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Decays of b hadrons into final states containing a D0 meson and a muon are used to measure the bb
production cross-section in proton–proton collisions at a centre-of-mass energy of 7 TeV at the LHC.
In the pseudorapidity interval 2 < η < 6 and integrated over all transverse momenta we find that the
average cross-section to produce b-flavoured or b-flavoured hadrons is (75.3 ± 5.4 ± 13.0) μb.
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1. Introduction

Quantum chromodynamics predicts the cross-section for the
production of b-flavoured hadrons in proton–proton collisions, for
which higher order calculations are available [1]. The first data
taken with the LHCb experiment at 7 TeV centre-of-mass energy
allows this cross-section to be measured and compared to pre-
dictions. Knowledge of the b yield is also critical in ascertaining
the sensitivity of experiments that aim to measure fundamen-
tal parameters of interest involving, for example, CP violation. It
is also useful for normalising backgrounds for measurements of
higher mass objects that decay into bb, such as the Higgs boson.
In this Letter we present a measurement of the production cross-
section for the average of b-flavoured and b-flavoured hadrons in
proton–proton collisions at a centre-of-mass energy of 7 TeV in the
pseudorapidity interval 2 < η < 6, where η = − ln[tan(θ/2)], and θ

is the angle of the weakly decaying b or b hadron with respect to
the proton direction. We extrapolate this measurement to the en-
tire rapidity interval. Our sensitivity extends over the entire range
of transverse momentum of the b-flavoured hadron.

The LHCb detector [2] was constructed as a forward spectrom-
eter primarily to measure C P violating and rare decays of hadrons
containing b and c quarks. The detector elements are placed along
the beam line of the LHC starting with the Vertex Locator (VELO),
a silicon strip device that surrounds the proton–proton interaction
region and is positioned 8 mm from the beam during collisions.
It provides precise locations for primary pp interaction vertices,
the locations of decays of long lived hadrons, and contributes
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to the measurement of track momenta. Other detectors used to
measure track momenta comprise a large area silicon strip de-
tector located before a 3.7 Tm dipole magnet, and a combination
of silicon strip detectors and straw drift chambers placed after-
ward. Two Ring Imaging Cherenkov (RICH) detectors are used to
identify charged hadrons. Further downstream an Electromagnetic
Calorimeter (ECAL) is used for photon detection and electron iden-
tification, followed by a Hadron Calorimeter (HCAL), and a system
consisting of alternating layers of iron and chambers (MWPC and
triple-GEM) that distinguishes muons from hadrons (MUON). The
ECAL, MUON, and HCAL provide the capability of first-level hard-
ware triggering.

Two independent data samples, recorded at different times, are
examined. For the earliest period of data taking the number of
colliding bunches was sufficiently low that the high-level trigger
could process all crossings and accept events when at least one
track was reconstructed in either the VELO or the tracking stations.
This data set, called “microbias”, has an integrated luminosity, L, of
2.9 nb−1. The second sample, referred to as “triggered”, uses trig-
gers designed to select a single muon. Here L equals 12.2 nb−1.
These samples are analysed independently and the results subse-
quently combined.

Most D0 mesons are produced directly via pp → cc X interac-
tions, where X indicates any combination of final state particles.
These particular D0 mesons are denoted as “Prompt”. D0 mesons
produced in pp → bb X collisions where the b-flavoured hadron
decays into a final state containing a D0 meson are called “Dfb”.
We use the decay channel b → D0 Xμ−ν , as it has a large branch-
ing fraction of (6.84 ± 0.35)% [3], and is advantageous from the
point of view of signal to background. Throughout this Letter men-
tion of a particular mode implies the inclusion of the charge con-
jugate mode as well.
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Fig. 1. K −π+ invariant mass for “Prompt” selection criteria in 2.9 nb−1. The curve
shows a fit to a linear background (dashed) plus double-Gaussian signal function
with parameters σ1 = 7.1 ± 0.6 MeV, σ2/σ1 = 1.7 ± 0.1, and the fraction of the
second Gaussian 0.40 ± 0.16.

