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Automated Clustering of Virtual Machines

based on Correlation of Resource Usage
Claudia Canali, Riccardo Lancellotti

Abstract—The recent growth in demand for modern ap-
plications combined with the shift to the Cloud computing
paradigm have led to the establishment of large-scale cloud data
centers. The increasing size of these infrastructures represents
a major challenge in terms of monitoring and management of
the system resources. Available solutions typically consider every
Virtual Machine (VM) as a black box each with independent
characteristics, and face scalability issues by reducing the number
of monitored resource samples, considering in most cases only
average CPU usage sampled at a coarse time granularity. We
claim that scalability issues can be addressed by leveraging the
similarity between VMs in terms of resource usage patterns.
In this paper we propose an automated methodology to cluster
VMs depending on the usage of multiple resources, both system-
and network-related, assuming no knowledge of the services
executed on them. This is an innovative methodology that exploits
the correlation between the resource usage to cluster together
similar VMs. We evaluate the methodology through a case
study with data coming from an enterprise datacenter, and
we show that high performance may be achieved in automatic
VMs clustering. Furthermore, we estimate the reduction in the
amount of data collected, thus showing that our proposal may
simplify the monitoring requirements and help administrators to
take decisions on the resource management of cloud computing
datacenters.

Index Terms—Cloud computing, VM Clustering, k-means,
Correlation analysis

I. INTRODUCTION

C
LOUD computing has recently emerged as a new

paradigm to provide computing services through large-

size data centers where customers may run their applications

in a virtualized environment. Modern customer applications

consist of different software components (e.g., the tiers of a

multi-tier Web application) with complex and heterogeneous

resource demand behavior. In a virtualized data center, each

physical server is enabled to host multiple independent virtual

machines (VMs), and each VM runs one software component

of a customer application.

Due to the rapid increase in size and complexity of these in-

frastructures, the processes of monitoring and managing cloud

data centers are becoming challenging tasks. The monitoring

of such infrastructures is likely to present scalability issues due

to the amount of data to collect and store when a large number

of VMs are considered, each with several resources monitored

at high sampling frequency [1]. Also efficient management of
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VMs in a data center (for example, through periodic consoli-

dation of VMs) do not scale well due to the large amount of

data to analyze [2]. The scalability issue is particularly difficult

to tackle because providers of Infrastructure as a Service

(IaaS) cloud data centers do not have direct knowledge of the

application logic inside a software component, and can only

track OS-level resource usage on each VM [3], [4]. Hence,

most monitoring and management strategies in cloud data

centers assume that each VM is a single object whose behavior

is independent from the other VMs of the cloud infrastructure.

To reduce the complexity of VM monitoring and management

problem, the typical approach in IaaS cloud is to reduce the

problem size. To this aim, available solutions may rely on

low sampling frequency of VM status or reduce the number

of resources that are taken into account, typically considering

only CPU- or memory-related information [5], [6], [7], [8], [9],

[10]. However, these approaches are likely to suffer important

drawbacks: on one hand, reducing the sampling frequency

leads to low reactivity to changes in demand; on the other

hand, limiting the monitoring to CPU or memory resources

may not be sufficient to capture changes in the behavior of

VMs running I/O bound or network bound applications.

We argue that the scalability of monitoring and management

tasks in cloud infrastructures may be improved by leveraging

the similarity between VM behaviors, considering VMs not

as single objects but as members of a class composed by

objects that are running the same software component (e.g.,

Web server or DBMS). In particular, we refer to the scenario of

the so-called private cloud, where the virtualized infrastructure

is typically devoted to a reduced number of customers. When

a customer outsources part of his data center to this type of

cloud, the outsourcing tends to last for long-term periods, pos-

sibly in the order of months: customer VMs tend to not change

frequently the software component they are running and VMs

are acquired or released with relatively low frequency with

respect to public cloud scenarios [2], [3]. In this scenario, once

we have identified classes of similar VMs, we may select a few

representative VMs for each class and carry out monitoring

at a detailed level only on these representatives. Other VMs

can be monitored at a much coarser granularity level with the

goal to discover if their behavior is changing with respect to

the class they belong to. This coarse-grained approach can

easily reduce the amount of data collected by one order of

magnitude with respect to the fine-grained monitoring of every

single VM, improving the scalability of cloud monitoring and

management.

