23rd International Congress of Theoretical and Applied Mechanics, August, 19-24, 2012, Beijing, China

Interfacial cracks in bi-material solids: Stroh formalism and skew-symmetric weight functions

Lorenzo Morini, Enrico Radi,

Dipartimento di Scienze e Metodi dell' Ingegneria, Università di Modena e Reggio Emilia, Via Amendola 2, 42100, Reggio Emilia, Italy Alexander B. Movchan, Natalia V. Movchan, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K. August 7, 2012

Outline

Outline

- Interfacial cracks:
 Stroh formalism
- Riemann-Hilbert formulation
- Mirror traction-free problem
- Weight functions
- Decoupling plane and antiplane strain and stress
- Stress intensity factors evaluation
- Plane strain in
- orthotropic bimaterials I
- Plane strain in
- orthotropic bimaterials II
- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF
- Symmetric vs skew-symmetric SIF
- Conclusions
- References

- Interface cracks in anisotropic materials: Stroh formalism;
- Riemann-Hilbert formulation;
- Symmetric and skew-symmetric weight functions;
- Stress intensity factors evaluation;
- Application: point forces applied at crack faces;
- Conclusions;

Interfacial cracks: Stroh formalism

• Outline

Interfacial cracks: Stroh formalism

- Riemann-Hilbert
 formulation
- Mirror traction-free problem
- Weight functions
- Decoupling plane and antiplane strain and stress
- Stress intensity factors evaluation
- Plane strain in
- orthotropic bimaterials I

- Plane strain in
- orthotropic bimaterials II
- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF
- Symmetric vs
- skew-symmetric SIF
- Conclusions
- References

- Quasi-static semi-infinite plane interfacial crack with general loading acting on the faces;
- Displacements and tractions in terms of functions of complex

variable
$$z_j = x_1 + \mu_j x_2$$
:

$$\mathbf{u}_{1}(x_1, x_2) = 2\mathsf{Re}[\mathbf{Ag}(\mathbf{z})], \quad \mathcal{T}(x_1, x_2) = 2\mathsf{Re}[\mathbf{Bg}(\mathbf{z})],$$

Assuming Stroh representation:

$$[Q_{ik} + (R_{ik} + R_{ki})\mu_j + T_{ik}\mu_j^2]A_{kj} = 0$$

$$B_{ij} = (R_{ki} + \mu_j T_{ik})A_{kj}$$

Riemann-Hilbert formulation

Traction-free crack problem:

- Outline
- Interfacial cracks:
 Stroh formalism
- Riemann-Hilbert formulation
- Mirror traction-free problem
- Weight functions

• Decoupling plane and antiplane strain and stress

- Stress intensity factors evaluation
- Plane strain in
- orthotropic bimaterials I
- Plane strain in
- orthotropic bimaterials II
- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF
- Symmetric vs skew-symmetric SIF
- Conclusions
- References

-Free traction condition at $x_1 < 0$;

-Tractions and displacements continuity at $x_1 > 0$; -Boundary conditions at the interface yields to a R-H problem:

$$\mathbf{h}^{+}(x_{1}) + \overline{\mathbf{H}}^{-1}\mathbf{H}\mathbf{h}^{-}(x_{1}) = \mathcal{T}(x_{1}) \quad \text{for} \quad x_{1} > 0$$
$$\mathbf{h}^{+}(x_{1}) + \overline{\mathbf{H}}^{-1}\mathbf{H}\mathbf{h}^{-}(x_{1}) = 0 \quad \text{for} \quad x_{1} < 0$$

Where
$$\mathbf{H} = \mathbf{Y}^{(1)} + \overline{\mathbf{Y}}^{(2)}$$
 and $\mathbf{Y} = i\mathbf{A}\mathbf{B}^{-1}$;

Mirror traction-free problem

-At the interface:

