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Abstract—In this paper we address the task of learning
how to segment a particular class of objects, by means of a
training set of images and their segmentations. In particular we
propose a method to overcome the extremely high training time
of a previously proposed solution to this problem, Kernelized
Structural Support Vector Machines. We employ a one-class SVM
working with joint kernels to robustly learn significant support
vectors (representative image-mask pairs) and accordingly weight
them to build a suitable energy function for the graph cut
framework. We report results obtained on two public datasets
and a comparison of training times on different training set sizes.

I. INTRODUCTION

Many computer vision applications require the precise
identification of objects within a scene, and often the seg-
mentation and selection of a particular target class [1], [2].
This binary class-specific segmentation problem, unlike other
segmentation challenges, is well posed and its performance can
be accurately measured by counting the number of mislabeled
pixels.

Nowadays large repositories of annotated images are avail-
able, so an interesting approach would be to have a generic
segmentation algorithm, specifically trained for the object class
of interest. To obtain the desired flexibility, computational
complexity must also be taken into account, focusing on
solutions that are fast and accurate.

Currently, s/t graph cuts [3] are considered one of the
most effective techniques in image segmentation, due to the
wide range of energy functions that can be minimized using
efficient max-flow algorithms [4], [5]. Recently, several works
addressed the problem of introducing high level information
into the graph cut energy functions [6], [7], in order to obtain
flexible solutions, also applied to 3D images [8], [9]. An im-
portant incentive to this field was given by the medical imaging
segmentation community [10], [11], [12], where the gray-
level images and the low contrast make low level approaches
unfeasible. The ability to learn a suitable energy function
would make the system more flexible and easily adaptable to
different settings.

Bertelli et al. [13] faced the supervised class-specific
segmentation problem using Kernelized Structural Support
Vector Machines (KSSVMs), achieving good results on several
datasets. Unfortunately, KSSVMs can not be applied to large
scale datasets because of their complexity [14], and usually
only linear kernels are employed in conjunction with Structural
SVMs [15] to reduce the training phase.

������ �������

Fig. 1. Sample images from the two datasets (first row), the provided ground
truth (second row) and the segmentation of the proposed approach (third row).
The grey areas in the ground truth of the flower dataset are pixels labeled
neither as foreground nor background.

In this paper, we focus on a generative learning technique
for structured prediction, here applied to binary segmentation.
Our proposal is able to dramatically reduce the training time,
when compared to discriminative approaches. We exploit joint
kernels on image-mask pairs, used in a one-class SVM to
learn the energy function minimized in a graph cut framework.
We discuss its application on two publicly available datasets,
where we demonstrate that our proposal’s performance is
similar to the more complex and time consuming KSSVM.
Fig. 1 shows some samples taken from the two datasets and
the provided ground truth data.

The paper is organized as follows: in Section II we intro-
duce the problem of structural segmentation also highlighting
some limitations of one common approach, Sections III and IV
describe the proposed method while in Section V and VI
we give some further implementation details. In Section VII
we present experimental evaluations on different datasets, and
Section VIII summarizes the contributions of the paper.

II. STRUCTURAL SEGMENTATION

Structural prediction through SSVMs [16] proved to be
effective in many computer vision tasks, such as scene recogni-
tion [17], object detection [18], tracking [19] and recently also
image segmentation [20], [21], [13]. Structured segmentation
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Fig. 2. A schematization of the proposed approach.

describes the problem of learning a function

f : X → Y, (1)

where X is the space of samples (images) and Y is the space
of structured labels (binary masks). To learn f we assume
that a training set of image-mask pairs (x1, y1), ..., (xn, yn)
is available. SSVM learns a scoring function F (x, y) that
matches a sample x with a label y, such that maximizing
F through the label space gives the correct output label for
sample x.