The main contribution of this paper is the proposal of an

automated, non parametric methodology to cluster together

similar VMs in an IaaS cloud data center on the basis of
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their resource usage. The proposed methodology exploits

the correlation between the usage of multiple resources to

determine which VMs are following the same behavioral

patterns. A main advantage of our methodology is that we

take into account multiple resources, differently from most of

the existing solutions that mainly consider CPU- or memory-

related information. We apply the proposed methodology to

a dataset coming from a real cloud environment with VMs

running Web servers and DBMS. We demonstrate that our

methodology can achieve an accuracy in clustering VMs that

is between 80% and 100% for every considered scenario, with

a reduction in the amount of collected data samples by a factor

of 15. Furthermore, we show that taking into account multiple

VM resources leads to better results than considering only

CPU or memory, as usually done in the state-of-the-art.

The remainder of this paper is organized as follows. Sec-

tion II discusses the related work. Section III describes the

proposed methodology for clustering similar VMs in a cloud

environment. Section IV presents the case study used to

evaluate our methodology, while Section V and describes the

results of our experiments. Section VI concludes the paper

with some final remarks.

II. RELATED WORK

The research activities related to the scalability issues in

cloud data centers concern two main topics that are strictly

correlated: resource management and infrastructure monitor-

ing. Our contribution is related to both areas: we support

advanced management solutions by providing a detailed vision

of the system status while reducing the amount of monitored

data; moreover, our methodology can easily be integrated in

most solutions for cloud datacenter monitoring to improve

their scalability.

Many existing studies propose resource management strate-

gies based on the usage of one or few resources compared

against thresholds. For example, the studies in [5] and [6]

propose solutions for consolidation of virtual machines based

on adaptive thresholds regarding the CPU utilization values.

Wood et al. [4] propose a reactive, rule-based approach for

virtual machine migration that defines threshold levels regard-

ing the usage of few specific physical server resources, such

as CPU-demand, memory allocation, and network bandwidth

usage. Kusic et al. [11] address the issue of virtual machine

consolidation through a sequential optimization approach; the

drawback is that the proposed model requires simulation-based

learning and the execution time grows very fast even with a

limited number of nodes. All these studies perform a per-node

analysis based on the usage of one or few resources; however,

these approaches are likely to suffer from scalability issues in

large scale distributed systems, such as IaaS cloud computing

data centers.

Few recent studies aim to reduce the dimensionality of

the resource management problem, such as [2], [12], [13].

The studies in [2], [12] exploit a statistical analysis based on

Singular Value Decomposition (SVD) to predict the workload

demand aggregated on different virtual machines to anticipate

overload conditions on physical servers and trigger virtual

machine migrations. Tan et al. [13] apply Principal Component

Analysis (PCA) to evaluate resource usage patterns across

different nodes. The proposal consists in placing on the same

physical server virtual machines with negatively correlated

resource patterns to reduce the usage variability on the servers.

All these studies have a different goal with respect to our

paper, because they address the specific problem of virtual

machine consolidation in cloud datacenters. Moreover, all

their solutions consider only one resource, that is the CPU

utilization of virtual machines, while we aim to support

management strategies that consider multiple resources, from

CPU to network and disks. An initial version of the proposed

methodology was presented in [14]. However, the current

paper is a clear step ahead with respect to the previous

study. Beside a more detailed theoretical definition of the

proposal, we provide a wider set of experimental analyses with

respect to [14]. In particular, we demonstrate the advantage

of considering multiple virtual machine metrics with respect

to the choice of limiting the monitoring to few widely used

metrics, such as CPU and memory, as done in existing

solutions for cloud data center management. Furthermore, we

discuss the scalability of the clustering step to demonstrate

that the proposed methodology can be applied to large-scale

data centers.