 $\mathbf{w}^{+}(x_{1}) + \overline{\mathbf{H}}^{-1}\mathbf{H}\mathbf{w}^{-}(x_{1}) = 0 \quad \text{for} \quad x_{1} > 0$ $\mathbf{w}^{+}(x_{1}) + \overline{\mathbf{H}}^{-1}\mathbf{H}\mathbf{w}^{-}(x_{1}) = \mathbf{\Sigma}(x_{1}) \quad \text{for} \quad x_{1} < 0$

-U singular solutions of the mirror problem;

- Outline
- Interfacial cracks:
 Stroh formalism
- Riemann-Hilbert

formulation

Mirror traction-free problem

• Weight functions

 Decoupling plane and antiplane strain and stress

- Stress intensity factors evaluation
- Plane strain in

orthotropic bimaterials I

• Plane strain in

orthotropic bimaterials II

- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF
- Symmetric vs
- skew-symmetric SIF
- Conclusions
- References

Weight functions

Symmetric weight functions:

$$\begin{bmatrix} \mathbf{U} \end{bmatrix} (x_1) = \mathbf{U}(x_1, x_2 = 0^+) - \mathbf{U}(x_1, x_2 = 0^-)$$

• Skew-symmetric weight functions:

$$\langle \mathbf{U} \rangle(x_1) = \frac{1}{2} (\mathbf{U}(x_1, x_2 = 0^+) + \mathbf{U}(x_1, x_2 = 0^-))$$

- Mirror traction-free problem is solved in Fourier space;
- A Wiener-Hopf-like equation is derived:

$$\left| [\hat{\mathbf{U}}]^+(\xi) = -\frac{1}{|\xi|} \Big\{ \operatorname{Re} \mathbf{H} - i \operatorname{sign}(\xi) \operatorname{Im} \mathbf{H} \Big\} \hat{\boldsymbol{\Sigma}}^-(\xi), \right.$$

The skew-symmetric weight function become:

$$\langle \hat{\mathbf{U}} \rangle(\xi) = -\frac{1}{2|\xi|} \Big\{ \mathrm{Re}\mathbf{W} - i\operatorname{sign}(\xi)\operatorname{Im}\mathbf{W} \Big\} \hat{\boldsymbol{\Sigma}}^{-}(\xi), \quad \xi \in \mathrm{R}.$$

Where
$$\mathbf{H} = \mathbf{Y}^{(1)} + \overline{\mathbf{Y}}^{(2)}$$
 and $\mathbf{W} = \mathbf{Y}^{(1)} - \overline{\mathbf{Y}}^{(2)}$;

• Outline

Interfacial cracks:
 Stroh formalism

• Riemann-Hilbert formulation

Mirror traction-free
problem

• Weight functions

• Decoupling plane and antiplane strain and stress

• Stress intensity factors evaluation

• Plane strain in

orthotropic bimaterials I

Plane strain in

orthotropic bimaterials II

- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF

• Symmetric vs skew-symmetric SIF

• Antiplane strain: weight functions

• Antiplane strain: SIF

• Symmetric vs

skew-symmetric SIF

- Conclusions
- References

Decoupling plane and antiplane strain and stress

- Outline
- Interfacial cracks:
 Stroh formalism
- Riemann-Hilbert formulation
- Mirror traction-free problem
- Weight functions
- Decoupling plane and antiplane strain and stress
- Stress intensity factors evaluation
- Plane strain in
- orthotropic bimaterials I
- Plane strain in
- orthotropic bimaterials II
- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF
- Symmetric vs skew-symmetric SIF
- Conclusions
- References

• Materials where **A**, **B** and **Y** and then **H** and **W** have the following structure are considered:

$$\begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix}$$

- Uncoupled inplane and antiplane strain and stresses;
- Monoclinic and orthotropic materials have this property;
- Physical tractions:

$$\mathcal{T}(x_1) = \frac{1}{\sqrt{2\pi x_1}} \operatorname{Re}\left(K x_1^{i\varepsilon} \mathbf{w}\right) \Rightarrow \operatorname{Mode} I \text{ and } II$$