A common approach is to have F in the form of a linear
function:

F (x, y,w) = w>φ(x, y), (2)

where w ∈ Rn is a parameter vector and φ(x, y) is a joint
feature vector. The definition of an explicit feature vector
φ(x, y) can be very difficult, thus we will work in the dual
formulation using positive definite joint kernels

K : (X × Y)× (X × Y)→ R. (3)

As defined in [13], the scoring function F (x, y) can be written
as:

F (x, y) =
∑
y′∈W

αy′

(
1

n

n∑
i=1

[K((x, y), (xi, yi))−

K((x, y), (xi, y
′
i))]

)
,

(4)

where W is the set of the most violated constraints, and α are
the weights for the support vectors that are found solving the
dual problem. Given an input image x, we can find the output
label by maximizing F (x, y):

y∗ = arg max
y∈Y

F (x, y). (5)

This maximization can be done using graph cuts as demon-
strated in [13]. Unfortunately, this formulation has two relevant
performance issues:

• during training we have to construct the set of the
most violated constraintsW: for each training sample,
find k constraints (k depends on the desired accuracy),
each with the size of the training set, and solve an
inference step for each element;

• during testing we have to compare a sample x with
each support vector, composed of every training sam-
ple and its most violated constraint, as in (4).

III. ENERGY FUNCTIONS MODELING

The main idea behind the proposed model, summarized in
Fig. 2, is to exploit one-class SVMs in a kernel space to learn
a set of support vectors and their relative weights and to delete
outliers from the training set, thus reducing the complexity at
testing time. This idea has been firstly introduced by Lampert
et al. [14], with the name of Joint Kernel Support Estimation,
and applied to object localization and sequence labeling. Given
a training set of sample-label pairs (x1, y1), ..., (xn, yn) we
want to model the probability density function p(x, y), and use
f(x) = arg max p(x, y) for prediction. Assuming that p(x, y)
is high only if y is a correct label for x, we only have to find
the support of p(x, y). This can be effectively obtained by a
one-class support vector machine (OC-SVM). We can express
p(x, y) as:

p(x, y) = exp(w>φ(x, y)). (6)

As mentioned in Section II, it is difficult to find an explicit
formulation of φ(x, y), while it is easier to find a suitable joint
kernel K that matches two sample-label pairs. The joint kernel
can be an arbitrary Mercer kernel [22]. The output of the OC-
SVM learning process becomes a linear combination of kernel
evaluations with training samples, thus the prediction function



can be formulated as:

f(x) = arg max
y∈Y

n∑
i=1

αiK ((x, y), (xi, yi)) . (7)

The selected support vectors are the training samples that have
non zero α. The learning process can be done using standard
existing implementations of OC-SVM, replacing the kernel
matrix within samples with the joint kernel matrix between
sample-label pairs.

It is important to point out the difference between our
approach and KSSVMs: in the training phase we only have to
construct the joint kernel matrix between training samples, and
then train a standard non linear OC-SVM, no inference steps
are required during training. As a consequence, the training
time does not depend on the structure of the output space, but
only on the size of the training set.

IV. DEFINING THE KERNELS

Joint kernels between image-mask pairs allow us to model
complex relationships between samples. As proposed in [13],
we choose to formulate the similarity kernel as the product of
an image kernel and a mask kernel:

K((xi, yi), (xj , yj)) = θ(xi, xj) · Ω(xi, xj , yi, yj), (8)

where θ(xi, xj) measures the similarity of the objects depicted
in xi and xj , and acts as a weight for the mask similarity
kernel Ω(xi, xj , yi, yj). Consequently, if the two images are
very different, the final similarity measure will be low, even if
the masks are similar.

