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Abstract

Given a bowtie decomposition of the complete graph Kv admitting
an automorphism group G acting transitively on the vertices of the
graph, we give necessary conditions involving the rank of the group
and the cycle types of the permutations in G. These conditions yield
non–existence results for instance when G is the dihedral group of
order 2v, with v ≡ 1, 9 (mod 12), or a group acting transitively on
the vertices of K9 and K21. Furthermore, we have non–existence for
K13 when the group G is different from the cyclic group of order 13 or
for K25 when the group G is not an abelian group of order 25. Bowtie
decompositions admitting an automorphism group whose action on
vertices is sharply transitive, primitive or 1–rotational, respectively,
are also studied. It is shown that if the action of G on the vertices of
Kv is sharply transitive, then the existence of a G–invariant bowtie
decomposition is excluded when v ≡ 9 (mod 12) and is equivalent to
the existence of a G–invariant Steiner triple system of order v. We
are always able to exclude existence if the action of G on the vertices
of Kv is assumed to be 1–rotational. If, instead, G is assumed to act
primitively then existence can be excluded when v is a prime power
satisfying some additional arithmetic constraint.
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1 Introduction

A bowtie is a simple graph with 5 vertices and 6 edges consisting of a pair of
edge–disjoint cycles (called triples) sharing one vertex. A bowtie decompo-
sition of the complete graph Kv = (V,E) is a partition Bv of the edge–set E
into bowties. Such a decomposition Bv exists if and only if v ≡ 1, 9 (mod 12),
see [2]. Such values of v, with v > 1, will be called admissible values.

For non–admissible values, some authors considered the problem of select-
ing a collection of edge–disjoint bowties in Kv of maximum cardinality (the
so called maximum packing problem of Kv with bowties, see [3]). Bowtie
decompositions with additional properties have also been considered. For
instance, 2–perfect bowtie decompositions have been studied in [4], [1].

In the present paper we are interested in bowtie decompositions with
some symmetry properties. These are namely properties involving in the
first place the existence of some non–trivial automorphism group.

An automorphism group G of a bowtie decomposition Bv is a subgroup of
the symmetric group Sym(v) leaving the decomposition invariant: we shall
express that for short by saying that Bv is G–invariant. A group of automor-
phisms of a decomposition Bv acts on four different sets: the vertices, the
edges, the triples and the bowties. In this paper we will focus our attention
on the action of the group on vertices. More specifically, we study bowtie de-
compositions admitting an automorphism group G whose action on vertices
is transitive, sharply transitive, primitive or 1–rotational, respectively. Here
1–rotational means that G fixes one vertex of Kv and acts sharply transitively
on the remaining ones. We adopt the terminology used in [5].

By a result in [11], for every admissible value of v a Steiner triple system
of order v, briefly STS(v), can be decomposed into bowties. In fact, from [11]
we know that the block intersection graph of an STS(v) is Hamiltonian. Since
v is an admissible value, the block intersection graph has an even number
of vertices: it is therefore possible to pair the triples of an STS(v) so as
to decompose the STS(v) into bowties, or equivalently, to obtain a bowtie
decomposition of Kv. For this reason one is tempted to believe that, in
order to find bowtie decompositions with a prescribed automorphism group,
it suffices to pair the triples of an STS(v) which is invariant with respect to
the same group. Unfortunately, the existence of an STS(v) which is invariant
under a group G does not guarantee that we can pair its triples and obtain
a G–invariant bowtie decomposition. In fact, the STS(v) might have one
G–orbit O of triples in which |O| is odd and different from the lengths of all
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other G–orbits of triples. Hence, if we pair a triple in O with a triple in a
G–orbit different from O we obtain a bowtie whose G–orbit contains at least
two distinct bowties sharing a triple. The same thing happens if we pair two
distinct triples in O. In other words, every conceivable pairing of the triples
of the STS(v) yields a bowtie decomposition which is never G–invariant.

The converse is true, that is a G–invariant bowtie decomposition Bv gives
rise to an STS(v) admitting G as an automorphism group.

In Section 2 transitive bowtie decompositions are studied. A bowtie de-
composition Bv is transitive if it admits an automorphism group G acting
transitively on vertices. If we need to mention the group G explicitly, we
shall then say that Bv is transitive with respect to G. The bowties of a
transitive bowtie decomposition satisfy certain properties, see Lemma 1 and
2 . These properties yield a necessary condition on the rank r of G: r ≡ 1
(mod 3) or r ≡ 1 (mod 12), according to whether |G| is even or odd. As a
trivial consequence, there is no bowtie decomposition which is invariant with
respect to a group acting 2–transitively on the vertex–set. We also exclude
the existence of transitive bowtie decompositions of K13 with respect to a
group G of order > 13.

We shall show that a transitive bowtie decomposition of Kv exists only if
the number s of self–paired orbitals of G is less than (r − 1)/3. In this way
we can exclude the existence of a transitive bowtie decomposition Bv which
is invariant with respect to the dihedral group of order 2v.

Many papers deal with STS(v)’s with a single automorphism of prescribed
type. More specifically, given a permutation π ∈ Sym(v), with a prescribed
cycle type, an STS(v) admitting π as an automorphism is constructed. See
for instance [17], [8], [16], [6] and [13].

In Section 3, given a decomposition Bv which is transitive with respect to
a group G, we study the cycle types of the permutations in G. The necessary
conditions we give exclude the existence of transitive bowtie decompositions
of K9 and K21. We can also say that there is no transitive bowtie decompo-
sition of K25 with respect to a group G of order > 25.

In Section 4 sharply transitive bowtie decompositions are studied. A
decomposition Bv is sharply transitive if it admits an automorphism group
G acting sharply transitively on vertices. If we need to mention the group G
explicitly, we shall then say that Bv is sharply transitive with respect to G.
We adopt the same terminology for STS(v)’s.

An easy calculation shows that the existence of a sharply transitive de-
composition Bv with v ≡ 9 (mod 12) can be excluded. For the other ad-
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missible values of v, the existence of a sharply transitive decomposition Bv

turns out to be equivalent to the existence of a sharply transitive STS(v) (see
Proposition 14). In this way, a large class of examples for sharply transitive
bowtie decompositions of Kv, with v ≡ 1 (mod 12), can be obtained from
the abelian STS(v)’s constructed in [19].

Even though transitive STS(v)’s are widely studied, little is known when
the automorphism groups under consideration are non–abelian. In the frame-
work of transitive STS(v)’s ad hoc treatments for particular values of v have
appeared. For instance, in [15] the transitive STS(21) are determined. The
authors showed that there are 10 non–isomorphic transitive STS(21). Later,
Tonchev, [20], proved that when v = 25 the number of non–isomorphic tran-
sitive STS(v)’s is 15.

