4, n = 3, q1 = 20/9, q2 = 12/9 + ε and q3 = 4/9 − ε.

We have three apportionments satisfying quotas, namely: s(1) = (3, 1, 0), yielding

B = 56/9+ε/2; s(2) = (2, 2, 0), yielding B = 56/9+3ε; and s(3) = (2, 1, 1), yielding

B = 60/9 − 3ε; see Figure 4. The remaining apportionments yield B < 56/9.

For ε < 2/27 the minimum G is given only by s(3). The Sainte-Laguë method

D(1/2) always chooses s(2); the relevant ratios ρi,t are listed here, with the order

([1],[2],. . . ) in which they are assigned seats:

i = 1: ρ1,0 = 40/9 [1], ρ1,1 = 40/27 [3], ρ1,2 = 8/9;

i = 2: ρ2,0 = 8/3 + 2ε [2], ρ2,1 = 8/9 + 2ε/3 [4];

i = 3: ρ3,0 = 8/9− 2ε.
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Fig. 4 Example 3: curve L and area B for apportionments s(1), s(2) and s(3) (4× 4 square)

Now consider the simplified case where ε = 0, and thus the minimum valueG = 1/6

is obtained only by s(3). A generic method D(a) chooses s(3), possibly breaking

ties in favour of 3, only if ρ3,0 ≥ ρ1,2 and ρ3,0 ≥ ρ2,1, i.e., if a ≤ 1/2. Therefore,

any D(a) with a > 1/2 fails. ⊓⊔

3 A Quadratic Knapsack Formulation

In this section we address the problem of finding an apportionment that satisfies

the quota property and minimizes G. In particular, we search an apportionment

s = u + x, where for each i we have si = ui + xi and xi ∈ {0, 1}. The vector

x ∈ {0, 1}N defines the rounding of quotas, and provides the variables of our

optimization problem. We follow a geometric approach, where the goal is the

maximization of the area B obtained from s; here we comply to the unit square

normalization assumed in Equation (1). In order to obtain a QKP formulation we

need to express B as a quadratic function of x. After discussing some details of

our formulation we report some preliminary computational results.
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3.1 A quadratic function for area B

Given the apportionment s = u+ x, we say that party i precedes party j, denoted

as i⊳xj, if i appears in L to the left of j. Recall that parties (linear pieces) appear

in L, from left to right, in nondecreasing order of voting power wi = si/vi. In

case of a tie, i.e., wi = wj , we assume i⊳xj if i < j; in this way, the total order

⊳
x is completely defined by x. Moreover, we assume that parties are indexed in

nondecreasing order of ratio ui/vi, i.e., i < j ⇒ ui/vi ≤ uj/vj . The following

relations (used later) hold true for each party h:

uh/vh ≤ qh/vh = S/V < (uh + 1)/vh. (2)

Our goal is to express B as a quadratic function of the binary vector x:

B = C + xTQx = C +

n
∑

i=1

n
∑

j=1

qijxixj (3)

where C is a constant, and Q is an n×n upper triangular matrix with nonnegative

entries. Note that qii is the linear contribution of xi.

Observe that the area B can be partitioned into n vertical “slices” Bi, where

each Bi lies below the linear piece Pi; in turn, each Bi can be partitioned as follows

(see Figure 5, left part):

– the upper triangle, with area Ti = vi/2SV , which is part of Bi if and only if

xi = 1, meaning that Ti contributes to qii;

– the middle triangle, with area T 0
i = vi · ui/2SV , which is part of B regardless

of the vector x, meaning that T 0
i contributes to C;

– the lower rectangle, with area Ri depending on the order ⊳x:

Ri = (vi/V ) ·
∑

j: j⊳xi

sj/S.
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Fig. 5 Decomposition of B: slice Bi (left) and rectangle Rij for i⊳xj (right)

Given x, and a pair of parties i and j, two cases are possible: either i precedes j,

and induces a slice of Rj with area Rij = si · vj/SV ; or j precedes i, and induces

a slice of Ri with area Rij = sj · vi/SV ; the former case is shown in the right part

of Figure 5. Therefore, we can write:

B =
n
∑

i=1

(

T 0
i + Ti · xi +Ri

)

=
n
∑

i=1

(

T 0
i + Ti · xi

)

+
∑

1≤i<j≤n

Rij . (4)

The next step is to show that each Rij can be written as a quadratic function of

xi and xj . We consider a generic pair of parties i and j with i < j, which implies

ui/vi ≤ uj/vj by assumption. We distinguish two cases.