 $\mathcal{T}_3(x_1) = \frac{K_3}{\sqrt{2\pi x_1}} \Rightarrow \boxed{\text{Mode III}}$

- $K = K_I + iK_{II}$, and $\mathbf{w} = (w_1, w_2)$ is a complex vector;
- K_3 is a real scalar;
- Same behaviour for the singular solution $(\mathbf{\Sigma}, \mathbf{U})$;

Stress intensity factors evaluation

• Outline

Interfacial cracks:
 Stroh formalism

• Riemann-Hilbert formulation

• Mirror traction-free problem

• Weight functions

• Decoupling plane and antiplane strain and stress

• Stress intensity factors evaluation

- Plane strain in orthotropic bimaterials I
- Plane strain in

orthotropic bimaterials II

- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF

• Symmetric vs skew-symmetric SIF

- Antiplane strain: weight functions
- Antiplane strain: SIF

• Symmetric vs

skew-symmetric SIF

- Conclusions
- References

Betti integral's theorem relates $(\mathbf{u}, \mathcal{T}^{(+)})$ to $(\mathbf{U}, \boldsymbol{\Sigma}^{(-)})$:

• For plane strain:

$$\hat{\mathbf{U}}^{+T} \mathbf{\mathcal{R}} \hat{\mathbf{\mathcal{T}}}^{+} - \hat{\mathbf{\Sigma}}^{-T} \mathbf{\mathcal{R}} [\hat{\mathbf{u}}]^{-} = -[\hat{\mathbf{U}}]^{+T} \mathbf{\mathcal{R}} \langle \hat{\mathbf{p}} \rangle - \langle \hat{\mathbf{U}} \rangle^{T} \mathbf{\mathcal{R}} [\hat{\mathbf{p}}]$$

Where \mathcal{R} is the rotation matrix: $\mathcal{R} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

For antiplane strain:

$$\left| \left[\hat{U}_3 \right] \hat{\mathcal{T}}_3^+ - \hat{\Sigma}_3 \left[\hat{u}_3 \right]^- = - \left[\hat{U}_3 \right] \left\langle \hat{p}_3 \right\rangle - \left\langle \hat{U}_3 \right\rangle \left[\hat{p}_3 \right] \right]$$

Integral formulas for stress intensity factors:

$$\mathbf{K} = \frac{\mathbf{\mathcal{M}}_{1}^{-1}}{2\pi i} \int_{-\infty}^{\infty} \left\{ [\hat{\mathbf{U}}]^{+T}(\tau) \mathbf{\mathcal{R}} \langle \hat{\mathbf{p}} \rangle(\tau) + \langle \hat{\mathbf{U}} \rangle^{T}(\tau) \mathbf{\mathcal{R}}[\hat{\mathbf{p}}](\tau) \right\} d\tau$$

$$K_3 = \frac{1}{2\pi i \mathcal{K}_{33}} \int_{-\infty}^{\infty} \left\{ [\hat{U}_3]^+(\tau) \langle \hat{p}_3 \rangle(\tau) + \langle \hat{U}_3 \rangle(\tau) [\hat{p}_3](\tau) \right\} d\tau$$

Where
$$\mathbf{K} = (K, \overline{K})^T$$

Plane strain in orthotropic bimaterials I

- Outline
- Interfacial cracks:
 Stroh formalism
- Riemann-Hilbert formulation
- Mirror traction-free problem
- Weight functions
- Decoupling plane and antiplane strain and stress
- Stress intensity factors evaluation
- Plane strain in
- orthotropic bimaterials IPlane strain in
- Plane strain in orthotropic bimaterials II
- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF
- Symmetric vs
- skew-symmetric SIF
- Conclusions
- References

- 2D vector problem in orthotropic bimaterials;
- Symmetric bimaterial matrix:

$$\mathbf{H} = \begin{pmatrix} H_{11} & -i\beta\sqrt{H_{11}H_{22}} \\ i\beta\sqrt{H_{11}H_{22}} & H_{22} \end{pmatrix}$$