Finding transitive bowtie decompositions is equivalent to finding transi-
tive STS(v)’s with additional properties. The determination of the spectrum
for transitive bowtie decompositions is still an open question: our necessary
conditions of Section 3 yield non–existence results for all admissible values
of v ≤ 30.

Section 5 is devoted to primitive bowtie decompositions of Kv. A decom-
position Bv is primitive if it admits an automorphism group acting primitively
on vertices. The groups we consider are of affine type and have order pn q,
where p is a prime such that v = pn ≡ 1 (mod 12) and q is a p–primitive
divisor of pn− 1. When (v− 1)/q 6≡ 0 (mod 12) we have a non–existence re-
sult. When (v− 1)/q ≡ 0 (mod 12) we can exhibit some examples of bowtie
decompositions which are invariant with respect to a primitive group G of
the type described above.

Finally, we consider 1-rotational bowtie decompositions of Kv. A decom-
position Bv is 1–rotational if it admits an automorphism group whose action
on the vertices of Kv is 1–rotational. We prove that 1–rotational bowtie
decompositions of Kv exist for no admissible value of v.

2 Transitive bowtie decompositions: a rank

condition

Let Kv = (V, E) be the complete graph on v vertices. In this section, we
shall denote by v an admissible value and by G a subgroup of the symmetric
group Sym(v) acting transitively on the vertex–set of Kv.
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The group G acts on V × V via (x, y)g = (xg, yg) and an orbit of G on
V ×V is an orbital of G. The number of orbitals of G is the rank of G, which
we shall denote by r.

Each orbital ∆ of G defines its paired orbital ∆∗ = {(β, α) : (α, β) ∈ ∆}.
An orbital ∆ is self–paired if ∆ = ∆∗, [9]. Observe that, since G acts
transitively on V , the set ∆1 = {(α, α) : α ∈ V } is an orbital, which is
obviously self–paired and is called the diagonal orbital.

By the previous remarks, we can write r = 2t + s + 1, where 2t is the
number of non–self–paired orbitals, s is the number of non-diagonal self–
paired orbitals and 1 refers to the diagonal orbital ∆1.

For any given bowtie B of Kv we consider the 5-tuple (x, y1, z1, y2, z2) of
its vertices and use it to identify B uniquely by agreeing that x is the unique
4–valent vertex of B (i.e. vertex of degree 4) called the centre of B, while
T1 = (x, y1, z1) and T2 = (x, y2, z2) are the triples of B.

We shall use the exponential notation for edge–orbits and bowtie–orbits
under the action of G and its subgroups.

We shall denote by S the stabilizer of B in G. Every element of S fixes
the centre x of B, since x is the unique 4–valent vertex of B.

It is easy to see that two distinct edges, say [u1, w1], [u2, w2], belong to
the same G–orbit if and only if the ordered pair (u1, w1) belongs to the same
orbital as either (u2, w2) or (w2, u2).

An edge [u,w] ∈ E is said to be short if the pair (u,w) belongs to a
self–paired orbital of G.

An edge [u,w] ∈ E is said to be long if the pair (u,w) belongs to a
non–self–paired orbital of G.

Note that short edges exist if and only if the group G has even order.
In fact, if G has even order then there is at least one permutation g ∈ G
of order 2; if (u w) is a transposition appearing in the representation of g
as the product of disjoint cycles then the orbital containing the ordered pair
(u, w) is self–paired and the edge [u,w] is short. It is easy to see that also
the converse is true.

Lemma 1. Let Bv be a transitive decomposition with respect to G. Let B =
(x, y1, z1, y2, z2) be a bowtie of Bv. The following properties hold:

(a) the edges of B which are incident with the centre x are all long;

(b) the edge–orbit [yi, zi]
G, with i = 1, 2, does not contain edges which are

incident with the centre x of B.
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Proof. We prove property (a). Suppose that [x, yi], with i ∈ {1, 2}, is short.
Then there exists g ∈ G such that xg = yi and yg

i = x. Whence g ∈ S, a
contradiction, since we have remarked that every element of S fixes x. Hence
property (a) is true. Property (b) is handled similarly.

As a consequence of the previous lemma, the following statement holds.

Lemma 2. Let Bv be a transitive decomposition with respect to G. Let B =
(x, y1, z1, y2, z2) be a bowtie of Bv. Then B satisfies one of the following
properties:

(1) the edges [yi, zi], i = 1, 2, are short and have the same G–orbit; the
edges [x, yi] and [x, zi], i = 1, 2, are long and have the same G–orbit;

(2) the edges [yi, zi], i = 1, 2, are short and have distinct G–orbits; the edges
[x, y1], [x, z1], [x, y2], [x, z2] are long, belong to 2 distinct G–orbits and
[x, yi]

G = [x, zi]
G, for i = 1, 2;

(3) the edges [yi, zi], i = 1, 2, are long and have the same G–orbit; [x, y1],
[x, y2], [x, z1], [x, z2] are long, belong to 2 distinct G–orbits and [x, yi]

G 6=
[x, zi]

G, for i = 1, 2;

(4) the edges [yi, zi], i = 1, 2 are long and have distinct G–orbits; the edges
[x, y1], [x, z1], [x, y2], [x, z2] are long and belong to 4 distinct G–orbits;

(5) the edge [y1, z1] is short; the edges [x, y1], [x, z1] are long and have the
same G–orbit; the edges [x, y2], [x, z2], [y2, z2] are long and belong to 3
distinct G–orbits.

We shall say that a bowtie B of Bv is of type (i), i ∈ {1, . . . , 5}, with
respect to G if B satisfies property (i) of Lemma 2. When the group G is
clear from the context, we simply say that a bowtie is of type (i).

Proposition 1. Let Bv be a transitive decomposition with respect to G. Let
r be the rank of G. If |G| is even, then r ≡ 1 (mod 3), otherwise r ≡ 1
(mod 12).

Proof. Let R = {B1, . . . , Bµ} be a complete system of distinct represen-
tatives for the G–orbits of Bv.

For i = 1, . . . , 5, we denote by ai the number of elements of R of type
(i). If |G| is odd then there are no short edges, hence a1 = a2 = a5 = 0,
but also a3 = 0. In fact, suppose a3 6= 0 that is Bv possesses a bowtie
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B = (x, y1, z1, y2, z2) of type (3), then there is a permutation g ∈ G such that
[y1, z1]

g = [y2, z2]; whence Bg = B, as Bv is G–invariant, that is [y2, z2]
g =

[y1, z1]; it follows that g has even order, a contradiction.
Since Bv is a partition of the edge–set of Kv, for every non–diagonal orbital

∆ of G there exists a unique bowtie Bi ∈ R containing the edge [x, y] such
that (x, y)G = ∆ or (y, x)G = ∆. Moreover, ∪µ

j=1∪[x,y]∈Bj
((x, y)G∪(y, x)G) =

(V × V ) \ ∆1. Hence we can write the number s of self–paired orbitals
of G as s = a1 + 2a2 + a5, since the bowties of type (1), (2) and (5) are
the only ones possessing short edges. For the same reason, we have t =
a1+2a2+3a3+6a4+4a5. Whence t−s = 3(a3+2a4+a5), that is t−s = 3q, with
q ≥ 0, if |G| is even, otherwise t = 6a4. Hence r = 2t + s + 1 = 3(2q + s) + 1,
if |G| is even, otherwise r = 12a4 + 1.