2. Analysis of D0 → K −π+

The Prompt and Dfb D0 components can be separated statisti-
cally by examining the impact parameter (IP) with respect to the
closest primary vertex, where IP is defined as the smallest distance
between the D0 reconstructed trajectory and the primary vertex.1

We use the D0 → K −π+ channel which has a branching fraction
of (3.89 ± 0.05)% [4].

The D0 selection criteria are the same regardless of the trigger
conditions. Both the kaon and pion candidates are associated with
Cherenkov photons in the RICH system. The photon angles with re-
spect to the track direction are examined and a likelihood formed
for each particle hypothesis [2]. Candidates are identified as kaons
or pions on the basis of this likelihood. We also require that the
momentum transverse to the beam direction, pT, of both the kaon
and pion be >300 MeV, and that their scalar sum is >1400 MeV.
(We work in units with c = 1.) Since real D0 mesons travel before
decaying, the kaon and pion tracks when followed backwards will
most often not point to the closest primary vertex. We require that
the χ2 formed by using the hypothesis that the impact parameter
is equal to zero, χ2

IP, be > 9 for each track. They also must be con-
sistent with coming from a common origin with vertex fit χ2 < 6.
Finally, the D0 candidate must be detached from the closest pri-
mary vertex. To implement this flight distance significance test we
form a χ2

FS based on the hypothesis that the flight distance be-
tween the primary and D0 vertices is zero, and require χ2

FS > 64.
This set of requirements on the D0 candidate is labeled “generic”.
All of these requirements were selected by comparing sidebands of
the invariant K −π+ mass distribution, representative of the back-
ground, with signal Monte Carlo simulation using PYTHIA 6.4 [5].

In order to ascertain the parameters characterizing the D0 mass
peak, a sample enriched in Prompt D0 mesons is selected. This
is achieved by including two additional requirements: (1) the co-
sine of the angle between the D0 candidate’s momentum direction
and the line from the K −π+ vertex to the primary vertex must
be >0.9999, and (2) the χ2

IP for the D0 must be less than 25.
The K −π+ invariant mass distribution after imposing all of these
requirements is shown in Fig. 1. The data are fit with a double-
Gaussian signal function, with both Gaussians having the same
mean, and a linear background. This signal shape is used in all
subsequent fits.

1 Primary vertices are found using an iterative procedure based on the closest
approach of tracks with each other. The resolutions of the resulting vertex positions
depend on the number of tracks and are of the order of 70 μm along the beam
direction and 10 μm in each transverse coordinate, for 40 tracks.
Fig. 2. Natural logarithm of the IP for D0 mesons, with the IP in units of mm (points
with error bars) for the 2.9 nb−1 microbias sample. Background has been subtracted
using mass sidebands. The dashed curve shows the result of the fit to the Prompt
component, the dotted line the Dfb component, and the histogram the sum of the
two.

Selecting K −π+ candidates within ±20 MeV of the fitted D0

mass peak and subtracting the background using invariant mass
sidebands 35–75 MeV from the peak on both sides, we display the
distribution of the natural logarithm of the D0 candidate’s IP in
Fig. 2. Both Prompt and Dfb components are visible. The IP for the
Prompt signal would be zero without the effects of resolution. The
Prompt shape is described by a bifurcated double-Gaussian func-
tion. The distribution for Dfb is widely spread as the finite b life-
time causes the D0 meson not to point to the primary vertex; we
use a Monte Carlo simulated shape. The histogram in Fig. 2 shows
the results of a fit to the two components, letting the parameters
of the Prompt shape float; this shape is used in systematic studies.

