Oral surgery biomaterials: analyses of Al2O3-treated titanium surfaces tested with fibroblast and osteocyte cell lines / Smargiassi, Alberto; Ferretti, Marzia; Cavani, Francesco; Sena, Paola; Benincasa, Marta; Zaffe, Davide; Facciani, Valentino; Gabrel, Ivano; Palumbo, Caria. - In: ITALIAN JOURNAL OF ANATOMY AND EMBRYOLOGY. - ISSN 1122-6714. - STAMPA. - 119 - n. 1 (suppl.):(2014), pp. 184-184. (Intervento presentato al convegno 68th Meeting of the Italian Society of anatomy and Histology tenutosi a Ancona (Italy) nel 18-20 September 2014).

Firenze University Press
Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

note finali coverpage

22/11/2023 07:06

(Article begins on next page)
Oral surgery biomaterials: analyses of Al2O3-treated titanium surfaces tested with fibroblast and osteocyte cell lines

Alberto Smargiassi1, Marzia Ferretti1, Francesco Cavani1, Paola Sena1, Marta Benincasa1, Davide Zaffe2, Valentino Facciani2, Ivano Gabrielli2, Carla Palumbo2

1 Dipartimento di Scienze biomediche, Metaboliche e Neuroscienze - Sez. Morfologia umana, Univ. Modena-Re, IT
2 SAFE & SIMPLE, Treviso, IT

Two different cell lines - MLO-Y4 (murine osteocytes) and 293 (human fibroblasts) - cultured for 48 hours in standard media were used to analyse engineered biomaterials (i.e. Al2O3 shot-peened titanium surfaces). Distribution, density and expression of adhesion molecules (fibronectin and vitronectin) were evaluated under scanning electron microscope (SEM) and confocal microscope (CM) as previously described [1]. The engineered biomaterial surfaces showed under SEM irregular morphology displaying variously-shaped spicules, obtained by shooting different-in-size particles of Al2O3 against the scaffolds of biomaterial. DAPI and fluorochrome-conjugated antibodies were used to highlight nuclei, fibronectin and vitronectin, under CM; cell distribution was analysed after Gold-Palladium sputtering of samples by SEM. Both SEM and CM observations showed better outcome in terms of cell adhesion and distribution in treated titanium surfaces with respect to the untreated ones. The results obtained clearly showed that this kind of surface-treated titanium, used to manufacture devices for dental implantology: i) is very suitable for cell colonization, essential prerequisite for the best osseointegration, and ii) represents an excellent solution for the development of further engineered implants with the target to obtain recovery of dental function stable over time.

Further studies on these Al2O3 shot-peened-titanium surfaces, both in vitro and in vivo, will be needed to obtain accurate definition of better biomaterial outcome, also after additional treatments.

References

Keywords
Titanium scaffold, MLO-Y4 and 293 cultures, immunofluorescence, confocal microscopy, scanning electron microscopy.