Corollary 1. Let G be a group of odd order and rank r < 13. There is no
transitive bowtie decomposition Bv with respect to G.

Proposition 2. For s > (r−1)/3 there is no transitive bowtie decomposition
of Kv.

Proof. From the proof of Proposition 1, we can see that if there exists a
bowtie decomposition which is invariant with respect to a transitive group
G, then s ≤ t. Hence r − 1 = 2t + s ≥ 3s, that is s ≤ (r − 1)/3.

The next statement furnishes an example in which Proposition 2 applies.

Proposition 3. Let v be an admissible value. There is no decomposition Bv

which is transitive with respect to the dihedral group of order 2v.

Proof. We identify the vertex–set of Kv with Zv = {0, 1, . . . , v − 1}. We
label consecutively by 0, 1, . . . , v − 1, clockwise, the vertices of the regular
v–gon in the euclidian plane. The edges of Kv are given by the chords and
the sides of the polygon.

Let G denote the dihedral group of order 2v in its standard permutation
representation, that is G = 〈ρ, θ〉, where ρ and θ are the permutations on Zv

defined by ρ : x 7→ x + 1 and θ : x 7→ −x + 1, respectively. The cyclic group
〈ρ〉 consists of the permutations on Zv of the form ρi : x 7→ x + i, for every
i = 0, . . . , v − 1. The coset G − 〈ρ〉 consists of the permutations on Zv of
the form x 7→ −x + i + 1. Each element of G− 〈ρ〉 is a reflection about the
axis passing through the centre of the polygon and the vertex j, for every
j = 0, . . . , v − 1.
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It is easy to see that the set {[0, i+1] : i = 0, . . . , v−3
2
} is a complete system

of distinct representatives for the G–orbits of edges. Moreover, each edge
[0, i+1] is short, since [0, i+1]θρi

= [i+1, 0]. Hence {(0, i+1) : i = 0, . . . , v−3
2
}

is a complete system of distinct representatives for the non–diagonal orbitals
of G. Whence s = (v− 1)/2 = r− 1. The assertion follows from Proposition
2.

Using the AllTransitiveGroups library of GAP, [10], we can see that
the groups G acting transitively on 13 vertices, other than the cyclic group
of order 13, have rank r = 2, 3, 4, 5 or 7, respectively. The existence of a
transitive bowtie decomposition is excluded by Proposition 1 if G has rank
r = 2, 3 or 5 and by Propositions 2 or 3 if G has rank r = 4 or 7, respectively.
It is known that for v = 13 there exists a sharply transitive STS(v) under the
cyclic group of order 13, [18]. We shall see in Proposition 14 that the existence
of a sharply transitive bowtie decomposition is equivalent to the existence of
a sharply transitive STS(v). Hence there exists a sharply transitive bowtie
decomposition under the cyclic group of order 13. Therefore, the following
statement holds.

Proposition 4. Let G be a transitive permutation group on 13 vertices. If
|G| > 13 then no G–invariant bowtie decomposition of K13 exists.

3 The cycle type of an automorphism of a Bv

In this section v will be an admissible value and G ≤ Sym(v) will be a group
acting transitively on the vertex–set of Kv.

A permutation g ∈ G is said to be of type [g] = [f, p2, . . . , pv−1, pv] if g
fixes f ≥ 0 vertices and pk is the number of k–cycles in the representation of
g as a product of disjoint cycles.

Given a permutation g ∈ G, when we will speak of a “k–cycle of g” we
will always mean a k–cycle in the representation of g as a product of disjoint
cycles.

It is easy to see that if Bv is a bowtie decomposition of Kv which is
invariant with respect to G, then Bv gives rise to a Steiner triple system S of
order v which is invariant with respect to G: it suffices to split every bowtie
of Bv into its two triples.

One can see that if an automorphism g of S fixes f ≥ 1 vertices, then
f ≡ 1, 3 (mod 6). In fact, if a triple T of S contains two vertices which are
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fixed by g, then all vertices of T are fixed by g, since S is invariant under g.
Hence the triples of S all of whose vertices are fixed by g give an STS(f).
Hence f ≡ 1, 3 (mod 6), [7], and the following result holds.

Lemma 3. Let g ∈ G be an automorphism of Bv fixing f > 0 vertices. Then
f ≡ 1, 3 (mod 6).

Proof. It follows from the fact that an automorphism of Bv is an auto-
morphism of S.

We give necessary conditions for the existence of a transitive bowtie de-
composition.

Proposition 5. Let g ∈ G be an automorphism of Bv of type [g] = [f, p2, . . . , pv],
with f > 1 and p2 = 0. Then f ≡ 1, 9 (mod 12).

Proof. Let F be the set of vertices of Kv which are fixed by g. We have
|F | = f ≥ 2.

Let z1, z2 be distinct elements of F and let B denote the unique bowtie
of Bv containing the edge [z1, z2]. Then Bg = B, since B and Bg share the
edge [z1, z2] and Bv is invariant under g. Whence all vertices of B are fixed
g, since p2 = 0. We have thus proved that the bowties of Bv containing at
least one edge with endpoints in F have all edges with both endpoints in F .
In other words, a bowtie of Bv has either no edge with endpoints in F or all
edges with endpoints in F . Hence Bv induces a bowtie decomposition Bf of
KF . Hence f ≡ 1, 9 (mod 12), [2].

Proposition 6. Let g ∈ G be an automorphism of Bv of type [g] = [f, p2, . . . , pv]
with p2 6= 0. Then f ≥ 1 and p2 + f(f − 1)/6 is even.

Proof. Let S be the STS(v) arising from Bv. Since p2 6= 0, there exist at
least two distinct vertices of Kv, say x, y, such that xg = y and yg = x. We
have [x, y]g = [x, y] and, if B is the unique bowtie of Bv containing [x, y], we
also have Bg = B. The centre of B is the unique 4–valent vertex of B and is
thus fixed by g, yielding f ≥ 1.

We denote by F the set of vertices of Kv which are fixed by g and by
(x1 y1), . . . , (xp2 yp2) the 2–cycles (transpositions) of g.