3. Evaluation of the b → D0 Xμ−ν yields

3.1. Using microbias data

To select the decay chain b → D0 Xμ−ν , D0 → K −π+ and
enrich our b sample, we match D0 candidates with tracks iden-
tified as muons, by ensuring that they penetrate the iron of the
MUON system and have minimum ionization in the calorimeters
[2]. Right-sign (RS) combinations have the sign of the charge of
the muon being the same as the charge of the kaon in the D0 de-
cay. Wrong-sign (WS) combinations have the signs of the charges
of the kaon and the muon being opposite; they are highly sup-
pressed in semileptonic b decay. WS events are useful to estimate
certain backgrounds.

To find b candidates we select D0 candidates using the generic
criteria specified above, and add a track that is identified as a
muon, has pT > 500 MeV, and has χ2

IP > 4. The D0 and muon
candidates are required to form a common vertex with χ2 < 5,
the D0μ− invariant mass must be between 3 and 5 GeV, and the
cosine of the angle of the b pseudo-direction, formed from the
D0 and muon vector momentum sum with respect to the line be-
tween the D0μ− vertex and the primary vertex, must be >0.998.
This angle cut is loose enough to have about 97% efficiency for
b → D0 Xμ−ν decays when taking into account the effect of the
missing neutrino momentum. We measure η using the line defined
by connecting the primary event vertex and the vertex formed by
the D0 and the μ− . Bins in η are chosen to be larger than the res-
olution to obviate the need for any cross-feed corrections. Events
are accepted in the interval 2 < η < 6.
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Fig. 3. Natural logarithm of the D0 IP in the 2.9 nb−1 microbias sample for (a) right-sign and (b) wrong-sign D0-muon candidate combinations. The dotted curves show the
D0 sideband backgrounds, the thin solid curves the Prompt yields, the dashed curve the Dfb signal, and the thick solid curves the totals.

Fig. 4. Natural logarithm of the D0 IP in the 12.2 nb−1 triggered sample for (a) right-sign and (b) wrong-sign D0-muon candidate combinations. The dotted curves show the
D0 sideband backgrounds, the thin solid curves the Prompt yields, the dashed curve the Dfb signal, and the thick solid curves the totals.
The IP distributions of both RS and WS candidates, requiring
that the K −π+ invariant mass is within 20 MeV of the D0 mass,
are shown in Fig. 3. We perform an unbinned extended maximum
likelihood fit to the two-dimensional distributions in K −π+ invari-
ant mass over a region extending ±100 MeV from the D0 mass
peak, and ln(IP/mm). This fitting procedure allows us directly to
determine the background shape from false combinations under
the D0 signal mass peak. The parameters of the Prompt IP distri-
bution are found by applying the same criteria as for Fig. 3, but
with the additional track failing the muon identification criteria.
The Monte Carlo simulated shape is used for the Dfb component.

The fit yields in the RS sample are 84.1 ± 10.4 Dfb events,
16.3±5.4 Prompt events, and 14.0±1.9 background. In the WS the
corresponding numbers are 0.0 ± 1.1 Dfb events, 14.9 ± 4.2 Prompt
events, and 10.1±1.5 background. The Prompt yields are consistent
between RS and WS as expected.

The contribution of tracks misidentified as muons (fakes) in
both the RS and WS samples is evaluated by counting the number
of tracks that satisfy all our criteria by forming a common vertex
with a D0 signal candidate, but do not satisfy our muon identi-
fication criteria. These tracks are categorized by their identity as
electrons using ECAL, or pions, kaons or protons using the RICH.
These samples are then multiplied by the relevant fake rates that
were estimated from simulation and checked with data. The re-
sulting ln(IP) distributions are examined, resulting in estimates of
2.2 ± 0.4 RS Dfb fakes and 1.1 ± 0.4 WS Dfb fakes. The B(b →
D0 Xτ−ν, τ− → μ−νν) of (0.36 ± 0.11)% is (5.3 ± 1.6)% of the
semimuonic decay [3]. However, the relative efficiency to detect
the resulting secondary muon is only 29% leading to a 1.5% sub-
traction. The lower efficiency is due to the lower secondary muon
momentum from τ decay and the finite τ lifetime that causes
some events to fail the vertex χ2 requirement. Other sources of
backgrounds from b-hadron decays as evaluated by Monte Carlo
simulation are small within our selection requirements, and pre-
dicted to be similar in size to the WS yields that are consistent
with zero.