Case 1 We have (ui + 1)/vi ≤ (uj + 1)/vj . For each combination of xi and xj

Table 1 shows the voting power of i and j, the order ⊳
x, and the values of Rij .

Note that we have j⊳xi if and only if xi = 1 and xj = 0, otherwise i⊳xj. Let us

define aij = uj · vi − ui · vj ; it is routine to check that:

Rij = ui · vj/SV + (aij/SV )xi +
(

(vj − aij)/SV
)

xixj .

Note that:
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Table 1 Values of Rij for ui/vi ≤ uj/vj < (ui + 1)/vi ≤ (uj + 1)/vj

xi xj wi wj ⊳
x Rij

0 0 ui/vi uj/vj i⊳xj ui · vj/SV

0 1 ui/vi (uj + 1)/vj i⊳xj ui · vj/SV

1 0 (ui + 1)/vi uj/vj j⊳xi uj · vi/SV

1 1 (ui + 1)/vi (uj + 1)/vj i⊳xj (ui + 1) · vj/SV

1. aij = vi · vj · (uj/vj − ui/vi) ≥ 0 since i < j;

2. vj − aij = vi · vj · ((ui + 1)/vi − uj/vj) > 0 from (2). ⊓⊔

Case 2 We have (ui+1)/vi > (uj +1)/vj , thus i⊳
xj if xi = 0, and j⊳xi if xi = 1;

see Table 2. Defining aij = uj · vi − ui · vj as before, we have:

Rij = ui · vj/SV + (aij/SV )xi + (vi/SV )xixj .

⊓⊔

Table 2 Values of Rij for ui/vi ≤ uj/vj < (uj + 1)/vj < (ui + 1)/vi

xi xj wi wj ⊳
x Rij

0 0 ui/vi uj/vj i⊳xj ui · vj/SV

0 1 ui/vi (uj + 1)/vj i⊳xj ui · vj/SV

1 0 (ui + 1)/vi uj/vj j⊳xi uj · vi/SV

1 1 (ui + 1)/vi (uj + 1)/vj j⊳xi (uj + 1) · vi/SV
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Putting together (4) and the functions for Rij we can define the constant C and

the matrix Q in (3). Recall that aij = uj · vi − ui · vj for each i < j.

C =

n
∑

i=1

uivi/2SV +
∑

1≤i<j≤n

uivj/SV

qij =















































































vi/2SV +
n
∑

h=i+1

aih/SV i = j

(vj − aij)/SV i < j, (ui + 1)/vi ≤ (uj + 1)/vj

vi/SV i < j, (ui + 1)/vi > (uj + 1)/vj

0 i > j

Note that Q has nonnegative entries, and qii > 0 for each i.

3.2 Rounding quota to maximize B: the QKP formulation

In order to obtain a valid apportionment s = u+ x we must set to one exactly K

out of the n variables in the vector x. The goal is to maximize B, which amounts

to maximizing the quadratic objective function xTQx. This can be formulated

as a particular case of quadratic knapsack, where each item has unit weight, the

knapsack capacity is K, and Q is the profit matrix:

(P ) =











































max xTQx

n
∑

i=1

xi ≤ K

x ∈ {0, 1}n

Note that we have an inequality constraint in (P ), however, exactly K items enter

the knapsack in an optimal solution, since Q is nonnegative and qii > 0 for each i.
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Moreover, in problem (P ) every item may be selected to enter the knapsack, i.e.,

every quota can be rounded either up or down. However, in the (rather unlikely)

case where some party h has an integer quota qh, h must be assigned exactly

qh = uh seats, and therefore we must have xh = 0. This can be easily obtained

giving h a weight greater than K, instead of a unit weight. In practice, one can

simplify (P ) dropping variable xh and deleting from Q the corresponding row and

column. Note that there may be k > 1 parties with integer quotas, however, we

must have k < n−K, since the sum of all the remainders is K > 0.

3.3 Computational Results

Recall that the quadratic knapsack problem is strongly NP-Hard, even if items

have unit weights as in (P ). On the other hand, in our case the problem size is

limited by the number of parties, therefore, we may expect problem (P ) to be

tractable for all practical purposes. The results of a preliminary computational

experience seem to confirm this hypothesis.

Our computational tests were run on a portable PC, with a dual-core 2GHz

processor and 2GB RAM, under Linux operating system. Programs were writ-

ten in C language and compiled with gcc 4.5.0, with no code optimization. To

solve QKP instances we used procedure quadknap by Caprara et al. (1999); the C

implementation was downloaded from http://www.diku.dk/∼pisinger/.