• Bimaterial parameters:

$$\begin{split} H_{11} &= [2n\lambda^{\frac{1}{4}} (\tilde{s}_{11}\tilde{s}_{22})^{\frac{1}{2}}]^{(1)} + [2n\lambda^{\frac{1}{4}} (\tilde{s}_{11}\tilde{s}_{22})^{\frac{1}{2}}]^{(2)}, \\ H_{22} &= [2n\lambda^{-\frac{1}{4}} (\tilde{s}_{11}\tilde{s}_{22})^{\frac{1}{2}}]^{(1)} + [2n\lambda^{-\frac{1}{4}} (\tilde{s}_{11}\tilde{s}_{22})^{\frac{1}{2}}]^{(2)}, \\ \beta\sqrt{H_{11}H_{22}} &= [((\tilde{s}_{11}\tilde{s}_{22})^{\frac{1}{2}} + \tilde{s}_{12})]^{(2)} - [((\tilde{s}_{11}\tilde{s}_{22})^{\frac{1}{2}} + \tilde{s}_{12})]^{(1)}, \\ \text{Where: } \lambda &= \frac{\tilde{s}_{11}}{\tilde{s}_{22}}, \quad \rho = \frac{1}{2} \frac{2\tilde{s}_{12} + \tilde{s}_{66}}{\sqrt{\tilde{s}_{11}\tilde{s}_{22}}}, \quad n = \left(\frac{1}{2}(1+\rho)\right)^{\frac{1}{2}}, \end{split}$$

• Generalized Dundurs parameter connected to oscillatory index:

$$\varepsilon = \frac{1}{2\pi} \ln\left(\frac{1-\beta}{1+\beta}\right)$$

• Homogeneous material $\Rightarrow \beta, \varepsilon = 0$, no oscillations;

Plane strain in orthotropic bimaterials II

• Outline

Interfacial cracks:
 Stroh formalism

• Riemann-Hilbert formulation

- Mirror traction-free problem
- Weight functions
- Decoupling plane and antiplane strain and stress
- Stress intensity factors evaluation
- Plane strain in
- orthotropic bimaterials I
- Plane strain in

orthotropic bimaterials II

- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF

- Symmetric vs skew-symmetric SIF
- Conclusions
- References

• Skew-symmetric bimaterial matrix:

$$\mathbf{W} = \mathbf{Y}^{(1)} - \overline{\mathbf{Y}}^{(2)} = \begin{pmatrix} \delta_1 H_{11} & i\gamma\sqrt{H_{11}H_{22}} \\ -i\gamma\sqrt{H_{11}H_{22}} & \delta_2 H_{22} \end{pmatrix}$$

$$\delta_{1} = \frac{\left[2n\lambda^{\frac{1}{4}}(\tilde{s}_{11}\tilde{s}_{22})^{\frac{1}{2}}\right]^{(1)} - \left[2n\lambda^{\frac{1}{4}}(\tilde{s}_{11}\tilde{s}_{22})^{\frac{1}{2}}\right]^{(2)}}{H_{11}},$$

$$\delta_{2} = \frac{\left[2n\lambda^{-\frac{1}{4}}(\tilde{s}_{11}\tilde{s}_{22})^{\frac{1}{2}}\right]^{(1)} - \left[2n\lambda^{-\frac{1}{4}}(\tilde{s}_{11}\tilde{s}_{22})^{\frac{1}{2}}\right]^{(2)}}{H_{22}},$$

$$\gamma = \frac{\left[\left((\tilde{s}_{11}\tilde{s}_{22})^{\frac{1}{2}} + \tilde{s}_{12}\right)\right]^{(1)} + \left[\left((\tilde{s}_{11}\tilde{s}_{22})^{\frac{1}{2}} + \tilde{s}_{12}\right)\right]^{(2)}}{\sqrt{H_{11}H_{22}}},$$

