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Abstract

Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to
hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess
hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking
resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was
positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping
with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left
superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated
with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus,
and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional
connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic
suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the
right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the
structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain
structures involved in imagery and self-monitoring activity.

Citation: Huber A, Lui F, Duzzi D, Pagnoni G, Porro CA (2014) Structural and Functional Cerebral Correlates of Hypnotic Suggestibility. PLoS ONE 9(3): e93187.
doi:10.1371/journal.pone.0093187

Editor: Peter W. Halligan, University of Cardiff, United States of America

Received December 9, 2013; Accepted March 1, 2014; Published March 26, 2014

Copyright: � 2014 Huber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors thank the Fondazione Cassa di Risparmio di Modena (FCRM) for its financial support to the Modena MR center. A.H. is supported by a
FCRM International grant 2010 (code: A0FF-0AAB-9711-FA30) to C.A.P. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: carlo.porro@unimore.it

Introduction

Hypnosis has attracted growing interest in cognitive neurosci-

ence [1]. Hypnotic suggestibility (HS) is a stable cognitive trait that

refers to the generalised tendency to respond to hypnotic

suggestions, i.e. suggestions administered following a hypnotic

induction procedure [1] (we use the terminology proposed by

Kirsch and Braffman [2]). The HS trait varies considerably among

individuals, is in part heritable [3] and can be reliably measured

with standardized scales [4]. Behavioural and physiological studies

have documented HS-related differences in many cognitive and

sensory-motor functions including imagery, attention, and postural

control [5,6], also during normal waking state (i.e., without

hypnotic induction) and in the absence of specific suggestions. On

these grounds, HS can be hypothesized to be related to specific

brain signatures.

Relatively little is known, however, about the neural bases of

HS. Studies using functional magnetic resonance imaging (fMRI)

and electroencephalography (EEG) have demonstrated that

individuals with high HS scores (Highs), but not individuals with

low HS scores (Lows), show significant changes in cerebral

activation or functional connectivity (FC) in response to hypnotic

suggestions for altered perception [7,8], and when they are in (vs.

out of) hypnosis during attentional tasks [9,10] or during rest

[11,12]. Some of these studies found changes in activity or FC in

Highs in the dorsal anterior cingulate cortex (dACC) and in the

dorsolateral prefrontal cortex (DLPFC). Hoeft et al. [13] published

the only MRI study, at the time of the present writing, exploring

differences between Highs and Lows in resting state FC during the

normal waking state. They assessed FC of three brain networks

involving the ACC and DLPFC and found that Highs, compared

to Lows, had stronger resting state FC between the left DLPFC

and the dACC. Interestingly, a recent study demonstrated that

disruption of left DLPFC activity by means of low-frequency

repetitive transcranial magnetic stimulation resulted in increased

responses to hypnotic suggestions [14].

These findings are consistent with the hypothesis that Highs,

compared to Lows, feature a frontal attention system that can be

more flexibly deployed, for example depending on suggestions,

and that hypnotic induction may impinge on regions involved in

executive processes, subserving selective attention and conflict

resolution [9,14,15].

However, studies including only Highs and Lows ignore about

one half of the population, which falls in the medium range of HS

(Mediums) [16].

In the present MRI study, we aimed to investigate more

comprehensively the structural and functional cerebral correlates

of HS in healthy female volunteers. To this end, we searched for

HS-related differences in waking resting state FC in a set of

intrinsic brain networks commonly identified in fMRI studies [17],

using the individual HS scores as a linear regressor to assess

relationships based on the entire, naturally occurring distribution
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of HS. Specifically, we assessed FC for the ten prototypical brain

networks identified by Smith et al. [17] based on resting fMRI

data, as well as on a large number of functional activation studies.

We expected to find HS-related differences in FC (a) between the

left DLPFC and brain networks including the ACC, which would

confirm Hoeft et al.’s [13] findings, and (b) in brain areas involved

in mental imagery, given the previously reported links between HS

and both vivid imagery [18] and fantasy proneness [19].

Furthermore, we explored possible HS-related differences in brain

structure, by estimating local gray matter volume (GMV) using

voxel-based morphometry (VBM).