A. Image Similarity Kernel

The purpose of the image similarity kernel is to return high
similarity values between images that contain very similar ob-
jects. We adopt a general purpose similarity measure between
images, the comparison of HOG descriptors [23], although
many other descriptors could be used without changing the
model [24], [25]. HOGs can be compared using standard
similarity measures like Bhattacharyya distance. Since we are
working with images of the same category (e.g. flowers),
distances within an entire dataset don’t change so much; as a
consequence “good” and “bad” samples are weighted similarly,
leading to errors at classification time. A better choice is to
employ a Gaussian kernel, capable of better distinguishing
between different images, due to the parameter σ, optimized
for a specific dataset. The image similarity kernel between
image xi and image xj becomes:

θ(xi, xj) = exp

(
−‖ρ(xi)− ρ(xj)‖2

2σ2

)
, (9)

where ρ(xi) is the feature vector extracted from image xi.
Fig. 3 shows the different results obtained by using Bhat-
tacharyya distance or the Gaussian kernel, to better understand
the consequences at classification time. For the computation
of the HOG descriptors we adopted rectangular HOG (R-
HOG) [23], computing gradients on R,G, and B color channels
and taking the maximum, then dividing the image with a
5×5 grid of cells (25 cells), and grouping them in 4 partially
overlapped blocks of 3×3 cells each. Trilinear interpolation
between histogram bins and cells was appropriately applied.
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Fig. 3. HOG feature distance using Bhattacharyya (a) measure or a Gaussian
kernel (b). The Gaussian kernel is able to separate with a larger gap flowers
that are similar to the query from other flowers.

The HOG feature is computed using 9 bins to quantize the
orientation, leading to 9 (bins) × 9 (cells per block) × 4
(blocks) = 324 features.

B. Mask Similarity Kernel

The mask similarity kernel takes into consideration both
images and masks to extract knowledge about how comparable
two segmentations are. The kernel is composed of a linear
combination of three parts:

Ω(xi, xj , yi, yj) =

3∑
k=1

βkΩk(xi, xj , yi, yj). (10)

The first kernel Ω1(yi, yj) only depends on the binary masks,
and directly compares the similarity between the two, by
counting the number of corresponding pixels:

Ω1(yi, yj) =
1

P

P∑
p=1

δ(yip, yjp), (11)

where P is the total number of pixels in the image, yip is
the p-th pixel of image yi, and δ(·, ·) is an indicator function
defined as:

δ(yip, yjp) =

{
1 if yip = yjp
0 if yip 6= yjp

. (12)

The second and the third kernel exploit 3D color histograms
computed in the RGB space. Let’s define F j

i and Bj
i as

foreground and background histograms extracted from image
xi using mask yj , and Pr(xp |H) as the likelihood of pixel
xp to match histogram H . We use negative log-likelihoods
to express the penalties to assign a pixel to foreground or
to background, as firstly introduced by [3]. Negative log-
likelihoods are defined as:

L(xp |H) = −log(Pr(xp|H)). (13)

We can also define:

L(xp|yp, F,B)=

{
L(xp |B) if yp = “obj”
L(xp |F ) if yp = “bkg”.

(14)

To highlight the mutual agreement of two masks, the second
kernel extracts an histogram from image xi using mask yj and



evaluates it using yi. Having F j
i and Bj

i :

Ω2(xi, yi)=
1

P

P∑
p=1

L(xip|yip, F j
i , B

j
i ). (15)

The third kernel exploits global features extracted from the
entire training set to model the expected color distribution of
foreground and background pixels. We define FG and BG as
the global histograms extracted from training samples using
their respective masks.

Ω3(xi, xj, yi, yj)=Ω3i · Ω3j (16)

where
Ω3i = 1

P

∑P
p=1 L(xip|yip, FG, BG)

Ω3j = 1
P

∑P
p=1 L(xjp|yjp, FG, BG)

. (17)

The histograms are quantized uniformly over the 3D color
space using a fixed number of bins per channel, set to 16
by experimental evaluations (no smoothing is applied).

V. GRAPH CONSTRUCTION

It is worth noting that the previously defined kernels
compare two image-mask pairs, while at testing time the test
mask is obviously missing. Kernels must thus be reformulated
so to return pixel-wise potentials, in order to perform the
maximization reported in (7). This maximization is done using
s/t graph cuts [3].