For every i = 1, . . . , p2, there exists a triple Ti ∈ S containing the edge
[xi, yi], since S is a partition of the edge–set of Kv. We set Ti = (xi, yi, zi).
We have that zi ∈ F , since [xi, yi]

g = [xi, yi] and S is invariant with respect
to g. It might happen that zi = zj for i, j ∈ {1, . . . , p2}, with i 6= j, that is
Ti and Tj share one vertex. We set T = {Ti : i = 1, . . . , p2}.
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As remarked at the beginning of this section, the triples of S with all
vertices in F give an STS(f), say S ′.

We show that if one of the triples of bowtie in Bv lies in T ∪ S ′, then so
does the other triple.

Let T1 ∈ T ∪ S ′ and let B be the bowtie of Bv containing T1. We denote
by T2 the other triple of B. If T1 ∈ S ′, then the centre of B lies in F . The
same occurs if T1 ∈ T , since g fixes B. Hence at least one vertex of T2 lies
in F . Since T g

1 = T1, as T1 ∈ T ∪ S ′, we have Bg = B, that is T g
2 = T2.

Whence the remaining two vertices of T2 are either in F or appear together
in a 2–cycle of g, that is T2 ∈ T ∪ S ′.

We have thus proved that a bowtie of Bv contains 0 or 2 triples of T ∪S ′.
Whence |T ∪ S ′| = p2 + f(f − 1)/6 is even.

Proposition 7. Let Bv be a transitive decomposition with respect to G. Let
g ∈ G be a permutation of even order o(g) and type [g] = [f, p2, . . . , pv]. Then

f +
∑

k∈Q k pk > 1, where Q = {k : 2 ≤ k ≤ v, k|o(g)
2
} and it is empty if

o(g) = 2.

Proof. Let S be the STS(v) which arises from Bv. We set α = o(g)/2.
Let k ∈ {2, . . . , v} be such that pk 6= 0. We can write o(g) = kq, where q

is a positive integer. We note that if k is odd, then q is even, as o(g) is even,
whence α = k q

2
, that is k|α. Hence, if k 6∈ Q then k is even.

We write v = f +
∑v

k=2 k pk = f +
∑

k∈Q k pk +
∑

k 6∈Q k pk and show firstly
that f +

∑
k∈Q k pk > 0, secondly that f +

∑
k∈Q k pk > 1.

Suppose f +
∑

k∈Q k pk = 0. Then v =
∑

k 6∈Q k pk. That yields a
contradiction, since v is odd and

∑
k 6∈Q k pk is even, as k 6∈ Q. Hence

f +
∑

k∈Q k pk ≥ 1.
We show that f+

∑
k∈Q k pk > 1. Suppose f+

∑
k∈Q k pk = 1. Let h = gα.

We have that h is an involution of G fixing exactly f +
∑

k∈Q k pk vertices of
Kv. In fact, the vertices which are fixed by h are given by the vertices which
are fixed by g together with the vertices lying in the k–cycles of g with k|α,
that is k ∈ Q. Since we are supposing f +

∑
k∈Q k pk = 1, the involution h

fixes only one vertex of Kv, that is h is the product of m = (v− 1)/2 disjoint
2–cycles.

We denote by z the unique vertex of Kv which is fixed by h and write h
as the disjoint product h = (x1 y1)(x2 y2) . . . (xm ym).

For every i = 1, . . . , m, the edge [xi, yi] is short, since it is left invariant
by h. Moreover, for every i = 1, . . . , m, there is exactly one triple Ti ∈ S
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containing the edge [xi, yi]. Each Ti is fixed by h, since S is invariant under
h. Whence Ti = (xi, yi, z), for every i = 1, . . . , m.

Since G is transitive on V , there exists g1 ∈ G such that zg1 = x1. Then

zg1hg−1
1 = x

hg−1
1

1 = y
g−1
1

1 6= z, since x1 6= y1. Hence zg1hg−1
1 = xj or zg1hg−1

1 = yj,

with j ∈ {1, . . . , m}. It follows that the edge [z, zg1hg−1
1 ] is left invariant by

g1hg−1
1 , since g1hg−1

1 is an involution mapping z to zg1hg−1
1 . In other words,

the edge [z, zg1hg−1
1 ] is short. Then the triple Tj = (xj, yj, z) contains two

short edges: [xj, yj] and [z, zg1hg−1
1 ]. That yields a contradiction, since by

Lemma 1 a triple of a bowtie can contain at most one short edge. Hence
f +

∑
k∈Q k pk > 1.

Corollary 2. Let Bv be a transitive bowtie decomposition which is invariant
with respect to G. The number of fixed vertices of each involution in G is
> 1 and ≡ 1, 3 (mod 6).

Proof. An involution g of G is a permutation of type [g] = [f, p2, 0, . . . , 0],

with p2 6= 0. The set Q = {k : 2 ≤ k ≤ v, k|o(g)
2
} is empty, hence f =

f +
∑

k∈Q kpk > 1, since Proposition 7 holds. The statement follows from
Lemma 3.

Proposition 8. Let Bv be a transitive decomposition with respect to G. Let
g ∈ G be a permutation of even order o(g) and type [g] = [f, p2, . . . , pv]. Let

k ∈ {3, . . . , v} be such that k ≡ 2 (mod 4), k - o(g)
2

and pk 6= 0. Then

∑

(h,k2)∈Dk

gcd(h, k2)phpk2 +
1

4
p k

2
(kp k

2
− 2) + fp k

2
− 3pk ≡ 0, 3 (mod 6)

where Dk = {(k1, k2) : k1 < k2, ki 6= k/2, for i = 1, 2, k1k2

gcd(k1,k2)
= k

2
} ∪

{(k
2
, k2) : k2|k2 , k2 6= 1, k

2
}.

Proof. We set α = o(g)/2 and h = gα. Observe that h is an involution of
G. Let k ∈ {3, . . . , v} be such that pk 6= 0. As remarked in the proof of the
previous proposition, if k - α then k is even and every k–cycle of g gives rise
to k/2 disjoint 2–cycles of h. Every 2–cycle (x y) of h yields the short edge
[x, y]. For the sake of brevity, we shall say that an edge [x, y] is a k–short
edge if (x y) is a 2–cycle of h which arises from a k–cycle of g. Note that a
k–short edge [x, y] has 〈g〉–orbit of length k/2, since x, y lies in a k–cycle of
g and [x, y]h = [x, y]. An edge [x, y] which is not k–short and has 〈g〉–orbit
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of length k/2 will be called k–long. We denote by γ the number of distinct
〈g〉–orbits of k–long edges. Firstly, we prove that γ − 3pk ≡ 0, 3 (mod 6);
secondly, we compute the number γ.

Let Ak be the subset of Bv consisting of all bowties containing at least one
edge with 〈g〉–orbit of length k/2. Let R be a complete system of distinct
representatives for the 〈g〉–orbits of Ak. We denote by ai the number of
elements of R which are of type (i), i ∈ {1, 2, . . . , 5}, with respect to 〈g〉. An
easy calculation shows that a1 = 0 since k ≡ 2 (mod 4).

