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Automorphic chromatic index of generalized

Petersen graphs

G. Mazzuoccolo, B. Ruini ∗

Abstract

The automorphic A-chromatic index of a graph Γ is the minimum integer
m for which Γ has a proper edge-coloring with m colors which is preserved
by a given subgroup A of the full automorphism group of Γ. We compute
the automorphic A-chromatic index of each generalized Petersen graph
when A is the full automorphism group.
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1 Introduction

The generalized Petersen graph GP (n, k), with n and k being integers and 2 ≤
2k < n, is the simple cubic graph with vertex-set V (GP (n, k)) = {u0, u1, . . . ,
un−1, v0, v1, . . . , vn−1} and edge-set E(GP (n, k)) = {[ui, ui+1], [ui, vi], [vi, vi+k] :
i ∈ Z}. All subscripts are taken modulo n. The edges of GP (n, k) of types
[ui, ui+1], [ui, vi], and [vi, vi+k] are called outer edges, spokes, and inner edges
and they are denoted by Oi,Si and Ii, respectively; they form three n-sets that
we denote by O,S and I, respectively. The n-circuit generated by O is called
the outer rim. If d denotes the greatest common divisor of n and k, then I gen-
erates a subgraph which is the union of d pairwise-disjoint (n

d )-circuits, called
inner rims. The graph GP (5, 2) is the well known Petersen graph. The graph
GP (n, k) with n and k relatively prime was introduced by Coxeter in [5], while
the generalized Petersen graph GP (n, k) was first considered in [6]. The gen-
eralized Petersen graphs have been studied by several authors: Castagna and
Prins [3] completed the proof begun by Watkins in [8] that each generalized Pe-
tersen graph is 3-edge-colorable, except for the original Petersen graph; Alspach
[1] has determined all the Hamiltonian generalized Petersen graphs; the com-
plete classification of their full automorphism groups has been worked out in [6].
There exist chromatic parameters of a graph Γ that depend on the full automor-
phism group of Γ: the distinguishing number defined in [2], the distinguishing
chromatic number defined in [4] and the automorphic chromatic index recently
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defined in [7]. In [9], Weigand and Jacobson have studied and completely deter-
mined the distinguishing number and the distinguishing chromatic number of
each generalized Petersen graph. The aim of this paper is to do the same for the
automorphic chromatic index of GP (n, k). We are interested in proper edge-
colorings of the generalized Petersen graphs GP (n, k) which are preserved by
the full automorphism group A(n, k). In what follows, a coloring always means
a proper edge-coloring and a coloring preserved by an automorphism group A
is said to be an A-automorphic coloring. The automorphic A-chromatic index
of a graph Γ, denoted by χ′A, is the minimum integer m for which Γ has an
A-automorphic coloring with m colors (see [7]). We completely determine the
automorphic A(n, k)-chromatic index, χ′A(n,k), of GP (n, k). Our main theorem
is the following:

Theorem.

χ′A(n,k) =





3 if n is even, k is odd and k2 6≡ −1 mod n

5 if n is even, k is odd and k2 ≡ −1 mod n

min{dn,k, en,k + 2} otherwise,

where dn,k (en,k) is the smallest odd (even) integer dividing n and not dividing
k, if such an integer exists at all, and dn,k (en,k) = +∞ otherwise.

The previous theorem is obtained as a consequence of Theorem 2 in Section
4 and of Proposition 5 in Section 5.

2 Preliminaries

Since our parameter depends on the full automorphism group of the graph
considered, we need to recall the classification of the full automorphism group,
A(n, k), of GP (n, k) ([6]). Define the permutations ρ, δ, α on V (GP (n, k)) as
follows:

ρ(ui) = ui+1, ρ(vi) = vi+1,
δ(ui) = u−i, δ(vi) = v−i,
α(ui) = vki, α(vi) = uki.

with all subscripts taken modulo n. Let H =< ρ, δ >, then H ≤ A(n, k) (see
[8]), in particular H fixes S set-wise. The following theorem holds (see [6]):

Theorem 1. If (n, k) /∈ {(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5)} then

A(n, k) =

{
H if k2 6≡ ±1 mod n

< H,α > if k2 ≡ ±1 mod n.