3.2. Using muon triggered data

The trigger imposes a cut of pT > 1.3 GeV on muon candidates.
The IP distributions for both RS and WS combinations are shown in
Fig. 4. We find a total of 195.4 ± 14.9 RS Dfb, and 8.8 ± 5.1 WS Dfb
events. The Prompt contributions are determined to be 9.3 ± 4.8
RS with 5.3 ± 3.0 WS.

In order to extract the b cross-section from this data sample we
have to make an additional correction for the overall η-dependent
trigger efficiency. The Monte Carlo simulated efficiency is checked
using data by studying J/ψ → μ+μ− decays in microbias events
or those that triggered independently of the single muon trigger.
The data show a somewhat larger relative efficiency than the sim-
ulation, from 2% at low η rising to 11% at high η. We correct for
this factor and use the 2% error determined on the correction, to
account for its uncertainty, that we add to the statistical error of
this sample.

The IP distributions in each η bin in both trigger samples are
fit independently to the same functions as described above to ex-
tract the η-dependent event yields. The yields are listed in Table 1.
Muon fakes and the τ− contribution are subtracted in the same
manner as in the microbias sample. In the triggered sample the
hadron-to-muon fake rates are smaller as a result of the harder
muon pT cut imposed by the trigger of 1300 MeV rather than the
500 MeV used in analysing the microbias sample. The RS Dfb fakes
total 1.0 ± 0.2 and the WS Dfb fakes total 0.6 ± 0.2 events. A uni-
form 1.5% τ− subtraction is done in each η bin.
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Table 1
RS background subtracted event yields from data, and extracted cross-sections, compared with predictions from MCFM [7] and FONLL [8]. The systematic uncertainties in the
normalisation of 17.3% are not included. The uncertainties on the FONLL prediction are +45

−38%, while those for MCFM are +83
−44%.

Bin
Event yields σ(pp → Hb X) (μb)

Microbias Trig. Microbias Trig. Average MCFM FONLL

2 < η < 3 16.7 ± 4.5 48.8 ± 7.5 27.2 ± 7.3 29.7 ± 4.6 29.0 ± 3.9 37.8 28.9
3 < η < 4 50.1 ± 8.0 111.4 ± 11.0 28.8 ± 4.6 28.8 ± 2.8 28.8 ± 2.4 27.1 22.4
4 < η < 5 18.1 ± 5.0 30.2 ± 6.0 13.3 ± 3.7 11.7 ± 2.3 12.2 ± 2.0 16.7 13.1
5 < η < 6 4.7 ± 2.8 5.2 ± 2.2 6.5 ± 3.6 4.8 ± 2.5 5.3 ± 2.0 7.4 5.9

Sum 89.6 ± 10.8 195.6 ± 14.9 75.9 ± 10.0 75.0 ± 6.5 75.3 ± 5.4 89.0 70.2
4. Luminosity determination and systematic uncertainties

The luminosity was measured at specific periods during the
data taking using both Van der Meer scans and the ‘beam-profile’
method [6]. Two Van der Meer scans were performed in a single
fill. Analysis of these scans yielded consistent results for the abso-
lute luminosity scale with a precision of around 10%, dominated by
the uncertainty in the knowledge of the beam currents. In the sec-
ond approach, six separate periods of stable running were chosen,
and the beam-profiles measured using beam-gas and beam-beam
interactions. Using these results, correcting for crossing angle ef-
fects, and knowing the beam currents, we determine the luminos-
ity in each period following the analysis procedure described in
Ref. [6]. Consistent results were found for the absolute luminosity
scale in each period, with a precision of 10%, again dominated by
the beam current uncertainty. These results are in good agreement
with those of the Van der Meer analysis.

