This is the peer reviewd version of the followng article:

Laminar Flow Heat Transfer with Axial Conduction in a Circular Tube: a Finite Difference Solution / Dumas,
Antonio; Barozzi, Giovanni Sebastiano. - STAMPA. - 2:(1981), pp. 1111-1121. (Intervento presentato al
convegno Second International Conference "Numerical methods in thermal problems" tenutosi a Venice
nel 7-10 July 1981).

Pineridge Press
Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

25/09/2024 03:17

(Article begins on next page)




Numerical Methods in
Thermal Problems

Edited by:
R. W. Lewis and K. Morgan

Civil Engincering Department, University College of Swansea, Wales

B. A, Schrefler
Civil Engineering Department, University of Padova, ltaly

Proceedings of the Second International Conference held in

Venice, Italy
on7th-10th July, 1981

PINERIDGE PRESS

Swansea, U.K.






First Published, 1981 by
Pineridge Press Limited
91,West Cross Lane, West Cross, Swansea, U.K.
ISBN 0—-906674-12-3

Copyright © 1981 the Contributors named in the list of contents

British Library Cataloguing in Publication Data

Numerical methods in thermal problems
1.Heat - Transmission — Mathematics — Congresses
2. Numerical calculations — Congresses

|. Lewis, R. W. Il. Morgan, K.
I11.Schrefler, B.
536'.201511 QC320.2

ISBN 0-906674—12-3

Printed and bound in Great Britain by
Robert MaclLehose and Co. Lid.
Printers to the University of Glasgow



SECTION 9

COUPLED CONDUCTION
AND
CONVECTION



1M1

LAMINAR FLOW HEAT TRANSFER WITH AXIAL CONDUCTION IN A CIRCU-
LAR TUBE: A FINITE DIFFERENCE SOLUTION.

(1) (I1)

Antonio Dumas » Giovanni S. Barozzi
Istituto di Fisica Tecnica - Facolta di Ingegneria - Bologna
Italy

Summary

A finite difference technique is used for the evaluation
of the rate of heat transfer in the thermal entrance region of
ducts with axial conduction. The velocity profile is fully, de-
veloped and the pipe is assumed to extend from minus to plus
infinite. An uniform heat flux is imposed for z » 0, while the
wall temperature is kept uniform and equal to its -= value for
z <0. The results, given for Péclet numbers as low as Ly
show that axial conduction and heat losses from the unheated
section of the pipe markedly affect the temperature profile at
the inlet of the heated part of the pipe at low Pe, so that
the wall temperatures can result lower than the local mixed
mean temperatures immediately downstream the start of heating.
A new parameter is then proposed as an alternative to the u-
sual Nusselt number to describe the performance of this kind
of heat exchanger. )

1 INTRODUCTION

This paper deals with laminar heat transfer in completely
developed flow close to start of heating sections of cylindri-
cal pipes and can be added to numerous pubblications extending
the classical works of Graetz and Nusselt. It is well known
that in most of the engineering applications the heat conduc-
ted in flow direction is negligibile as compared to the heat
convected axially and conducted radially, but even that it is
not always possible to disregard the axial conduction with
fluids having a good conductivity.

(1) Researcher, (Il) Assistant Professor
Istituto di Fisica Tecnica, Facoltd di Inpegneria,
Viale Risorgimento, 2 - 40136 - Bologna - Ttaly.



1112

The boundary condition here considered is that of uniform
heating flux at the wall for z 2> O commonly designed as UHF
or () condition, while internal heat generation is disregar
ded and physical properties are held constant. Three fundamen
tal sets of boundary conditions for this thermal entrance prE
blem have been recognized in the well known Shah and London
source book |l|. They are specified in Fig. 1.
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Fig.l - Boundary conditions for UHF thermal entrance
problem with axial heat conduction.

Hennecke |2| has pointed out firstly,condition (a)is not rea
listic expecially when a fully developed velocity profile is
considered. The thermal conduction upstream cannot in any way
stopped at z = O and then the temperature profile at the ori-
gin will never be uniform. The conditions (b) and (c) seem
more useful for practical evaluation of the influence of the
axial conduction along the fluid. The case (c) has been con-
sidered in |2,3|, while the case (b) seems to have received
no attention up now in spite of the fact that it is at least
as realistic as case (¢) for real heat exchangers. This pro-
blem is tackled here using a finite difference method build
up to solve a wider class of axi-symmetrical problems in la-
minar heat transfer |4].