By the very definition of Ak, we have that Ak covers all edges with 〈g〉–
orbit of length k/2, hence the following relations hold: 2a2 + a5 = pk and
3a3 + 6a4 + 3a5 = γ.

The former equality arises from the fact that the number of distinct 〈g〉–
orbits of k–short edges is pk, that a bowtie of type (5) has a non–empty
intersection with only one 〈g〉–orbit of k–short edges, while a bowtie of type
(2) has a non–empty intersection with exactly two distinct 〈g〉–orbits of k–
short edges.

The latter equality arises from the fact that every bowtie of type (3) and
(5) has a non–empty intersection with exactly three distinct 〈g〉–orbits of
k–long edges, while every bowtie of type (4) has a non–empty intersection
with six distinct 〈g〉–orbits of k–long edges.

Substituting a5 = pk−2a2 in 3a3+6a4+3a5 = γ, we find that γ−3pk ≡ 0, 3
(mod 6).

We determine the number γ, that is the number of distinct 〈g〉–orbits of
k–long edges. Let [x, y] be a k–long edge. For the vertices x, y we distinguish
three cases.

Case 1: x lies in a k1–cycle of g, y lies in a k2–cycle of g with k1, k2 6= k/2
and such that k1k2

gcd(k1,k2)
= k/2.

We denote by γ1 the number of distinct 〈g〉–orbits of k–long edges whose
vertices x, y satisfy the property of Case 1.

We prove that γ1 =
∑

(k1,k2)∈J gcd(k1, k2)pk1pk2 , where J = {(k1, k2) :

k1 < k2, ki 6= k/2, for i = 1, 2, k1k2

gcd(k1,k2)
= k

2
}.

Let [x, y] be an edge such that x is one of the vertices of the k1–cycle
(x1 . . . xk1) and y is one of the vertices of the k2–cycle (y1 . . . yk2). The
edge [x, y] is of type [xa, yb] with a ∈ {1, . . . , k1} and b ∈ {1, . . . , k2}. Ev-
ery [xa, yb]

〈g〉 contains at least one edge which is incident with x1. Hence
to determine the representatives of the distinct 〈g〉–orbits of edges [xa, yb],
with a ∈ {1, . . . , k1} and b ∈ {1, . . . , k2}, we can consider the edges [x1, y1],
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[x1, y2], . . . , [x1, yk2 ].
We note that [x1, yb]

〈g〉, with b ∈ {1, . . . , k2}, contains k
2
/k1 = k2

gcd(k1,k2)

edges which are incident with x1, since x1 lies in a k1–cycle of g and [xa, yb]
〈g〉

has length k/2. In other words, [x1, yb]
〈g〉 contains the edges [x1, yb+jk1 ], for

every j = 0, . . . , k2

gcd(k1,k2)
− 1. These edges are pairwise distinct. In fact,

assume [x1, yb+jk1 ] = [x1, yb+j′k1 ], with j, j′ ∈ {0, . . . , k2

gcd(k1,k2)
− 1}, j 6= j′.

Without loss of generality we can set j > j′. We have yb+jk1 = yb+j′k1 , that is
b+ jk1 = b+ j′k1, whence (j− j′)k1 = qk2, for some positive integer q. Since
k1 6= k/2, as (k1, k2) ∈ J , we have that (j− j′)k1 = qk2 if and only if j− j′ ≥

k2

gcd(k1,k2)
. That yields a contradiction, since j−j′ ≤ k2

gcd(k1,k2)
−1. We have thus

proved that every [x1, yb]
〈g〉 contains k2

gcd(k1,k2)
distinct edges which are incident

with x1. Therefore, among [x1, y1], [x1, y2], . . . , [x1, yk2 ] we have k2/
k2

gcd(k1,k2)
=

gcd(k1, k2) distinct representatives of 〈g〉–orbits of edges. In other words,
every pair of cycles of g of length k1, k2, with (k1, k2) ∈ J , gives gcd(k1, k2)
distinct representatives. Since the number of cycles of g of length k1, k2 is pk1 ,
pk2 , respectively, and (k1, k2) ∈ J we find

∑
(k1,k2)∈J gcd(k1, k2)pk1pk2 distinct

representatives of 〈g〉–orbits of k–long edges. Note that in J the condition
k1 < k2 assures that in

∑
(k1,k2)∈J gcd(k1, k2)pk1pk2 the edges are counted one

time.
Case 2: x lie in a k

2
–cycle of g, y lies in a k2–cycle of g with k2 6= k/2

and k2|k2 .
We denote by γ2 the number of distinct 〈g〉–orbits of k–long edges whose

vertices x, y satisfy the property of Case 2. This case can be treated as Case
1: it suffices to replace k1 by k

2
and pk2 by f if y is fixed by g. We find that

γ2 = fp k
2

+
∑

k2∈J ′ k2p k
2
pk2 , where J ′ = {k2 : k2|k2 , k2 6= 1, k

2
}.

Case 3: x, y lie in k
2
–cycles of g (distinct or not).

We denote by γ3 the number of distinct 〈g〉–orbits of k–long edges whose
vertices x, y satisfy the property of Case 3. We prove that γ3 = k

2
p k

2
(p k

2
−

1)/2 + p k
2
(k − 2)/4.

Let [x, y] be an edge such that x, y lie in distinct k
2
–cycles of g, say

(x1 . . . x k
2
), (y1 . . . y k

2
), respectively. Hence [x, y] is of type [xa, yb], with

a, b ∈ {1, . . . , k
2
}. Every [xa, yb]

〈g〉 contains exactly one edge which is inci-
dent with x1, since x1 lies in a k

2
–cycle of g and [xa, yb]

〈g〉 has length k/2.
Hence we can take [x1, y1], [x1, y2], . . . , [x1, y k

2
] as the representative of the

distinct 〈g〉–orbits of edges [xa, yb], with a, b ∈ {1, . . . , k
2
}. In other words,
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for every pair of distinct k
2
–cycles of g we find k/2 distinct representatives.

Since the number of pairs of distinct k
2
–cycles of g is p k

2
(p k

2
− 1)/2, we find

k
2
p k

2
(p k

2
− 1)/2 distinct representatives of 〈g〉–orbits of k–long edges.

Assume x, y to be in the same k
2
–cycle of g, say (x1 . . . x k

2
). Then [x, y]

is of type [xa, xb], with a, b ∈ {1, . . . , k
2
} and a 6= b. Every [xa, xb]

〈g〉 contains
at least one edge which is incident with x1. Hence to determine the repre-
sentatives of the distinct 〈g〉–orbits of edges [xa, xb], with a, b ∈ {1, . . . , k

2
}

and a 6= b, we can consider the edges [x1, x2], [x1, x3], . . . , [x1, x k
2
]. Note

that for every b = 2, . . . , k
2
, the edge [x1, xb] is k–long, since k ≡ 2 (mod 4).