Materials and Methods

Ethics statement
All experimental procedures were conducted in conformity to

the ethical principles of the Declaration of Helsinki and were

approved by the committee on ethics of Modena. All subjects gave

their written informed consent to participate in the study.

Subjects and procedures
As studies on HS frequently report gender-related differences,

including marginally higher average HS scores in women

compared to men [20], we assessed only women in this study.

Subjects were recruited via advertisements among students and

staff of the Modena University and among blood donors of the

Italian Association for Blood Donors (AVIS) in Modena. Thirty-

seven healthy women without any history of neurological or

psychiatric illness (6 post-menopausal; 3 ambidextrous, 4 left-

handed; age range = 19–60 years, mean age 37.3 years)

participated in an MR session followed by a behavioural session

on a different day, with up to one month between the two sessions.

During the behavioural session, handedness was assessed with

the Edinburgh inventory [21], trait anxiety with the State-Trait

Anxiety Inventory Form Y (STAI-Y2) [22], and mental absorption

with the Tellegen Absorption Scale (TAS) [23]. HS was assessed

by one of the authors (A.H.) with the Italian version of the

Stanford Hypnotic Susceptibility Scale – Form A (SHSS:A), which

has demonstrated good test-retest reliability after two days (r =

0.83 in a sample including both genders) [24] and acceptable test-

retest reliability after 25 years (r = 0.73 in females) [4]. Subjects

were not pre-selected for SHSS score. The order of administration

of the scales was the same for all subjects – Edinburgh inventory,

STAI-Y2, TAS, SHSS:A.

Voxel-based morphometry
Using a 3T Philips Achieva MR scanner, a high-resolution T1-

weighted structural brain image was acquired (repetition time

[TR] = 35 ms; flip angle [FA] = 50u; echo time [TE] = 5.7 ms;

sense factor = 1.7/2.0/1.7; isotropic voxel size = 0.5 mm; 360

sagittal slices without gap; matrix = 4806480 voxels; field-of-view

[FOV] = 240 6 240 mm; acquisition time = 9 min).

Gray matter volume (GMV) was assessed by voxel-based

morphometry (VBM), using the VBM8 toolbox (http://dbm.

neuro.uni-jena.de/vbm8/) implemented in the SPM8 software

package (Wellcome Department of Imaging Neuroscience,

London, UK), running under MATLAB (R2010b). Briefly, the

individual structural images were segmented into gray matter,

white matter and cerebro-spinal fluid, spatially normalized to the

MNI space using the DARTEL approach [25], with intensity

modulation by the amount of contraction to obtain the local GMV

corrected for individual brain size, and spatially smoothed using a

8-mm FWHM Gaussian kernel. In the statistical group analysis,

the individual (centered) HS levels were used as a linear predictor

for the individual differences in local GMV. Age and a measure of

the subject’s tendency to move during MR scans, estimated from

the functional scans, were included as confound regressors in the

analysis. A double statistical threshold of voxel-wise p , 0.005 and

cluster size $ 1098 voxels, as determined by the AFNI routine

AlphaSim using 10,000 Monte Carlo simulations (http://afni.

nimh.nih.gov/afni/doc/manual/AlphaSim), was chosen to obtain

an experiment-wise alpha , 0.05 (corrected for multiple

comparisons).

Functional connectivity
To measure spontaneous blood oxygenation level dependent

(BOLD) signal fluctuations at rest, two runs were acquired while

subjects lay in the scanner relaxed with their eyes closed (for each

run: 200 gradient-echo echo-planar imaging [EPI] functional

volumes; TR = 2000 ms; TE = 30 ms; FA = 80u; isotropic voxel

size = 3.6 mm; 35 axial slices with interleaved acquisition in the +z

direction without gap; acquisition matrix 80 6 63; FOV = 286 6
229 mm; acquisition time = 7 min).

During the entire scanning session, breathing was recorded with

a thoracic belt and heart rate was measured with a photo-

plethysmometer placed on the index finder of the right hand.