The problem can be formulated as a maximum a posterior
estimation of a Markov Random Field, minimizing the energy
function:

E(y) = R(y) + λB(y), (18)

where y is a binary vector of pixel labels and R(y) is the unary
term expressing the cost of assigning a pixel to the foreground
or to the background. B(y) is the smoothness term, formulated
as proposed by Rother et al. [26]:

B(y) =
∑

p,q∈N
δ(yp, yq)

1

dist(p, q)
exp

(
−‖xp − xq‖

2

2σ2

)
(19)

where N is the set of neighboring pixels (8-connected), δ(·, ·)
is the indicator function defined in (12), dist(p, q) is the dis-
tance between pixels and σ is the expectation of the euclidean
distance in color space ‖xp − xq‖2. At classification time we
have to compute the foreground and background potentials
Pf and Pb corresponding to the unary term in the graph cut
framework. They are the result of a linear combination of
potentials Pf i and Pbi obtained from the comparison of the
testing image xj with each support vector (xi, yi), weighted
by the corresponding αi. The potentials at position p are:

Pf ip = θ(xi, xj)(β1Pf
1
ip + β2Pf

2
ip + β3Pf

3
ip)

Pbip = θ(xi, xj)(β1Pb
1
ip + β2Pb

2
ip + β3Pb

3
ip)

(20)

where θ(xi, xj) is the image similarity kernel defined in (9).
The first kernel is strictly related to the mask yi:

Pf
1
ip = yip

Pb
1
ip = 1− yip

(21)

Fig. 4. Segmentation results on the flowers and the horses datasets.

The second kernel expresses the cost of assigning a pixel to
foreground or to background, according to the histograms F i

j

and Bi
j , defined in Section IV-A:

Pf
2
ip = L(xjp |Bi

j)

Pb
2
ip = L(xjp |F i

j )
(22)

The third kernel expresses the cost of assigning a pixel to
foreground or to background, given the global histograms FG

, BG calculated on the training set:

Pf
3
ip = L(xjp|BG) · 1

P γ(xi, yi)

Pb
3
ip = L(xjp|FG) · 1

P γ(xi, yi)
(23)

where

γ(xi, yi)=
P∑

p=1

L(xip|yip, FG, BG). (24)

VI. PARAMETER OPTIMIZATION

Some parameters of the proposed approach have been
optimized on a validation set, maximizing the segmentation
accuracy. These are the weights of the mask kernels β1,β2 and
β3, the ν of OC-SVM, and the λ of the graph cut framework.
The parameter ν is used in the OC-SVM to specify an upper
bound to the percentage of outliers, the higher the ν, the
higher the percentage of training samples that can be ignored
by the OC-SVM, introducing robustness against outliers. The
parameter λ of the graph cut weights the importance of the
smoothness term in the final energy function and must be
optimized because the unary potential R(y) changes when the
kernel weights change.

The optimization is done iteratively, by changing one
parameter at a time. Each parameter has an optimization range
and a step size. The best value within the range is searched
and the range is recentered on it. If the current center does
not change, then the step size is halved and the optimization
process moves to the next parameter. This operation is repeated
for a fixed number of iterations (set to 4 by experimental
evaluation). For all the parameters that affect the training phase
(β1, β2, β3 and ν), the OC-SVM is retrained to test each new
value. A detailed discussion on the parameter values on the
different datasets is given in Section VII-A.



TABLE I. PERFORMANCE COMPARISON ON THE WEIZMANN HORSES
AND OXFORD FLOWERS DATASETS.

Flower Dataset Sa(%) So(%)
KSSVM + Hog feature [13] 97.66 92.33
Our method 97.17 92.14
Flower shape model [28] - 94
Horses Dataset Sa(%) So(%)
KSSVM + Hog feature 93.9 77.9
Our method 93.04 76.32
GrabCut init. with BB 69.53 50.39
GrabCut init. with 1-NN mask 85.66 62.34
GrabCut init. with 5-NN masks 86.93 63.83
GrabCut init. with 10-NN masks 86.46 63.20

VII. EXPERIMENTAL EVALUATION

We tested the proposed method on two publicly available
datasets, containing images of flowers and horses. The first
is the Weizmann horse dataset [27], that contains 328 images
of horses with strong differences in background, contrast and
pose. The second is the Oxford flower dataset [28], composed
of 849 images of flowers belonging to different species.