Moreover, xg
k
2−b+1

b = xb+ k
2
−b+1 = x1, xg

k
2−b+1

1 = x1+ k
2
−b+1 = x k

2
−b+2 and

x k
2
−b+2 6= xb, as k ≡ 2 (mod 4). Hence [x1, x k

2
−b+2] ∈ [x1, xb]

〈g〉 and [x1, xb],

[x1, x k
2
−b+2] are the only edges which are incident with x1 which are con-

tained in [x1, xb]
〈g〉. Therefore, among [x1, x2], [x1, x3], . . . , [x1, x k

2
] we find

(k
2
−1)/2 = k−2

4
distinct representatives. In other words, for every k

2
–cycle of

g the number of distinct representatives for the 〈g〉–orbits of edges [xa, xb],
with a, b ∈ {1, . . . , k

2
}, a 6= b, is k−2

4
. Since the number of distinct k

2
–cycles is

p k
2
, we have p k

2
(k − 2)/4 representatives of 〈g〉–orbits of k–long edges.

We have γ = γ1 + γ2 + γ3, that is

γ =
∑

(k1,k2)∈J

gcd(k1, k2)pk1pk2+fp k
2
+

∑

k2∈J ′
k2p k

2
pk2+

k

2
p k

2
(p k

2
−1)/2+p k

2

(k − 2)

4

whence

γ =
∑

(h,k2)∈Dk

gcd(h, k2)phpk2 +
1

4
p k

2
(kp k

2
− 2) + fp k

2
.

Proposition 9. Let Bv be a transitive decomposition with respect to G. Let
g ∈ G be a permutation of odd order o(g) and type [g] = [f, p2, . . . , pv]. Let
k ∈ {3, . . . , v} be such that pk 6= 0. Then

∑

(h,k2)∈Dk

gcd(h, k2)phpk2 +
1

2
pk(kpk − 1) + fpk ≡ 0, 3 (mod 6)
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where Dk = {(k1, k2) : k1 < k2, ki 6= k, for i = 1, 2, k1k2

gcd(k1,k2)
= k} ∪ {(k, k2) :

k2|k, k2 6= 1, k}.
Proof. The proof is similar to the proof of the previous proposition, with

the exception that no k–short edge is defined, as g has odd order, and that
a k–long edge is an edge with 〈g〉–orbit of length k. Hence the set Ak can
contain only elements of type (3) or (4) with respect to 〈g〉.

Below we give a result concerning Steiner triple systems. We shall use it
in the proof of Proposition 10.

Lemma 4. Let S be an STS(v) which is invariant with respect to G. Let
g ∈ G be of type [g] = [f, p2, . . . , pv] with f ≥ 1. Then for every odd k ∈
{3, . . . , v} we have that pk is even.

Proof. Assume k ∈ {3, . . . , v} with k odd and pk 6= 0. Let z be a vertex of
Kv which is fixed by g and let x be a vertex of Kv lying in a k–cycle of g. Let
T ∈ S be the unique triple containing the edge [z, x]. We set T = (z, x, y).
Observe that y is not fixed by g, since g does not fix x and S is invariant
with respect to g. We show that y lies in a k–cycle of g not containing x.

Let y be one of the vertices in a d–cycle of g, with d 6= k. If d < k, then
the triples T and T gd

share the edge [z, y], but T 6= T gd
, since xgd 6= x, as

d < k. That yields a contradiction, since S is invariant with respect to 〈g〉.
The same happens if d > k. Hence y lies in a k–cycle of g.

Let y be one of the vertices in the k–cycle of g containing x, that is
y = xga

for some a ∈ {1, . . . , k − 1}. Then T and T ga
share the edge [z, y],

but T 6= T ga
since k is odd. That yields a contradiction, since S is invariant

with respect to 〈g〉. Hence y lies in a k–cycle of g not containing x.
By the property proved above, every triple of S containing z contains 0

or 2 vertices lying in distinct k–cycles of g.
Let Tk be the subset of S consisting of all triples containing z and two

vertices of Kv lying in (distinct) k–cycles of g.
Let T1, T2 be distinct triples of Tk. We set T1 = (z, x1, y1), T2 = (z, x2, y2).

It is easy to see that T1, T2 have the same 〈g〉–orbit if and only if x1 lies in
the same k–cycle of x2 (or y2). Observe that x1 lies in the same k–cycle of
x2 (or y2) if and only if y1 lies in the same k–cycle of y2 (or x2), since S is
invariant with respect to 〈g〉.

Let {T1, . . . , Tµ} be a complete system of distinct representatives for the
〈g〉–orbits of Tk. By the very definition of Tk and by the remarks above,
2µ ≤ pk. For every k–cycle c of g there is a unique triple in {T1, . . . , Tµ}
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containing exactly one vertex lying in c, since Tk is a partition of the edges
having precisely one vertex in a k–cycle of g. Hence pk ≤ 2µ, then pk =
2µ.

Proposition 10. Let Bv be a transitive decomposition with respect to G. Let
g ∈ G be of type [g] = [f, p2, . . . , pv] with f ≥ 1 and p3 6= 0. Then p3 ≥ 4.

Proof. By Lemma 4 we have p3 ≥ 2. Suppose p3 = 2. We denote by
(x1 x2 x3) and (y1 y2 y3) the 3–cycles of g.

Let S be the STS(v) arising from Bv. Let T = (x1, x2, x) be the unique
triple of S containing the edge [x1, x2].

Since x1 and x2 lie in the same 3–cycle of g and S is invariant with respect
to g, we have that x is not fixed by g.

Since the 〈g〉–orbit of the edge [x1, x2] has length 3 and S is invariant
with respect to 〈g〉, we have that x lies in a 3–cycle of g. But x 6= x3, since
T is a triple of a bowtie and by Lemma 2 such a triple can contain at most
two edges in the same G–orbit. Hence x = yi for some i ∈ {1, 2, 3}. Without
loss of generality, we can set x = y1.

There exists a unique T1 ∈ S containing the edge [y1, y2]. We set T1 =
(y1, y2, y). By the previous remarks, we have y = xi for some i ∈ {1, 2, 3}.
We have y = x3, since T, T1 are distinct, T contains the edges [x1, y1], [x2, y1]
and S is a partition of the edge–set of Kv. Whence T g and T1 are distinct
triples of S sharing the edge [x3, y2]. That yields a contradiction, since S is
invariant with respect to 〈g〉. Hence p3 > 2. By Lemma 4 we have p3 ≥ 4.

The AllTransitiveGroups library of GAP, [10], contains representatives
for all transitive permutation groups on at most 30 vertices.