Functional data were preprocessed using the AFNI software

package (http://afni.nimh.nih.gov/afni) [26]. For each subject,

retrospective image correction (RETROICOR) with regressors

constructed on a slice-by-slice basis was applied to reduce

physiological noise related to heartbeat and respiration [27]. All

functional volumes were then slice-time corrected and realigned to

the first acquired volume. Signal noise related to local white matter

fluctuation and hardware instabilities was modeled using the

ANATICOR procedure [28]. The EPI volumes were finally

spatially warped to the Talairach template and smoothed with a 6-

mm FWHM Gaussian kernel.

Functional connectivity (FC) was assessed with the FSL dual

regression procedure [29], using a publicly available template of

10 representative spatial resting state networks (RSNs), as

identified by Smith et al. [17] (http://www.fmrib.ox.ac.uk/

analysis/brainmap+rsns/), after a preliminary transformation

from MNI to Talairach space. The 10 maps include three visual

networks (corresponding to medial occipital cortex, occipital pole,

and lateral occipital areas, respectively), the default mode network

(DMN), the cerebellum, a sensorimotor and an auditory network,

an executive control or saliency network (including medial frontal

areas, anterior cingulate and paracingulate cortex, as well as the

anterior insular cortex), and two (left and right) fronto-parietal

networks.

For each run, the dual regression procedure yielded a subject-

specific set of spatial maps corresponding to the projection of the

template RSNs onto the subject’s EPI data. In the statistical group

analysis, the (centered) vector of individual HS levels was used as a

linear regressor for these individual maps, averaged voxel-wise

over the two runs, for each of the 10 RSNs. This procedure tested

for positive and negative correlations between HS and FC.

Finally, to assess whether HS-related structural differences in

GMV were accompanied by differences in FC in the same regions,

seed-based FC analysis was performed using the AFNI 3dGrou-

pInCorr procedure. The seed signals were obtained by averaging

the BOLD signal within a sphere of 6-mm radius around the

Talairach coordinates of the peak voxels showing HS-related

effects in the VBM analysis. Seed-based FC was expressed as the

Fisher-transformed Pearson correlation coefficients between the

seed signal and all other voxels of the brain. For all FC analyses, a

double statistical threshold (voxel-wise p , 0.01 and cluster size $

78 voxels, as determined by AlphaSim with 10,000 Monte Carlo
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simulations) was used to obtain an alpha , 0.05 (corrected for

multiple comparisons) (see details on the procedure at http://afni.

nimh.nih.gov/afni/doc/manual/AlphaSim and in [30]).

Results

Behavioural results
The HS score ranged from 0 to 10 (mean 3.8) and its

distribution was positively skewed, including 49% Lows (HS ,4),

41% Mediums (HS = 4–7) and 11% Highs (HS .7). HS was

independent of age, educational level, handedness, trait anxiety,

mental absorption, average movement during the functional scans,

and global correlation among all voxels (‘‘gcor’’ index [31]).

Voxel-based morphometry
Two regions showed significant HS-related differences in GMV,

as shown in Fig. 1. HS was positively correlated with GMV in a

large cluster including the left superior and medial frontal gyri (BA

8 and 6; Talairach peak coordinates x = 24, y = 26, z = 46;

subpeak x = 26, y = 9, z = 56), and negatively correlated with

GMV in a cluster in the left superior temporal gyrus and insula

(BA 41 and 13; Talairach peak coordinates x = 232, y = 219,

z = 20).

Functional connectivity among resting state networks
Seed-based analysis detected no significant HS-related FC for

the areas identified in the VBM analysis.

Four out of the ten analysed RSNs showed significant HS-

related differences in FC, as shown in Table 1 and Fig. 2.

Individuals with higher HS showed higher FC of the lateral visual

cortex RSN (RSN3 in [17]) with clusters located in the bilateral

posterior cingulate (BA 31) and cuneus/precuneus (BA 19, 7, 18;

Fig. 2A), and of the executive-control RSN (RSN8 in [17]) with a

right postcentral/inferior parietal cluster (BA 40, 2; Fig. 2B). HS

was also positively correlated with FC between the left fronto-

Figure 1. Inter-individual differences in local gray matter
volume related to hypnotic suggestibility. Positive correlations
of hypnotic suggestibility (HS) with gray matter volume are shown in
panel A, and negative correlations in panel B. x- and z-coordinates are
expressed in mm and refer to the Talairach space. L = left hemisphere;
R = right hemisphere.
doi:10.1371/journal.pone.0093187.g001
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parietal RSN (RSN10 in [17]) and clusters in the bilateral

posterior cingulate cortex (BA 23) and precuneus (BA 7) – Fig. 2C.