Results for randomly generated instances are definitely encouraging. We con-

sidered instances where each number of votes vi is generated independently with

a uniform distribution in the interval [1, Vmax]. It turns out that problems with

n = 25 parties, S = 1000 seats and Vmax = 8, 000, 000 (i.e., expected number of
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votes V around one hundred million) are solved in about ten milliseconds. We do

not report statistics for these instances, since they would be rather meaningless.

Instead, we concentrate on a few instances arising from two real cases where seats

must be assigned to states based on their populations: the EU Parliament and

the US House of Representatives. For these instances, we also test unicity of the

optimal apportionment; to this aim, we proceed as follows.

Let x̄ and G be the optimal solution and the minimum G obtained from (P ),

respectively. For each party i such that x̄i = 1 we solve a modified version of (P ),

denoted as (P (i)), where we force xi = 0 giving item i a weight K + 1. Note that,

in each problem (P (i)), x̄ is not a feasible solution; clearly, an alternate optimal

apportionment exists if and only if some of the (P (i)) has optimal value G. In this

way, we reduce the unicity test to solving K instances of QKP almost identical

to problem (P ); this approach is rather naive but fits our purposes. In fact, the

optimal apportionment turns out to be unique for all our instances. A summary

of our results is given below.

The European Parliament Current treaties introduce several limitations on the

composition of the EU Parliament, with a consistent over-representation of the less

populated countries.1 However, we completely disregard these aspects here; in fact,

we use existing data to create an artificial apportionment problem. We consider

the allotment of S = 751 seats among the n = 27 members of the European Union,

according to the 2011 population data. The total population is V = 501, 103, 425,

and we have K = 14; overall, we solve K + 1 = 15 QKP problems in about 0.14

1 See the Special Issue ‘Around the Cambridge Compromise: Apportionment in Theory and

Practice’, Mathematical Social Sciences Volume 63, Issue 2, Pages 65-192 (March 2012).
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Table 3 Results for US House of Representatives

Year Tot. Pop. K G Ga cpu sec.

1990 249, 022, 783 26 0.021594 0.021812 1.33

2000 281, 424, 177 26 0.020298 0.020308 1.30

2010 309, 183, 463 23 0.020862 0.020862 1.29

seconds. The optimum value of G is slightly above 0.005585. By comparison, the

apportionment obtained via the Cambridge Compromise (see Grimmett (2012))

yields a G slightly less than 0.128271, i.e., more than twenty times greater. These

numbers may give a hint of the level of disproportionality introduced by current

limitations.

The US House of Representatives In this case, the S = 435 seats of the House

must be divided among n = 50 states. We considered the population data2 for

1990, 2000 and 2010. Problem size and results are summarized in Table 3, where

G is the optimal value computed by our method, while Ga refers to the actual

apportionment, obtained from Equal Proportions; the overall execution times for

the K + 1 QKP problems are reported in seconds.

Note that for the 2010 Census the optimal rounding returns the actual ap-

portionment. In the other two cases, our method returns a slightly different ap-

portionment, with a slightly smaller value G. It may be interesting to note that

these differences follow opposite patterns in the two cases. For the 2000 Census,

our method moves one single vote from the larger state (California) to a relatively

2 Available from http://www.census.gov/population/apportionment/data/.
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small state (Utah). On the contrary, for the 1990 Census, our method moves seats

from smaller to larger states, namely from Mississippi, Oklahoma and Washington

to Massachusetts, New Jersey and New York.

4 Conclusions

In this work we defined a quotient method that minimizes the Gini inequality index

of the distribution of political representation among voters. The method adopts

a rounding technique that consists in solving an instance of quadratic knapsack,

a well known combinatorial optimization problem. Moreover, we showed that the

method is likely to be computationally tractable for all practical purposes. From

a theoretical point of view, however, our analysis is not yet complete, since we

could not determine the computational complexity of the underlying optimization

problem. This leaves open the possibility of finding a polynomial time rounding

procedure.

Another direction of research concerns the extension of our techniques beyond

quotient methods. This may be relevant, for example, in those cases where explicit

violations of the quota property are required, as in the EU Parliament. Unfortu-

nately, removing the quota restriction destroys the structure of the underlying

optimization problem, therefore, the general case leads to a more complex and

computationally harder model. Solving this model efficiently may turn out to be

a stimulating hard task.
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