Using this library we tested the necessary conditions in Section 2 and
3 on the groups acting transitively on v vertices, where v is an admissible
value, with v ≤ 30. We remarked in Section 1 that doubly transitive bowtie
decompositions do not exist, so we discarded 2–transitive groups.

For v = 25, the CycleStructurePerm command allows us to see that if G
is not an abelian group of order 25 then G possesses at least one permutation
g satisfying one of the following properties:

1) g is of type [g] = [25− 5j, 0, 0, 0, j, 0, . . . , 0], with j ∈ {2, 3, 4};
2) g is of type [g] = [1, 12, 0, . . . , 0];

3) g is of type [g] = [5, 10, 0, . . . , 0];
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4) g is of type [g] = [1, 0, 8, 0, . . . , 0];

5) g is of type [g] = [f, p2, . . . , p25], with f = 0, p5 = 1, p10 = 2, pi = 0 for
i = 2, . . . , 25, i 6= 5, 10.

If G possesses one permutation satisfying property 1), then there is no
transitive bowtie decomposition with respect to G, since 25 − 5j 6≡ 1, 9
(mod 12), for every j = 2, . . . , 4, and Proposition 5 holds. The same thing
happens if G possesses one permutation satisfying property 2), 3), 4) or 5),
since one of Corollary 2, Proposition 9, Proposition 8 holds in each case,
respectively.

It is known that for v = 25 there is a sharply transitive STS(25) with
respect to G, when G is an abelian group of order 25, [19]. By Proposition
14 an STS(25) which is invariant under a sharply transitive abelian group G
of order 25 yields a bowtie decomposition which is sharply transitive with
respect to G. Hence, for v = 25 the only examples of transitive bowtie
decompositions are the sharply transitive decompositions under one of the
abelian groups of order 25 (cyclic or elementary abelian).

We carried out a similar inspection for the groups G acting transitively
on v vertices, with v = 21 and v = 9. In particular, for v = 9 we use
the necessary conditions of Section 3 to exclude the existence of a transitive
bowtie decomposition with respect to G, when G satisfies Proposition 1.
More specifically, a group G on 9 vertices has rank r = 2, 3, 4, 5, 6 or 9. If G
has rank r = 2, 3, 5, 6 or 9, then there is no transitive bowtie decomposition
with respect G, since Proposition 1 holds. The groups of rank r = 4 have even
order and satisfy Proposition 1. Nevertheless, if G is a group of rank r = 4
we find at least one element g ∈ G which is of type [g] = [3, 0, 2, 0, . . . , 0]
or of type [g] = [6, 0, 1, 0, . . . , 0]. In both cases Proposition 5 is not verified.
Hence we can state the following results.

Proposition 11. Let G be a transitive permutation group on 25 vertices. If
|G| > 25 then no G–invariant bowtie decomposition of K25 exists.

Proposition 12. There is no transitive bowtie decomposition of K9 and K21.

4 Sharply transitive bowtie decompositons

In this section we shall denote by v an admissible value and by G a subgroup
of Sym(v) acting sharply transitively on the vertices of Kv.
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Observe that the stabilizer S in G of a bowtie B consists only of the
identity permutation on V , since every permutation in S fixes the centre of
B and G is sharply transitive on vertices.

Proposition 13. If Bv is a sharply transitive bowtie decomposition of Kv

then v ≡ 1 (mod 12).

Proof. Let Bv be a sharply transitive bowtie decomposition of Kv with
respect to G. Let R = {B1, . . . , Bµ} be a complete system of distinct repre-
sentatives for the G–orbits of Bv.

As already remarked, for every i = 1, . . . , µ we have that Bi has trivial
stabilizer in G, hence BG

i has length v. Each BG
i contains exactly 6v edges

of Kv. Hence µ = |E|/6v, that is v ≡ 1 (mod 12).

We give a result concerning Steiner triple systems. We shall use it in the
proof of Proposition 14.

Lemma 5. Assume v ≡ 1 (mod 6) and let S be a sharply transitive STS(v)
with respect to a group G. Then the number of G–orbits of triples of S is
(v − 1)/6.

Proof. Let L denote the stabilizer in G of a triple T = (x, y, z) of S and
assume h ∈ L with h 6= idV . Since G is sharply transitive on V , we have that
h fixes no vertex of T . Consequently, the representation of h as a product of
disjoint cycles contains one of the 3–cycles (x y z) or (x z y), showing that 3
divides o(h), which in turns divides |G| = v. Hence 3|v, contradicting v ≡ 1
(mod 6). We conclude L = 〈idV 〉, each G–orbit of triples of S has length v
and the total number of such orbits is (v(v − 1)/6)/v = (v − 1)/6.

Proposition 14. Let v ≡ 1 (mod 12). The existence of a sharply transitive
STS(v), with respect to a group G, is equivalent to the existence of a sharply
transitive decomposition Bv with respect to G.

Proof. As remarked at the beginning of Section 3, every Bv which is
invariant with respect to a group G gives rise to an STS(v) which is invariant
with respect to G.

We show that a sharply transitive STS(v) gives rise to a sharply transitive
Bv. We identify the vertex–set V of Kv with the set {0, 1, . . . , v − 1}. Let S
be an STS(v) on V which is sharply transitive with respect to G.

Let T be a complete system of distinct representatives for the G–orbits
of S. By Lemma 5, we have |T | = (v − 1)/6.
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Because G is transitive on the vertex–set of Kv, we can assume that each
Ti ∈ T contains the vertex labeled with 0, that is we can set Ti = (0, xi, yi),
for every Ti ∈ T .

Since |T | = (v − 1)/6 is an even, as v ≡ 1 (mod 12), and each pair of
distinct triples of T share the vertex 0, we can pair the elements of T to
form (v − 1)/12 distinct bowties with centre 0. We denote by R the set
of (v − 1)/12 distinct bowties of Kv which we can construct by pairing the
elements of T .

Each B ∈ R has G–orbit of length v, since the two triples constituting it
have distinct G–orbits of length v.

It is easy to see that Bv = ∪B∈RBG is a sharply transitive bowtie decom-
position with respect to G.

As already mentioned, for every v ≡ 1 (mod 12), a large class of sharply
transitive bowtie decompositions of Kv can be obtained from the abelian
STS(v)’s which have been constructed in [19]. In particular, for every admis-
sible value of v there exists a sharply transitive bowtie decomposition of Kv

with respect to the cyclic group of order v.

5 Primitive bowtie decompositions

Let G be a primitive permutation group of affine type acting transitively on
v vertices, where v is an admissible value. The group G possesses a sharply
transitive subgroup H of order v, [9]. Therefore, if Bv is a bowtie decompo-
sition which is invariant with respect to G, then Bv is sharply transitive with
respect to H. Hence v ≡ 1 (mod 12), since Proposition 13 holds.

In this section we will focus our attention on a subclass of primitive
permutation groups of affine type. Hence, by the previous remarks, we shall
consider the admissible values of v which are congruent to 1 (mod 12).