By contrast, HS was negatively correlated with FC between the right

fronto-parietal network (RSN9 in [17]) and the right lateral

thalamus and caudate (Fig. 2D).

Discussion

Our results show that, in healthy women, HS is associated with

inter-individual differences in cerebral structure as well as in

functional connectivity at rest of several brain areas involved in

self-processing, awareness, attentional control and imagery.

Differences in gray matter volume related to hypnotic
suggestibility

To our knowledge, this is the first study demonstrating HS-

related differences in local gray matter volume. A positive

correlation was found in the left superior and medial frontal gyri

(BA 8, 6), including the supplementary motor area (SMA) and pre-

SMA. The greater GMV may reflect a neurotrophic/plasticity

effect due to higher/more frequent activity in these areas in

individuals with higher HS [32]. SMA is involved in the control of

movement, including the postural stabilization of the body; pre-

SMA is associated with cognitive aspects of a variety of tasks, such

as establishing or retrieving sensory-motor associations and

processing or maintenance of relevant sensory information [33].

Interestingly, postural control and locomotion, sensory-motor

integration and cross-modal object recognition are more effective/

flexible in Highs compared to Lows [6,34,35].

HS was also negatively correlated with GMV in a cluster

including the left posterior insula and superior temporal gyrus

(STG). The insula integrates external sensory input with the limbic

system and is integral to the awareness of the body’s state

(interoception) and the sense of self [36,37]. The posterior insula is

specialised for multimodal sensory processing, and specifically for

the sensory-discriminative aspects of pain [38]. Structural neuro-

imaging studies have consistently found decreased gray matter in

the bilateral STG and insula in patients with schizophrenia; these

alterations may be related to symptoms such as difficulty in

distinguishing between self-generated and external sensory input,

leading to hallucinations [37,39]. Interestingly, HS is associated

with the personality trait of schizotypy and with an increased risk

of developing schizophrenia, which shares several characteristics

with the hypnotic state, including hallucinations/hallucination-like

experiences and a reduced sense of agency [40].

Together with previous findings showing a greater size of the

anterior corpus callosum in Highs compared to Lows [41], our

results suggest that some specific cognitive correlates of HS are

Figure 2. Inter-individual differences in resting state functional connectivity related to hypnotic suggestibility. Four resting state
networks (RSN) showed differences in functional connectivity related to hypnotic suggestibility (HS): RSN3: lateral visual network (panel A); RSN8:
executive-control network (panel B); RSN10: left fronto-parietal network (panel C). RSN9: right fronto-parietal network (panel D). x-, y- and z-
coordinates are expressed in mm and refer to the Talairach space. L = left hemisphere, R = right hemisphere. PCC = posterior cingulate cortex;
PRECUN = precuneus; CUN = cuneus; IPC = inferior parietal cortex; PO = parietal operculum; LT = lateral thalamus.
doi:10.1371/journal.pone.0093187.g002
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reflected by, and possibly based upon, structural variability in

discrete brain regions.

The observed structural differences in GMV were not

accompanied by any HS-related differences in resting state

functional connectivity (FC) of the same regions.

Differences in functional connectivity related to hypnotic
suggestibility

In our study, we aimed to relate HS to FC of different RSNs,

which have been found to exhibit spatial correspondence with

broadly defined functional circuits [17].

Individuals with higher HS showed higher FC between medial

posterior areas involved in vision and imagery [42] – including

bilateral posterior cingulate cortex (PCC), precuneus and cuneus –

and both the lateral visual network (RSN3, which includes non-

primary visual areas) and the left fronto-parietal network (RSN10);

this network includes the DLPFC and is involved in cognitive

control processes, such as integrating information from the

external environment with stored internal representations to guide

decisions and performance adjustments [43,44]. The left fronto-

parietal network also includes Broca’s and Wernicke’s areas,

classically implicated in language processing [17].