The knowledge of the absolute luminosity scale was used to
calibrate the number of VELO tracks reconstructed using only the
R sensors [2], which are found to have a stable response through-
out the data-taking period. The integrated luminosities of the runs
considered in this analysis were determined to be (2.85 ± 0.29)
and (12.2 ± 1.2) nb−1, respectively, for the microbias and triggered
samples.

The product of detector acceptance, tracking efficiencies and
our analysis cuts, as estimated by Monte Carlo simulation, is about
8% for b hadrons produced in the region 2 < η < 6. The systematic
uncertainty on the tracking efficiency is evaluated by comparing
the ratio of D0 → K −π+π+π− to D0 → K −π+ events in data to
the ratio in simulation. We find that the ratio of data to Monte
Carlo efficiencies is 1.00 ± 0.03 for tracks from D0 decay, and use
3% as the uncertainty per track. For the higher momentum muon
track 4% is used. The total tracking uncertainty then being fully
correlated is taken as 10%, where this uncertainty is dominated
by the size of the data sample. The kaon and pion RICH identifi-
cation efficiencies are determined in each η bin from a compari-
son of D0 → K −π+ yields evaluated both with and without kaon
identification. An error of 1.5% is set on the particle identification
efficiencies that is mostly due to the kaon, as the pion selection
criteria are much looser.

The efficiency of our muon selection criteria with respect to
that obtained from the Monte Carlo simulation is evaluated as a
function of momentum by detecting J/ψ → μ+μ− decays where
one muon is identified by passing our muon identification criteria
while the opposite-sign track must have been biased neither by
the muon trigger, nor the muon identification criteria. Using the
momentum weighted averages we find (data/MC) = (96.9+2.4

−2.5)%.
We correct for the difference and assign a 2.5% error to our muon
identification.

Since the b → D0 Xμ−ν detection efficiency changes linearly
with pT by about a factor of four from zero to 12 GeV and then
stays flat, the efficiency will not be estimated correctly if the
Monte Carlo generator does not accurately simulate the pT distri-
Table 2
Systematic uncertainties.

Source Error (%)

Luminosity 10.0
Tracking efficiency 10.0
B(b → D0 Xμ−ν) 5.1
Assumed branching fractions 4.4
LEP fragmentation fractions 4.2
Generated b pT distribution 3.0
Muon identification 2.5
χ2

IP cut 2.5
MC statistics 1.5
Prompt and Dfb shapes 1.4
B(D0 → K −π+) 1.3
D0μ− vertex χ2 cut 1.2
Kaon identification 1.2
Muon fakes 1.0
D0 mass cut 1.0
D0 vertex χ2 cut 0.6
D0 flight distance cut 0.4
Pion identification 0.3

Total 17.3%

bution. We investigate this possible efficiency change by examining
the difference between the measured and simulated summed pT
distribution of the D0 plus muon. They are consistent, and an
uncertainty of 3% is assigned as the systematic error from con-
siderations of how large a difference the data allow.

Because the detection efficiency is different for D0 mesons that
result from B− → D(∗)0μ−ν compared to those from other b de-
cays (such as B0 → D∗+μ−ν , B → D∗∗μ−ν , B0

s → D∗∗
s μ−ν , or

similarly from Λb), we include an uncertainty due to the preci-
sion of our knowledge of the branching fractions [4]. By varying
these rates within their errors, we find an uncertainty of 4.4%. As
discussed below, to translate our results on the yields into cross-
section measurements we assume the fractions for fragmentation
into the different b-hadron species as measured by LEP. Varying
these values within their errors gives a systematic uncertainty of
4.2%.