As regards the issue of monitoring large data centers, current

solutions can be divided into log aggregators and frameworks

for periodic collection of system status indicators. Among

log aggregators, often called also log collectors, the most

widespread solution is the Syslog daemon, with its recent

extension [15] that was explicitly designed to be used by cloud

entities or applications to log and trace activities occurring in

the cloud. Solutions such as Cacti 1 and Munin 2 are more

oriented towards the periodic collection of data. Cacti is an

aggregator of data transferred through the SNMP protocol,

while Munin is a monitoring system based on a proprietary

local agent interacting with a central data collector. Both these

solutions are typically oriented to medium to small data centers

because of their centralized architecture that limits the overall

scalability of the data collection process.

Ganglia 3 provides a significant advantage over the previous

solutions as it supports a hierarchical architecture of data

aggregators that can improve the scalability of data collec-

tion and monitoring process. As a result, Ganglia is widely

used to monitor large data centers [16], [17], even in cloud

infrastructures [18], by storing the behavior of nodes and

virtual machines by organizing the data in time series. Another

solution for scalable monitoring is proposed in [1], where

data analysis based on the map-reduce paradigm is distributed

over the levels of a hierarchical architecture to allow only

the most significant information to be processed at the root

nodes. However, all these solutions share the same limitation

of considering each monitored object (being it a VM or a

host) independent from the others. This approach fails to take

advantage from the similarities of objects sharing the same

1http://www.cacti.net/
2http://munin-monitoring.org/
3http://ganglia.sourceforge.net/
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Fig. 1. Methodology overview

behavior. On the other hand, a class-based monitoring system

may perform a fine-grained monitoring for only a subset of

objects that are representative of a class, while other members

of the same class can be monitored at a much more coarse-

grained level. We believe that integrating our solution into

existing hierarchical models for monitoring can significantly

improve the scalability of monitoring operations.

III. METHODOLOGY

In this section we describe the proposed methodology to

automatically cluster similar VMs in a cloud data center on the

basis of their resource usage information. For each customer

application, we aim to group together VMs which are running

the same software component (e.g., VMs belonging to the

same tier of a Web application), and are therefore showing

similar behaviors in term of resource usage.

We recall that our reference scenario is a private cloud

where we assume that the software components hosted on

each VM do not change for long periods of time (i.e., they

remain the same for months), and VMs are seldom acquired or

released. The process of clustering similar VMs and the related

collection of data about VM resource usage is carried out

periodically with a frequency that allows to cope with changes

in the VM behavior, for example once every several weeks.

Hence, the actual computational cost of the methodology is

not considered as critical, due to its low invocation frequency.

The proposed methodology consists of the following main

steps, that are outlined in Figure 1:

• Extraction of a quantitative model describing the VM

behavior;

• Clustering based on VM description to identify classes

of similar VMs.

Given a set of N VMs, the first step of the methodol-

ogy aims at representing the behavior of each VM n, with

n ∈ [1, N ]. We consider that capturing the inter-dependencies

among the usage of different resources, such as CPU uti-

lization, network throughput or I/O rate, can describe the

VM behavior during a period of time. For example, in Web

servers network usage is typically is related to the CPU

utilization [19], while for DBMS CPU utilization tends to

change together with storage activity [20]. We consider each

VM as described by a set of metrics, where each metric

m ∈ [1,M ] represents a resource of the VM.

Let (Xn
1
,Xn

2
, . . . ,Xn

M ) be a set of time series, where X
n
m

is the time series of the resource usage samples associated to

the metric m of VM n. The inter-dependencies between the

metrics of a VM n are measured using correlation values, that

can be represented as elements of the correlation matrix S
n,

where snm1,m2
= cor(Xn

m1
,Xn

m2
) is the correlation coefficient

between the time series Xn
m1

and X
n
m2

of metrics m1 and m2,

respectively.