The full automorphism groups of the cases not considered in the previous
proposition are described in details in the last section.

In this section we outline some properties of an H-automorphic coloring E of
GP (n, k) with color-set O∪I ∪S. Note that there always exists a coloring pre-
served by H: the one in which each edge has a different color. We indicate with
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O = {o0, o1, . . . , ol−1}, S = {s0, s1, . . . , st−1}, I = {i0, i1, . . . , im−1} the set of
colors used to color the outer edges, the spokes and the inner edges, respectively.
Note that the three sets are not necessarily distinct. The cardinalities of O,S,
and I are l, t and m.

Lemma 1. There exists an H-automorphic edge-coloring E of GP (n, k) if and
only if

(1) m | n and m - k;

(2) l | n and l > 1.

Proof. Let E be an H-automorphic coloring of GP (n, k). The action of
< ρ > is transitive on the edge sets O and I, so that (as the coloring is H-
automorphic) the colors are used cyclically on both these sets. Thus, we may
assume E(Oj) = oj , E(Ij) = ij (where the index j is in each case taken modulo
the size of the set being indexed). Thus, l,m each divide | < ρ > | = n. More-
over the adjacent edges I0, Ik and Oi, Oi+1 have different colors, then m does
not divide k and l > 1.
Vice versa consider the color-sets I and O with m, l such that m | n,m - k and
l | n, l > 1. We set E(Oj) = oj , E(Ij) = ij , index j taken modulo m and l,
respectively. Furthermore, we color all spokes with a unique color s0 /∈ O ∪ I.
One can easily check that this coloring is preserved by H. ¤

In what follows we highlight some basic properties of the action of δ on the
coloring E that will be useful in the next sections.

Lemma 2. Let E be an H-automorphic edge-coloring of GP (n, k). If l is even,
then no color of O is fixed by the automorphism δ. If l is odd, then just one
color of O is fixed by the automorphism δ.

Proof. The action of δ on O is given by δ(oj) = ol−j−1. We have δ(oj) = oj

if and only if j ≡l l − j − 1, that is 2j + 1 ≡l 0. If l is even then no colors
of O are fixed by the automorphism δ. If l is odd, since j ≤ l − 1 and then
2j + 1 ≤ 2l − 1, the unique color fixed by δ is o l−1

2
. ¤

Lemma 3. Let E be an H-automorphic edge-coloring of GP (n, k). If m is odd,
then just one color of I is fixed by the automorphism δ.
If m and k are both even, then exactly two colors of I are fixed by the automor-
phism δ.

Proof. The action of δ on I is given by δ(ij) = im−k−j . We have δ(ij) = ij
if and only if j ≡m m− k − j, that is 2j ≡m −k.
The color ij is fixed by δ if and only if one of the following holds

j ≡m
m− k

2
(1)

j ≡m −k

2
(2)
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If m is odd then exactly one of (1) and (2) has a solution, according to the fact
that k is odd or even respectively, in both cases we have a unique color fixed by
δ.
If m is even and k is even then both (1) and (2) have a solution, then we have
exactly two colors fixed by δ. ¤

In Section 3 we will use the previous lemmas to determine an H-automorphic
coloring of GP (n, k) with the minimum number of colors. In particular it will
be useful to establish in which cases one can use the same set of colors for inner
and outer edges: nevertheless in some of these cases it will be more convenient
to select O and I distinct in order to minimize the total number of colors.

3 χ′H of GP (n, k)

In this section we determine χ′H of GP (n, k). In the rest of the paper we make
use of dn,k and en,k defined in the Main Theorem.

Proposition 1. If n is odd, then χ′H = dn,k.