All the images are resized to the same dimension to allow
the kernel computation, the chosen size is 256×256 for both
the datasets. We split each dataset in three parts and trained
our method on the first one, optimized the parameters on the
second one, and tested the system on the third one; eventually
we exchanged the parts and averaged the results (three tests
are conducted for each experiment).

We used two metrics to evaluate the segmentation perfor-
mance: the pixel-wise accuracy Sa, that measures the percent-
age of correctly labeled pixels, and the intersection-over-union
metric So, defined as the intersection of the output mask and
the ground truth mask divided by the union of the two masks.

Sa = 1
P

∑P
p=1 δ(Mp,MGTp)

So =
∑P

p=1 Mp=“obj”∧MGTp=“obj”∑P
p=1 Mp=“obj”∨MGTp=“obj”

(25)

where M is the output mask of the system, MGT is the ground
truth mask and δ(·, ·) is the indicator function defined in (12).
We firstly compared our solution with the one proposed in
[13] on the flower dataset (Table I). As a comparison we also
report the results obtained by [28]. Here it is important to
note that the method proposed in [28] is strictly related to the
domain of flowers, because it exploits a flower shape model
made of center and petals. Moreover, our method is capable
to obtain the same results of the KSSVM while dramatically
reducing the computational complexity; this quickly becomes
a key feature when dealing with larger datasets.

On the horses dataset we compared our method with the
KSSVM framework and with the GrabCut framework [26] as a
baseline. We tested different automatic initialization strategies
for GrabCut: the first is done with the bounding boxes coming
from the part based detector by Felzenszwalb et al. [29], [30],
the others employ the average of the masks of the k nearest
images found with Eq. (9). KSSVMs perform slightly better,
probably due to their discriminative nature that allows to put
aside wrong (but feasible) segmentations, exploiting the most
violated constraints.
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A. Parameter optimization

To understand the meaning of the parameters involved in
the method, we summarized in Table II their optimized values.
The optimization leads to different values for the two datasets,
and some observations can be made:

• the first mask kernel is more important for the horses,
probably due to the pose homogeneity through the
dataset;

• the second mask kernel, which exploits information
from both images and masks, is the most important,
and receives the higher weight in both the datasets;

• the third mask kernel, which employs global color
information learned from training, is more important
for the flowers, and this is certainly related to the
homogeneous background of flower images, that often
depict grass or soil;

• parameter ν (for details see Section VI) is higher in
the flowers dataset and this means that is convenient to
ignore a certain percentage of training samples (about
45%), that do not provide important information.

B. Training Time Comparison

To highlight the difference in terms of training time be-
tween our approach and KSSVMs, we chose the largest dataset
at our disposal, that is the Oxford flowers dataset, and com-
pared training performance increasing the number of training
samples from 20 to 800. Given that the code for KSSVMs is
not publicly available, we used our implementation, based on
the LaRank classifier [31]. In Fig. 5 a comparison between the
two methods is reported.

TABLE II. OPTIMIZED PARAMETERS ON THE TWO DATASETS.

Parameter Flowers Horses
β1 0.2 0.28
β2 1.0 1.0
β3 0.16 0.05
λ 0.24 0.18
ν 0.45 0.2



Although the training time of our approach increases in a
non-linear manner due to the exponential number of kernel
computations needed, KSSVM training time is one or two
order of magnitude higher, and increases in a non-linear
manner too.

VIII. CONCLUSIONS

We proposed a novel segmentation approach based on one-
class SVMs and joint kernels between image-mask pairs. The
method exploits the ability of OC-SVMs to identify and ignore
outliers in the training set, while reducing the number of kernel
computations needed at classification time. The characteristics
of this generative learning algorithm allow faster training and
testing phases when compared to discriminative approaches
like KSSVMs while reaching comparable performance.
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