Homogeneous material $\Rightarrow \delta_1, \delta_2 = 0$, but $\gamma \neq 0$ then even in homogeneous case we have non-zero skew-symmetric weight functions;

Plane strain in orthotropic bimaterials: weight functions

• Fourier transform symmetric and skew-symmetric weight functions:

$$[\hat{\mathbf{U}}]^{+} = -\frac{\sqrt{H_{11}H_{22}}}{|\xi|} \begin{pmatrix} \sqrt{\frac{H_{11}}{H_{22}}} & i\beta \operatorname{sign}(\xi) \\ -i\beta \operatorname{sign}(\xi) & \sqrt{\frac{H_{22}}{H_{11}}} \end{pmatrix} \hat{\boldsymbol{\Sigma}}^{-}(\xi);$$

$$\begin{split} \langle \hat{\mathbf{U}} \rangle &= -\frac{\sqrt{H_{11}H_{22}}}{2|\xi|} \begin{pmatrix} \delta_1 \sqrt{\frac{H_{11}}{H_{22}}} & -i\gamma \mathrm{sign}(\xi) \\ +i\gamma \mathrm{sign}(\xi) & \delta_2 \sqrt{\frac{H_{22}}{H_{11}}} \end{pmatrix} \hat{\boldsymbol{\Sigma}}^-(\xi); \end{split}$$

- Inverting these expressions we get $[\mathbf{U}]$ and $\langle \mathbf{U} \rangle.$
- Since Mode I and II are coupled:

$$\mathbf{U} = \begin{pmatrix} U_1^1 & U_1^2 \\ U_2^1 & U_2^2 \end{pmatrix}, \mathbf{\Sigma} = \begin{pmatrix} \Sigma_1^1 & \Sigma_1^2 \\ \Sigma_2^1 & \Sigma_2^2 \end{pmatrix}$$

 $[\hat{\mathbf{U}}] \Rightarrow$ Wiener-Hopf equation;

• Outline

Interfacial cracks:
 Stroh formalism

• Riemann-Hilbert formulation

• Mirror traction-free problem

• Weight functions

• Decoupling plane and antiplane strain and stress

• Stress intensity factors evaluation

• Plane strain in

orthotropic bimaterials I

• Plane strain in

orthotropic bimaterials II

• Plane strain in orthotropic bimaterials: weight functions

• Asymmetric loading

• Plane strain: SIF

• Symmetric vs skew-symmetric SIF

- Antiplane strain: weight functions
- Antiplane strain: SIF

• Symmetric vs

skew-symmetric SIF

- Conclusions
- References

Asymmetric loading

Interfacial cracks:
 Stroh formalism

• Riemann-Hilbert formulation

• Mirror traction-free problem

• Weight functions

• Decoupling plane and antiplane strain and stress

• Stress intensity factors evaluation

Plane strain in

orthotropic bimaterials I

• Plane strain in

orthotropic bimaterials II

• Plane strain in orthotropic bimaterials: weight functions

• Asymmetric loading

- Plane strain: SIF
- Symmetric vs skew-symmetric SIF

Antiplane strain:

- weight functions
- Antiplane strain: SIF

• Symmetric vs skew-symmetric SIF

Conclusions

• References

Asymmetric point forces acting on the crack faces:

Anti-symmetric part

$$\langle p_2 \rangle(x_1) = -\frac{F}{2}\delta(x_1 + a) - \frac{F}{4}\delta(x_1 + a + b) - \frac{F}{4}\delta(x_1 + a - b) [p_2](x_1) = -F\delta(x_1 + a) + \frac{F}{2}\delta(x_1 + a + b) + \frac{F}{2}\delta(x_1 + a - b)$$

Symmetric and skew-symmetric components $\Rightarrow K = K^S + K^A$;