We choose the Pearson product-moment correlation coeffi-

cient (PPMCC) to measure the degree of correlation between

pairs of metric time series, that is defined as:

snm1,m2
=

X
∑

i=1

(xn
m1

(i)− x̄n
m1

)(xn
m2

(i)− x̄n
m2

)

√

X
∑

i=1

(xn
m1

(i)− x̄n
m1

)2

√

X
∑

i=1

(xn
m2

(i)− x̄n
m2

)2

where X is the length of the metric time series (X = |Xn
m|,

∀m ∈ [1,M ], ∀n ∈ [1, N ]), while xn
m(i) and x̄n

m are the

i-th element and the average value of the time series X
n
m,

respectively.

The correlation matrix S
n describing the behavior of the

VM n is given as input to the second step of the methodology,

that aims to group similar VMs into classes. Starting from

the matrix S
n, we build a feature vector V

n that is fed into

a clustering algorithm. Clustering algorithms typically have

a computational complexity that grows with the size of the

feature vector, hence the performance of the clustering task

can be reduced by avoiding redundancies in the V
n vector.

To this aim, we exploit the symmetric nature of the matrix

S
n and the fact that the main diagonal is composed of “1” to

reduce the length of Vn. We create the feature vector using the

elements of the lower triangular sub-matrix: the feature vector

is defined as V
n = (sn

2,1, s
n
3,1, s

n
3,2, . . . , s

n
M,1, . . . , s

n
M,M−1

).
Figure 2 provides an example of creation of the feature

vector from the correlation matrix. In the provided example

M = 4.

The feature vector V
n is thus used by the clustering

algorithm as the coordinate of VM n in the feature space. We

define C as the vector resulting form the clustering operation.

The n-th element of vector C, cn, is the number of the cluster

to which VM n is assigned. Many algorithms are available for

clustering, starting from the simple and widespread k-means

to more complex kernel-based solutions, up to clustering

based on spectral analysis [21], [22]. In this proposal of a
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Fig. 2. Creation of feature vector

methodology to automatically cluster similar VMs, we adopt

one of the most popular solutions for clustering, that is the k-

means algorithm [21]. The k-means algorithm core is a loop

with two steps. The first step starts with a set of random

centroids and the set of VMs to cluster, each described as

a point in a multi-dimensional feature space (the coordinates

of a VM n in the feature space are represented by its feature

vector Vn). Each VM is assigned to the cluster of the centroid

that is closer to the VM position in the feature space. In the

second step, the centroids are updated so that the centroid

coordinates are the mean value of the coordinates of the VMs

belonging to the corresponding cluster. The loop ends when

the assignments of VMs to clusters no longer change.

It is worth to note that the k-means algorithm starts with

a random set of centroids. To ensure that the k-means result

is not affected by local minimums, we iterate the k-means

multiple times, then we compare the ratio between inter-cluster

distances (sum of squares of distances between elements

belonging to different clusters) and intra-cluster distances (sum

of squares of distances between elements of the same cluster).

Finally, we select the best solution across multiple k-means

runs as the solution that maximize inter-cluster distances and

minimize intra-cluster distances. The use of the popular k-

means clustering technique leaves unaddressed the problem

of automatically identify the number of clusters to be used to

classify the considered VMs. More advanced techniques, such

as techniques based on the Spectral Analysis, can be used

to this aim [23], but we leave the comparison of different

clustering algorithms as a future work.

Once the clustering is complete, we can select some rep-

resentative VMs for each class to the purpose of simplifying

the monitoring task. Clustering algorithms such as k-means

provide as additional output the coordinates of the centroids

for each identified class. In our scenario, the representative

VMs can be selected as the VMs closest to the centroids. The

choice to consider more than one representative for each class

is due to the possibility that a selected class representative

changes its behavior with respect to the class it belongs to.

When more than one representative is used, quorum-based

techniques can be exploited to identify a misbehaving VM

within the list of representatives, as suggested in the case of

byzantine fault tolerance [24].