2 RELEVANT EQUATIONS

Assuming fully developed flow, costancy of the thermophy
sical properties and disregarding internal heat generation and
viscous dissipation, the steady-state energy equation may be
written:

2 pC
1 3 3T 3 p AT
rar(rar)+322 K Y3z (1)

where the Hagen-Poiseuille profile is assumed for u:

2
u =2 um(l - (r/rw) ) (2)
The following boundary conditions are imposed (Fig. 1-b):
z = - T = 'I'o (a)
z = 4o 9T _ _ 29 (b)

3z pC u r
pmw
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r=20 %%-= 0 (c)
(3)
r=r,, z<0 T=T (d)
- AT _ Qw
r=r,2z20 —=2 (e)
In dimensionless form the eqs. (1) and (2) become
2
1 19 a0 a 0 30
Pe ®Raw ®R5p *522 Vs (@
U=2 (1 - R (5)
and the boundary conditions
Z = —o 0 =20 (a)
_ 20 4
Z = +o ﬁ E (b)
30
R =20 R 0 (c) (6)
R=1, 2<0 0 =0 (d)
30
R I,Z)O a""i:l (e)
where T = To
0= — (7)
q rw/K
Z=1z/r ,R=r/r (8)
W W
U = u/u (9)
m

The temperature solutions of eqs. (4)+ (6) permit the computa
tion of the thermal quantities of practical interest. The bulk
fluid temperature is defined as

6, = ﬂ RU@deﬂ RUdR (10)

and the Nusselt number as

2
Nu = ﬁ (11)
w b

for Z » 0, and
200/ 3R)
Nu ETT (12)
W b

for Z <0
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3 NUMERICAL SOLUTION

A finite difference method was chosen to solve the eq.(4).
It is described in greater detail in |4| and shall be outli-
ned briefly here. As a first step the domain of integration
was bounded using the following variable transformations

=
"

- tgh k. |z|™1 , Z <0

1
(13)

3
]

tgh k, 272 , Z>0

with 0 < aps o, ¢1 so that -1 <n g¢+1.
kl,kz,al,a2 are constants whose values can be fixed suitably

to fit the physical problem studied. The results given after-
wards have been obtained for a, = a, = .375 and kl L k2 =

0.33 ¢ 1. A different variable transformation is used for the
radial coordinate, so we have

p = a R2 + bR (14)

and O <p < 1.
The equation (4) was then rewritten as follows

2 2
L(0) zA > 02*52—9 +c224p23 - c22-0 a5
3 p o} n In n
where do. 2 dzo 1 d
A =(E§) , B = (__7 * E aﬁ) »
* ? dR (16)
- (4" = (402 - P& dn

The operator L(8) is evaluated at the nodal points of the rec
tangular grid having a constant mesh size of An by 4p. In this
way, the (13) allows to get the points of the grid in the ori
ginal or physical domain are very close near the origin and,
departing from it,space out themselves more and more. This cha
racteristic becomes relevant in the case considered here, as
the Neumann condition (6b) is evaluated by a finite difference,
and must be imposed at a distance from the origin, large but
finite and not at n = 1 where O takes infinite values. With

the (14) the nodal points are closer near the wall, where @ is
expected b have higher gradients. As a general procedure, the
standard five point Laplace operator was used for second order
derivatives while first order derivatives were replaced with
central differences in the diffusive terms of (l5) and with
forward or backward differences according to the sign of G in
the convective terms, in order to increase the dominance of the
elements in the main diagonal of the coefficients matrix. In
the case considered here, C is always positive and backward
differences are used so that, solving eq. (15) at the nodal
point and with reference to Fig. 2, one has:
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2
]
o—— éﬁj" Fig.2 - Molecule of computation.
3 1
4
COOO + Clel + C202 + C3O3 + CAOA =0 (17)
where
_ dp 2 dn 2
C, = =258 /80)% + (32 /an)? + G/an)
2
c, = SI—E/ZAn + (gﬂ/An )2
1 2 dZ
dZ 7
- (dp 2 dpo  dp
¢, = (dR/Ap) + (—dRz + dR/R)/Z Ap (18)
_ cdn 2 _ d%n
C3 = (EE /4n) ] > /2 &n + G/an
_ .dp 2 _ dp dp
Ca = (dR/AO)x (dR2 + dR/R)/2 Ap

The boundary conditions (6a,6d) need no particular treatise,
the condition 6b has been written in finite different form,
while a parabolic interpolation was used to express condi-
tions (6c,be), preliminary assays had shown that this scheme
gives better results than the usual finite difference form of
the derivatives at the boundary. The coefficients matrix of
the algebraic linear equations obtained by the implicit fini-
te difference method above described is a band-matrix: in this
case only the elements of the main diagonal and those of a re
duced number of the off-diagonals can be non-zero, so that the
Gauss elimination method with partial pivoting can be profita
bly used. Bulk temperatures and thermal gradients at the wall
for Z <0, are obtained by a natural cubic spline. As the(13)
has discontinous derivatives at 7 = 0, a suitable form of eq.
(17) in the original axial coordinate 2 is employed at that
location.