The efficiency of the various selection criteria with respect to
simulation has been evaluated by changing the cuts. The resulting
changes of the yield are small. The D0μ− vertex χ2 cut effi-
ciency was cross-checked comparing data and Monte Carlo using
Ξ− → Λπ− decays. All of the uncertainties considered are listed
in Table 2. The total systematic uncertainty due to all sources
added in quadrature is 17.3%.

5. Cross-sections and comparison with theory

The extracted cross-sections are listed in Table 1. The η-
dependent cross-section is shown in Fig. 5 for both data sets and
the average. The agreement between the two data sets is excellent.

We compare with two theories that predict b production cross-
sections as a function of η. MCFM [7] predicts the cross-section
for bb quark production in next to leading order (NLO) using
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Fig. 5. σ(pp → Hb X) as a function of η for the microbias (×) and triggered (•)
samples, shown displaced from the bin center and the average (+). The data are
shown as points with error bars, the MCFM prediction as a dashed line, and the
FONLL prediction as a thick solid line. The thin upper and lower lines indicate the
theoretical uncertainties on the FONLL prediction. The systematic uncertainties in
the data are not included.

the MSTW8NL parton distribution function (PDF). The FONLL [8]
prediction uses the CTEQ6.5 PDF, and improves the NLO result
with the resummation of pT logarithms up to next-to-leading or-
der. It also includes the b-quark fragmentation into hadrons. The
measured yields are averaged over b-flavoured and b-flavoured
hadrons, Hb , in η intervals:

σ(pp → Hb X)

= # of detected D0μ− and D0μ+ events

2L × efficiency × B(b → D0 Xμ−ν)B(D0 → K −π+)
. (1)

Averaging the cross-sections from both samples, and summing
over η, we measure

σ(pp → Hb X) = (75.3 ± 5.4 ± 13.0) μb (2)

in the interval 2 < η < 6. The first error is statistical, the sec-
ond systematic. The LEP fragmentation fractions are used for our
central values [9]. Use of these fractions provides internal consis-
tency to our results as B(b → D0 Xμ−ν) was also measured at
LEP. The measured value changes if the b-hadron fractions dif-
fer. Fractions have also been measured at the Tevatron, albeit
with large uncertainties [9]. The largest change with respect to
LEP is that the b-baryon percentage rises from (9.1 ± 1.5)% to
(21.4 ± 6.8)%. If the Tevatron fractions are used, our result changes
to (89.6 ± 6.4 ± 15.5) μb.

6. Conclusions

The cross-section to produce b-flavoured hadrons is measured
to be

σ(pp → Hb X) = (75.3 ± 5.4 ± 13.0) μb (3)

in the pseudorapidity interval 2 < η < 6 over the entire range of
pT assuming the LEP fractions for fragmentation into b-flavoured
hadrons. For extrapolation to the full η region, theories predict
factors of 3.73 (MCFM), and 3.61 (FONLL), while PYTHIA 6.4 gives
3.77. Using a factor of 3.77 for our extrapolation, we find a total bb
cross-section of

σ(pp → bbX) = (284 ± 20 ± 49) μb (4)

based on the LEP fragmentation results; using the Tevatron frag-
mentation fractions the result increases by 19%. The quoted sys-
tematic uncertainty does not include any contribution relating to
the extrapolation over the η range where LHCb has no sensitivity.
The production of b-flavoured hadrons has been measured in
pp collisions in 1.8 and 1.96 TeV collisions at the Tevatron. The
earlier measurements at 1.8 TeV appeared to be higher than the
NLO theoretical predictions [10]. More recent measurements by
the CDF Collaboration at 1.96 TeV are consistent with the NLO the-
ory [11]. The history has been reviewed by Mangano [12]. Here,
with a large energy increase to 7 TeV, we find that the measured
cross-section is consistent with theoretical predictions, both in nor-
malization and η-dependent shape.
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