IV. CASE STUDY

To evaluate the results of the proposed methodology, we

consider a case study based on a dataset coming from an

enterprise datacenter supporting one customer Web-based ap-

plication deployed according to a multi-tier architecture. The

data center is composed of 10 nodes on a Blade-based system

and exploits virtualization to support the Web application. The

nodes host 110 VMs that are divided between Web servers and

back-end servers (that are DBMS).

We collect detailed data about the resource usage of every

VM for different periods of time, ranging from 5 to 180 days.

The samples are collected with a frequency of 5 minutes.

For each VM we consider 11 metrics describing the usage of

different resources (such as CPU, memory, disk, and network).

The complete list of the metrics is provided in Table I along

with a short description.

TABLE I
VIRTUAL MACHINE METRICS

Metric Description

X1 SysCallRate Rate of system calls [req/sec]

X2 CPU CPU utilization [%]

X3 DiskAvl Available disk space [%]

X4 CacheMiss Cache miss [%]

X5 Memory Physical memory utilization [%]

X6 UserMem User-space memory utilization [%]

X7 SysMem System-space memory utilization [%]

X8 PgOutRate Rate of memory pages swap-out
[pages/sec]

X9 InPktRate Rate of network incoming packets
[pkts/sec]

X10 OutPktRate Rate of network outgoing packets
[pkts/sec]

X11 ActiveProc Number of active processes

It is worth to note that, to collect data about 11 VM

metrics with a frequency of 1 sample every 5 minutes, we

need to manage a volume of data in the order of 3.1 × 103

samples per day per VM. Considering a data center hosting

110 VMs, the total amount of data is in the order of 3.5×105

samples per day. After the clustering, we need to continue

monitoring every 5 minutes only a few representatives per

class, while the remaining VMs can be monitored with a

coarse time granularity, for example of 1 sample every few

hours. Assuming to select 3 representatives for each of the 2

classes, the amount of data to collect after clustering is reduced

to 1.9× 104 samples per day for the class representatives; for

the remaining 104 VMs, assuming to collect 1 sample every 6

hours for VM, the data collected are reduced to 4.5 × 103

samples per day. From this example we observe that our

proposal may reduce the amount of data collected by nearly

a factor of 15, from 3.5× 105 to 2.35× 104.

V. EXPERIMENTAL RESULTS

Let us now describe the application of the proposed method-

ology to the considered case study. The methodology has been

implemented using popular technologies for data management
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and analysis. Specifically, we use the R language 4 for the sta-

tistical analysis functions, Python 5 for the task of reading and

writing data, and as a wrapper for the R core. Finally, we use

Bourne shell 6 to invoke the main steps of the methodology.

These choices ensure that our proposal can be easily deployed

directly in currently available cloud infrastructures.

For each considered VM of the data set, we compute the cor-

relation between each pair of measured metrics. As discussed

in Section III, the resulting correlation matrix is used to build

a feature vector, which describes the VM behavior and is given

as input to the subsequent VM clustering step. As the k-means

algorithm starts each run with a set of randomly-generated

cluster centroids, we run the final clustering 103 times, then

we select the best solution C as described in Section III.

Finally, we compare the output of the clustering step with the

ground truth represented by the correct classification of VMs

(we consider that Web servers and DBMS servers are divided

into two different clusters) to evaluate the performance of the

methodology. Specifically, we aim to evaluate how many VMs

are correctly identified as Web and DBMS servers. To this

purpose, we consider the clustering purity [25], that is one

of the most popular measures for clustering evaluation. The

clustering purity is obtained by comparing the output of the

clustering algorithm C with the vector C
∗, which represents

the correct clustering solution. Purity is thus defined as:

purity =
|{cn : cn = cn∗, ∀n ∈ [1, N ]}|

|C|

where |{cn : cn = cn∗, ∀n ∈ [1, N ]}| is the number of VMs

correctly clustered and |C| = N is the number of VMs.

In our experiments, we evaluate the purity of the clustering

as a function of the length of the time series expressing

the metric measurements. Furthermore, we provide an insight

on the computational costs of the proposed methodology for

varying number of VMs and considered metrics.