In contrast, subjects with higher HS showed lower FC between

the right fronto-parietal network (RSN9), which has been

associated with somesthesis and pain [17], and the right lateral

thalamus/caudate, receiving peripheral somatosensory input.

Interestingly, the right fronto-parietal network also partly overlaps

with a right hemisphere-dominant ventral fronto-parietal attention

network, which is responsible for reorienting attention towards

unexpected but important environmental stimuli, and which is

suppressed when attention is focussed to prevent reorienting to

distracting events [45].

Finally, HS was positively correlated with FC between the

executive-control network (RSN8), which includes anterior cingu-

late cortex (ACC), paracingulate cortex and anterior insula and is

involved in cognition, emotion and perception/somesthesis/pain

[17], and a right postcentral/inferior parietal cluster (BA 40, 2),

namely a region involved in somatosensory processing.

Overall, the present findings are consistent with a cognitive

scenario of greater engagement at rest of imagery and self-

monitoring processes in women with higher HS scores, with a

reduced contribution of sensory thalamic input, which may reflect

a higher absorption in mental activity and a lower distractibility by

external stimuli. This hypothesis is in line with research showing

that high HS is associated with highly vivid imagery [18] and

fantasy-proneness [19], and with some measures of mental

absorption [1,23].

Hoeft et al. [13] recently explored differences between Highs

and Lows in waking resting state FC of a ‘‘salience network’’

including the dACC, frontoinsular cortices and limbic structures,

the default mode network, and left and right fronto-parietal

networks (included in a single template in that study). They found

higher FC in Highs compared to Lows between the left DLPFC

and the salience network, and in particular between the left

DLPFC and the dorsal ACC.

We extend their findings by demonstrating HS-related differ-

ences in FC in posterior brain regions involved in vision and

imagery, confirming our second hypothesis. However, contrary to

our first hypothesis, we could not replicate Hoeft et al.’s finding of

HS-related differences in FC between left DLPFC and ACC.

These differences could be ascribed to various reasons, e.g.: the

fact that we used different RSN templates; that we studied only

women; and that our sample includes subjects with medium HS

scores, in addition to Highs and Lows.

Further research is needed to explore the relationship between

HS-related differences observed in waking, and the neural bases of

the phenomena observed in the hypnotic state. Recent neuroim-

aging studies have emphasized the role of the DLPFC and ACC/

mid-cingulate cortex (MCC) in hypnotic response [1,14]. Inter-

estingly, the precuneus may also play a role in hypnotic responses.

This region is involved in visuo-spatial imagery, episodic memory

retrieval, self-processing and consciousness [46] and shows

reduced activity during altered states of consciousness, including

the hypnotic state [47]. In healthy Highs, hypnotic paralysis of the

left hand was shown to be associated with increased FC of the

precuneus with the right DLPFC and angular gyrus [48]. We

recently reported HS-related differences in neural activity

mediating the placebo analgesic response in several areas,

including the precuneus [49]. These findings suggest that the

precuneus may play a role in maintaining a modified represen-

tation of the self in response to suggestions.

Imitations
This study has some limitations. First, we chose to study a

random sample, in order to reflect the distribution of HS in the

general population; however, as this includes only 10–15% Highs

[50], a more specific assessment of the effects reported in the

present paper in the higher portion of the HS range will

necessarily have to employ a targeted pre-selection of the

volunteers or a much larger general-population sampling.

Second, our sample included only women. Future studies

including both genders are needed to extend our conclusions to

the general population.

Third, we assessed only linear relationships with HS, in line with

previous behavioural studies, which have documented linear

associations between HS and other cognitive constructs, such as

fantasy proneness and mental absorption [1]. However, as HS

appears to be a multidimensional trait [51], its links to brain

function and structure are likely complex as well, and future

research will be able to better assess the non-linear and

multivariate nature of the relationship.

Conclusion

Our results demonstrate that the cognitive trait of HS is

associated both with structural differences in GMV in cortical

areas related to motor control, sensory-motor integration and

interoception, and with differences in resting state FC in frontal

attentional networks and in medial posterior areas involved in

imagery. Additional research is needed to confirm these relation-

ships also in males, and to investigate HS-related differences in FC

of specific task-related cortical networks [52], as well as their

cognitive correlates.
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