4 PRELIMINARY TESTS

Tests had been performed solving the classical Graetz
problem disregarding axial conduction and with the UHF bounda
ry condition. The results of these preliminary assays and the
related comments have been reported extensively in lél.

The values of the constants k and a appearing in eq.(13) may
affect the precision of the results expecially in the proximi
ty of the origin. Values of k in the range .25 t 1. and a in
the range .375 : .5 have proven to give the better results in
terms of the Nusselt number.

Various grid sizes have been tryed and good solutions were
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obtained also with a 10 radial and 10 axial steps grid (n > 0)
Errors on the Nusselt number were less then 2.7 near to the
inlet (2* = 2.1075) using 20 x 30 and 20 x 40 grids, while the
asymptotic value of 4.364 was approached with accuracy better
then .47.

Z* = Z/2Pe is the usual dimensionless axial coordinate for the
thermal entrance problems.

5 RESULTS

Final computations have been performed with a 20 x 30
grid both in the positive and the negative part of the domain
and for Pe = 1,2,5,10,20,50.

The results are presented graphically in Figs..3 through 7.
Fig. 3 demonstrates the influence of axial conduction on the
. temperature profile at Z = 0.

It may be observed that the smaller is Pe the more the tempera
ture distribution deviates from the flat profile and the higher
becomes the value of the bulk temperature. Only for Pe »20 the
inlet temperature may be considered nearly uniform.

Some of these profile show a characteristic slope, Pe = 2 and
5 for instance, with two minima and a maximum. Fig. 4, depic-
ting the temperature profiles at various axial locations for
Pe = 1, points out that this behaviour is an effect of the ze
ro temperature condition at the wall for Z < O, wich implies
an heat flow from the fluid toward the boundary.

In fact the temperature profile takes on a negative concavity
upstream the inlet and, as the fluid reaches the start of hea
ting, a dip must be formed near to the wall, owing to the UHF
condition there imposed.

It is wocthy to observe that with this particular set of boun
dary conditions the bulk temperature may exceed the value at
the wall at the thermal inlet and just downward it. In fact

Op has no upper bound as in the UWT case, even if the tempera
ture profiles are similar in trend for Z* <0 (see f.e.|2,5]).
Figs. 5 and 6 depict the bulk temperature upstream and down-
stream the inlet respectively. They are strikingly affected by
axial conduction at least for Pe < 20.

From eq.(12) the values of Nu have been computed for 2* <0,
they are indicated on Fig. 5 for the lowest Pe. These curves
intersect at about Z* = 4.4 10-3 while the asymptotic value
is about 4.3,

On Fig. 6 the plot of 0, is seen to cross that of 0, for Pe=1
and 2. Negative values of the Nusselt number should then be
found, i.e. Nu, as defined by eq.(11), no longer gives indica-
tion of the rate of heat transfer.

The following definition of Nu has been assumed:

(19)

2
I e
W o w

The values of Nu have been plotted on Fig. 7.

Also on Fig. 7 is depicted the ratio



e

{5 (118

1.

__
@
o

Fig.3 - Temperature profiles at the entrance.
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“ig.4 - Temperature distribution for Pe=1l.
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Fig.7 - Nusselt number and performance ratio vs.Z (Z 0)

21 r =z .
€ = T = 83 (20)
umnrupCP(Tb—To) b
In absence of axial conduction one has € = 1.

At all Pe,e goes to 1 asymptotically, as expected, and faster
and faster as Pe jnpcreases.

6 CONCLUSIONS

The present results may be summarized as follows:

- axial conduction strongly affects the heat transfer in the
thermal inlet region for small Pe,

- the inlet temperature profile is always not uniform,

= the bulk temperature becomes very large at the inlet and ex-
ceeds the wall temperature for Pe <5,

- the usual definition of Nu seems to fall in defect at least
in the neighborwood of the start of heating, owing to the
particular trend of the temperature profiles upstream the
inlet. Different parameters should then be used for this set
of boundary conditions,

= for practical purposes axial conduction effects may be disre
garded only for Pe » 20.
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