A. Analysis for different time series length

The histogram in Figure 3 presents the clustering purity as

a function of the time series length. We show that, given a

very long time series, the clustering achieves perfect results,

meaning that every Web server and every DBMS is correctly

identified. On the other hand, the purity significantly decreases

as we reduce the amount of data used to create the correlation

matrix. In particular, when the time series is below 20 days,

the purity is below 0.7, reaching 0.65 for a time series of

only 5 days. From this first analysis, we observe that the

straightforward application of the methodology is likely to

provide poor results when short time series of measurements

are available. However, the capability of the methodology

to achieve acceptable performance for short time series is

particularly important for our scenario because it allows us

to reduce the period of time during which we need a fine-

grained monitoring of the VM resources. This motivates a

more in-depth analysis to understand how the methodology

performance can be improved for short time series of data.

4R project home page: http://www.r-project.org/
5Python home page: http://www.python.org/
6Bourne shell home page: http://www.gnu.org/software/bash/
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Fig. 3. Clustering purity for different time series length

B. Filtering of idle periods

Analyzing the reasons for the poor performance with time

series shorter than 20 days, we observe that some VMs present

a bimodal behavior, showing periods where the VM is mostly

idle mixed with periods where the VM is heavily utilized.

When we consider short intervals (e.g., 5 days), we notice

that some time series are composed almost exclusively by idle

periods. This is the reason for the poor performance of the

methodology: during the idle periods, the correlation between

the metrics describing the VM behavior is significantly re-

duced, thus leading to wrong clustering. To avoid this effect,

we consider a different approach, where we filter the time

series in order to extract a sequence of samples with no idle

periods in between. In Figure 4, we compare the results of our

filtered data against the time series of the same length used

previously.
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Fig. 4. Impact of idle data filtering on clustering purity

The histograms of Figure 4 clearly show the benefit derived

from the filtering of data. The clustering purity is increased

by 14% for every considered time series length. This results

is important because it shows that applying filtering to the re-

source measurements can increase the purity of the clustering
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up to values higher than 0.8 even for the shortest considered

time series.

C. Impact of metric reduction

We now aim to evaluate the impact on the methodology

performance of a reduction in the number of the metrics

considered in the description of VM behavior. The main reason

to perform this analysis is the comparison with common

state-of-the-art approaches for data center monitoring and

management [5], [6], [7], [8], which tend to consider only

few VM resources, typically CPU and memory. Specifically,

we evaluate if the metrics that are typically used in these

approaches are sufficient for our methodology to perform an

accurate clustering of VMs. We should also consider that

the choice to reduce the number of metrics fed into the

clustering algorithm could provide a twofold benefit: first,

it reduces the amount of information that is necessary to

collect before applying the methodology; second, it reduces

the computational cost of the clustering operation as it reduces

the size of the feature vectors |Vn| given as input to the final

clustering step.

In this experiment, we compare the clustering purity when

different sets of metrics are used to generate the feature vectors

for the clustering step. We compare the proposed methodology,

where all the 11 metrics are considered, with two alternatives:

the 2 Metrics case, where only CPU and memory (X2 and X5

metrics in Table I, respectively) are considered as in state-of-

the-art approaches, and the 4 Metrics case, where we include

also two network-related metrics measuring the rate of input

and output packets (X2, X5, X9, X10 in Table I). Figure 5

shows, for different time series lengths, the purity achievable

when considering every metric (All Metrics), only CPU and

memory (2 Metrics), and four metrics related to CPU, memory,

and network (4 Metrics). On the right side of the figure, we

report the results for the filtered time series, labeled as X-F,

where X represents the time series length expressed in number

of days.
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Fig. 5. Clustering purity for different sets of metrics