Let p be an odd prime and let q be a p–primitive divisor of pn− 1, n ≥ 2,
that is q|(pn − 1) but q - (pm − 1), for every m < n. Zsigmondy’s Lemma,
[14, Theorem 6.2], assures the existence of such a divisor except when p + 1
is a 2–power and n = 2. Hence we shall consider those primes p such that if
n = 2 then p + 1 6= 2i, for every positive integer i.

Let V be the n–dimensional vector space over GF (p) and let A denote
the subgroup of size q of the multiplicative group GF (pn)∗.
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The group G, consisting of all permutations g : V → V such that g(x) =
ax + b, with a ∈ A and b ∈ V, is a primitive permutation group on V.

The group G acts transitively on V, since it contains the translations
group T = {tb : tb(x) = x + b,b ∈ V}. Hence, to prove that G acts
primitively on V, it suffices to show that the stabilizer G0 is a maximal
subgroup of G.

Suppose G0 is not a maximal subgroup of G, that is there exists a proper
subgroup H of G such that G0 < H. The subgroup H consists of the
permutations g : V → V such that g(x) = ax + b, where a ∈ A and b
belongs to a proper additive subgroup of GF (pn). Hence |H| = |A| pl = q pl

with l < n. From [12, II.8.7], it follows that q|(pl−1), a contradiction. Hence
G0 is a maximal subgroup of G and G is a primitive permutation group on
V of affine type.

The next arguments will be useful to prove Proposition 15. We show that
each non–diagonal orbital ∆ of G on V ×V has size |V|q.

We note that q 6= 2, since q is a p–primitive divisor of pn − 1. Hence
|G| = pn q is odd, whence no non–diagonal orbital of G is self–paired.

The map φ which associates each orbital ∆ of G to the set {b : (0,b) ∈ ∆}
is a bijection between the set of orbitals of G and the set of G0–orbits on
V. For b ∈ V, b 6= 0, we shall denote by Ob the G0–orbit of b. Note that
Ob = {ab : a ∈ A}, since G0 = {ga : ga(x) = ax, a ∈ A}.

Let ∆ be a non–diagonal orbital of G corresponding to Ob. Because G
contains the group T of translations on V, it is easy to see that (u,w) ∈ ∆
if and only if w− u ∈ Ob. Then |∆| is the number of pairs (u,w) such that
w − u ∈ Ob.

For every c ∈ Ob and for every w ∈ V, there exists a unique u ∈ V such
that w−u = c. In other words, since G is transitive on V, for every c ∈ Ob

there exist |V| distinct pairs of distinct elements of V belonging to ∆. We
have |∆| = |V| · |Ob| = |V|q.

We set v = |V| = pn. Since every non–diagonal orbital of G has size vq,
we have that the rank r = (|V|2 − |V|)/(|V|q) + 1 = (v − 1)/q + 1.

Proposition 15. Let p be a prime and let v = pn, n ≥ 2, such that v ≡ 1
(mod 12) and p + 1 is not a 2–power if n = 2. Let q be a p–primitive divisor
of pn − 1. If (v − 1)/q 6≡ 0 (mod 12), then there is no bowtie decomposition
of Kv which is invariant with respect to G.

Proof. We identify the vertices of the complete graph with the elements
of the vector space GF (pn).
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As already remarked, no non–diagonal orbital of G is self–paired, hence
the rank r can be written as r = 2t + 1 and t corresponds to the number
of G–orbits of edges. By the previous remarks, r = (v − 1)/q + 1, hence
t = (v − 1)/2q.

Suppose there exists a bowtie decomposition Bv of Kv which is invariant
with respect to G. Each bowtie of Bv is of type (4), since |G| is odd. A
bowtie of type (4) contains exactly 6 edges from distinct edge–orbits. Whence
the number of G–orbits of edges is divisible by 6, that is 6|(v − 1)/2q, a
contradiction.

Using the AllPrimitiveGroups library of GAP, [10], we found primitive
permutation groups acting transitively on v ≡ 1 (mod 12) vertices and of
order vq, where v ∈ {37, 61, 73, 109, 157, 181, 229} and q is an odd prime
divisor of (v − 1) such that (v − 1)/q ≡ 0 (mod 12). For each group G
we constructed a set of (v − 1)/(12q) distinct representatives of G–orbits of
bowties yielding a G–invariant bowtie decomposition Bv. Each G–orbit has
length vq. Unfortunately, we were not able to find a general construction.

6 1–rotational bowtie decompositions

Let Kv = (V,E) be the complete graph on v vertices. Let G be a subgroup
of the symmetric group Sym(v) which fixes one vertex of V and acts sharply
transitively on the remaining vertices, that is G is 1–rotational on V .

Because of the action of G on V , we can identify V with G∪{∞}, where
∞ is an element not lying in G. Observe that |G| = v − 1.

We will understand the group G in additive form and 0G will denote the
identity element of G. The action of G on the vertices of Kv is given by the
regular right representation of G, that is g(x) = x + g for every x, g ∈ G,
with the rule ∞+ g = ∞.

Proposition 16. Let v be an admissible value. There is no 1–rotational
bowtie decomposition of order v.

Proof. Suppose there exists a bowtie decomposition Bv which is invariant
with respect to G.

Let {B1, . . . , Bµ} be a complete system of distinct representatives for the
G–orbits of Bv. Because of the action of G on the vertices of Kv, there
exists a unique Bi ∈ {B1, . . . , Bµ} whose G–orbit contains all edges which
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are incident with ∞. Observe that the edges which are incident with ∞ all
lie in the same G–orbit, since G acts transitively on V \ {∞}.

Without loss of generality we can set Bi = B1 and B1 = (x, y1, z1, y2, z2).
Observe that B1 contains 4 or 2 edges which are incident with ∞, according
to whether x = ∞ or x 6= ∞.

Suppose x 6= ∞. Let S be the stabilizer in G of B1. Every element of
S fixes x, since x is the unique 4–valent vertex of B1. Hence S = 〈idV 〉,
since x 6= ∞ and G acts sharply transitively on V \ {∞}. It follows that
|BG

1 | = v− 1, that is BG
1 contains 2(v− 1) edges which are incident with ∞,

a contradiction. Hence x = ∞ and |BG
1 | = (v − 1)/4, as B1 contains 4 edges

which are incident with ∞.
Each representative in {B2, . . . , Bµ} has trivial stabilizer in G, as its cen-

tre lies in V r {∞} and G acts sharply transitively on V r {∞}. Hence
µ = |Bv r BG

1 |/(v − 1) = [(v(v − 1))/12 − (v − 1)/4]/(v − 1) = (v − 3)/12.
That yields a contradiction, since v ≡ 1, 9 (mod 12). Hence there is no
bowtie decomposition Bv which is invariant with respect to G.
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