Plane strain: SIF

• Outline

• Interfacial cracks: Stroh formalism

• Riemann-Hilbert formulation

• Mirror traction-free problem

• Weight functions

• Decoupling plane and antiplane strain and stress

• Stress intensity factors evaluation

• Plane strain in

orthotropic bimaterials I

• Plane strain in

orthotropic bimaterials II

• Plane strain in orthotropic bimaterials: weight functions

• Asymmetric loading

• Plane strain: SIF

• Symmetric vs skew-symmetric SIF

• Antiplane strain: weight functions

• Antiplane strain: SIF

• Symmetric vs

skew-symmetric SIF

Conclusions

• References

Symmetric vs skew-symmetric SIF

Decoupling plane and

antiplane strain and stress

- Stress intensity factors evaluation
- Plane strain in
- orthotropic bimaterials I
- Plane strain in

orthotropic bimaterials II

• Plane strain in orthotropic bimaterials: weight functions

- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF

• Symmetric vs skew-symmetric SIF

- Conclusions
- References

- As $b/a \to 1$ increase, $\left| K_I^A \approx 40\% 50\% \right|$ of K_I^S ;
- Skew-symmetric part of the loading is not negligible and needs to be taken into account;

Antiplane strain: weight functions

- Outline
- Interfacial cracks:
 Stroh formalism
- Riemann-Hilbert formulation
- Mirror traction-free problem
- Weight functions
- Decoupling plane and antiplane strain and stress
- Stress intensity factors evaluation
- Plane strain in
- orthotropic bimaterials I
- Plane strain in
- orthotropic bimaterials II
- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF
- Symmetric vs
- skew-symmetric SIF
- Conclusions
- References

- Anisotropic materials with symmetry plane at $x_3 = 0$ are considered;
- Fourier transform of weight functions:

$$[\hat{U}_3](\xi) = -\frac{H_{33}}{|\xi|}\hat{\Sigma}_3(\xi); \quad \langle \hat{U}_3 \rangle(\xi) = \frac{\eta}{2}[\hat{U}_3](\xi);$$

Inverting we obtain:

$$[U_3](x_1) = \frac{H_{33}}{\sqrt{2\pi}} x_1^{\frac{1}{2}}; \quad \langle U_3 \rangle(x_1) = \frac{\eta}{2\sqrt{2\pi}} H_{33} x_1^{\frac{1}{2}};$$

$$H_{33} = \left[\sqrt{\tilde{s}_{44}\tilde{s}_{55} - \tilde{s}_{45}^2}\right]^{(1)} + \left[\sqrt{\tilde{s}_{44}\tilde{s}_{55} - \tilde{s}_{45}^2}\right]^{(2)};$$

$$\eta = \left(\left[\sqrt{\tilde{s}_{44}\tilde{s}_{55} - \tilde{s}_{45}^2}\right]^{(1)} - \left[\sqrt{\tilde{s}_{44}\tilde{s}_{55} - \tilde{s}_{45}^2}\right]^{(2)}\right)/H_{33}$$

Homogeneous material $\Rightarrow \eta = 0$, Mode III is symmetric;

Antiplane strain: SIF

- Outline
- Interfacial cracks:
 Stroh formalism
- Riemann-Hilbert formulation
- Mirror traction-free problem
- Weight functions
- Decoupling plane and antiplane strain and stress
- Stress intensity factors evaluation
- Plane strain in
- orthotropic bimaterials I
- Plane strain in
- orthotropic bimaterials II
- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF
- Symmetric vs skew-symmetric SIF
- Conclusions
- References

- Same loading configuration directed along x_3 : $\langle p_3 \rangle(x_1) = -\frac{F}{2}\delta(x_1+a) - \frac{F}{4}\delta(x_1+a+b) - \frac{F}{4}\delta(x_1+a-b)$ $[p_3](x_1) = -F\delta(x_1+a) + \frac{F}{2}\delta(x_1+a+b) + \frac{F}{2}\delta(x_1+a-b)$
- Homogeneous material $\Rightarrow \eta = 0$, K_3 is symmetric;