The histograms in Figure 5 show that reducing the amount

of metrics considered by the clustering is not a viable option

for VM clustering. Using only four metrics leads to a per-

formance degradation up to 25.6% and 17.6% for unfiltered

and filtered time series, respectively. Considering the case

where only two metrics are taken into account, the clustering

performance is even worse, especially because the penalty

in the achieved purity is more evident for the shortest time

series, with a decrease up to 21.5% and 33.8% for unfiltered

and filtered time series, respectively. Furthermore, when only

CPU and memory are considered the application of filtering

techniques to short metric time series does not lead to any

improvement of the clustering performance with respect to

the unfiltered case. This result confirms our claim that for

clustering VMs on the basis of similar behaviors we need

to consider multiple metrics, differently from common ap-

proaches for data center monitoring and management, where

only CPU and memory are typically considered.

D. Evaluation of methodology computational cost

As reducing the number of considered metrics is not a viable

option for VMs clustering, we aim to evaluate the computa-

tional cost of the proposed methodology as the number of VMs

grows in order to investigate the scalability of our approach.

To this purpose, we measure the execution times of the two

steps of the methodology on an Intel Xeon 2GHz node.

We observe that the time required for the first step of the

methodology, which basically computes the correlation matrix

describing the VM behavior, always remains in the order of

few seconds: it reaches 3 seconds for time series of 180 days

and 11 metrics, which is the most expensive case from the

computational point of view for this step. As regards the

second step of the methodology, we should consider that the

computational cost of the clustering phase depends on two

elements: the number of considered metrics, which determines

the length of the feature vectors given in input to the clustering

algorithm, and the number of VMs to cluster. Figure 6 shows

the execution times of the clustering step as a function of the

number of metrics and of VMs to cluster, considering filtered

metric time series of 15 days. In particular, we consider a

number of metrics ranging from 2 to 11 and a number of

VMs increasing from 10 to 110.
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Fig. 6. Clustering time for varying number of metrics and Vms



JCOMSS, VOL. XX, NO. XX, MONTH YEAR 7

The graph shows a linear growth of the time required for

clustering as the number of VMs increases, while the growth of

clustering time as a function of the number of metrics is super-

linear. This result is consistent with the theoretic computational

complexity of the k-means algorithm [26], which is in the

order O(ICNV ), where I is the number of iteration of the

clustering, C is the number of clusters, N is the number

of VMs, and V is the length of the feature vectors used to

describe each VM. The length of the feature vector V has

a quadratic dependence from the number of metrics M , thus

explaining the super-linear growth of the clustering time with

respect to M .

We also evaluate the purity achieved for varying metric and

VM number. We observe that the purity is mostly unaffected

by the number of VMs to cluster, ranging from 0.83 to 0.85
when all the metrics are considered. On the other hand, purity

is highly affected by the the number of considered metrics,

as discussed in Section V-C, with values ranging from 0.84

for the whole set of metrics to 0.57 for the case of only two

metrics. The proposed analysis of computational costs proves

that our methodology for clustering VMs on the basis of their

resource usage is scalable and does not pose performance issue

for the applicability even in the case of large data centers.

VI. CONCLUSIONS AND FUTURE WORK

Modern data centers supporting Infrastructure as a Service

cloud present major challenges in terms of scalability issues

for the monitoring and management of the system resources.

In this paper we propose a methodology for automatically

clustering VMs into classes sharing similar behavior with

the aim to improve the scalability of data center monitoring

and management. To capture the VM behavior, the proposed

methodology exploits the correlation among the usage of

multiple resources, ranging from CPU to storage and network.

The application of the proposed methodology to a real data

center hosting multi-tier Web applications shows that the

purity of VMs clustering ranges between 100% and 80% for

every considered scenario and can reduce the amount of data

collected by a factor of 15.

This study is just a first step towards the definition of

a general methodology for the automated classification of

VMs in cloud data centers. As a future work we plan to

apply our methodology to a more complex scenario where

the data center hosts not only two classes of VMs but several

different applications. In this scenario, the methodology will

be extended to automatically determine the number of classes

to identify during the clustering phase. Furthermore, we intend

to investigate the use of alternative techniques to determine the

similarity of VMs behavior.
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