Symmetric vs skew-symmetric SIF

- Outline
- Interfacial cracks:
 Stroh formalism
- Riemann-Hilbert formulation
- Mirror traction-free problem
- Weight functions
- Decoupling plane and antiplane strain and stress
- Stress intensity factors evaluation
- Plane strain in
- orthotropic bimaterials I
- Plane strain in
- orthotropic bimaterials II
- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF
- Symmetric vs skew-symmetric SIF
- Conclusions
- References

- As for plane strain, K_3^A increase with b/a, expecially for $|\eta| > 1/2;$
- For b/a > 0.5, skew-symmetric part of the loading is not negligible;

Conclusions

- Outline
- Interfacial cracks:
 Stroh formalism
- Riemann-Hilbert formulation
- Mirror traction-free problem
- Weight functions
- Decoupling plane and antiplane strain and stress
- Stress intensity factors evaluation
- Plane strain in
- orthotropic bimaterials I
- Plane strain in
- orthotropic bimaterials II
- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF
- Symmetric vs skew-symmetric SIF
- Conclusions
- References

- A new general approach for deriving the weight functions for 2D interfacial cracks in anisotropic bimaterials has been developed;
- For perfect interface conditions, the new method avoid the use of Wiener-Hopf technique and the challenging factorization problem connected;
- Both symmetric and skew-symmetric weight functions can be derived by means of the new approach;
- Weight functions can be used for deriving singular integral formulation of interfacial cracks in anisotropic media;
- The proposed method can be applied for studying interfacial cracks problems in many materials:monoclinic, orthotropic, cubic, piezoelectrics, poroelastics, quasicrystals;

Furter developments:

- -Applications to steady state moving cracks and wavy cracks;
- -Analysis of inclusions effects of interface cracks propagation; -Extension to 3D case;

References

- Outline
- Interfacial cracks:
 Stroh formalism
- Riemann-Hilbert formulation
- Mirror traction-free problem
- Weight functions
- Decoupling plane and antiplane strain and stress
- Stress intensity factors evaluation
- Plane strain in
- orthotropic bimaterials I
- Plane strain in
- orthotropic bimaterials II
- Plane strain in orthotropic bimaterials: weight functions
- Asymmetric loading
- Plane strain: SIF
- Symmetric vs skew-symmetric SIF
- Antiplane strain: weight functions
- Antiplane strain: SIF
- Symmetric vs skew-symmetric SIF
- Conclusions
- References

- -[1] Y. Antipov, J. Mech. Phys. Solids, 57, 1051, (1999).
- -[2] J.P. Bercial-Velez et Al., J. Mech. Phys. Solids, 53, 1128, (2005).
- -[3] H.F. Bueckner, Int. J. Solids Struct., 23, 57, (1985).
- -[4] H.F. Bueckner, *Eng. Anal. Bound. Elem.*, **6**, 3, (1989).
- -[5] H. Gao Int. J. Fract., 56, 139, (1992).
- -[6] L. Ma and Y. Chen, Acta Mec. Sin., 20, 82, (2004).
- -[7] K.P. Meade and L.M. Keer, *J. Elasticity*, **14**, 3, (1984).
- -[8] L. Morini *et Al.*, *ArXiv*:**1202.5418v1**, (2012).
- -[9] L.Morini *et Al.*, *ArXiv:***1205.1321v1**, (2012).
- -[10] A. Piccolroaz et Al., J. Mech. Phys. Solids, 55, 1575, (2007).
- -[11] A. Piccolroaz et Al., J. Mech. Phys. Solids, 57, 1657, (2009).
- -[12] A. Piccolroaz et Al. Int. J. Fract., 166, 41, (2010).
- -[13] J.R. Willis and A.B. Movchan, *J. Mech. Phys. Solids*, **43**, 319, (1995).
- -[14] Z. Suo Proc. R. Soc. Lond. A, 427, 331, (1990).