Proof. Let E be an H-automorphic coloring of GP (n, k). By Lemma 1 it
follows that m is odd, m ≥ dn,k and then χ′H ≥ dn,k. Now we furnish a dn,k-col-
oring preserved by H to prove the assertion. By Lemmas 2 and 3 we know that
δ fixes exactly one color both in O and I, then we consider m = l = s = dn,k

and I ≡ O ≡ S = {o0, . . . , ol−1}. We set E(Oj) = oj ,E(Ij) = ij with
ij = on+k+l−1

2 +j if k is odd and ij = o k+l−1
2 +j if k is even. Finally, we color

the spokes Sj with the color sj = o l−1
2 +j . It is easy to check that both ρ and δ

preserve the coloring and then the assertion follows. ¤

In Figure 1, we show an H-automorphic 5-coloring of GP (15, 3).

Proposition 2. If n is even and k is odd, then

χ′H = 3.

Proof. We furnish an H-automorphic 3-coloring of GP (n, k). Color Oj and
Ij either with the color o0 or with the color o1, according to the parity of j.
Observe that this is a proper coloring by the fact that n is even and k is odd.
Finally, color all spokes with the color s0 /∈ {o0, o1}.
It is straightforward to check that this coloring is preserved by H. ¤

Proposition 3. If n and k are even, then

χ′H = min{dn,k, en,k + 2}.

Proof. If en,k < +∞ there is an H-automorphic (en,k + 2)-coloring, say
E1, with colors O1 ∪ I1 ∪ S1, m1 = en,k l1 = 2, S1 = I1 = {i0, i1, . . . , im1−1},
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where sj = im1− k
2 +j (the color of the spoke Sj), and Oj colored with o0 or o1

according to the parity of j. If dn,k < +∞, there is an H-automorphic dn,k-
coloring, say E2, with colors O2 ∪ I2 ∪ S2, m2 = dn,k = l2 = s2, O2 = I2 = S2

where ij = o l2−1+k
2 +j

(the color of the inner edge Ij) and with sj = o l2−1
2 +j

(the
color of the spoke Sj).

Now let E be an H-automorphic coloring of GP (n, k). If m is even (hence
en,k < +∞), by Lemma 2 and 3 the two setsO and I are disjoint, then m ≥ en,k,
l ≥ 2; therefore χ′H ≥ en,k + 2. If m is odd (hence dn,k < +∞), by Lemma 1
m ≥ dn,k; hence χ′H ≥ dn,k. Therefore, the statement follows. ¤

Note that there exist values of n and k, which satisfy the hypothesis of the
previous proposition, such that both dn,k and en,k are finite (for instance if
n = 12 and k = 2 then en,k = 4 and dn,k = 3).

Figure 1: An H-automorphic 5-coloring of GP (15, 3)

4 General case

In this section we compute χ′A(n,k) with (n, k) /∈ {(4, 1), (5, 2), (8, 3), (10, 2),
(10, 3), (12, 5), (24, 5)}. Recall that H ≤ A(n, k) for each n and k.

Theorem 2. If (n, k) /∈ {(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5)} then

χ′A(n,k) =





3 if n is even k, is odd and k2 6≡ −1 mod n

5 if n is even k, is odd and k2 ≡ −1 mod n

min{dn,k, en,k + 2} otherwise.

Proof. If n is even, k is odd and k2 6≡ ±1 mod n, we get A(n, k) = H (see
Proposition 1); hence from Proposition 2 it follows χ′A(n,k) = χ′H = 3.

Let n be even, k odd and k2 ≡ 1 mod n. From Proposition 1 we have
A(n, k) =< H, α >. Let us consider the 3-coloring E of GP (n, k) of the proof of
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Proposition 2. It is preserved by H. Since α fixes the set of spokes, α(Oj) = Ikj ,
α(Ij) = Okj and j and kj have same parity, then α preserves the coloring E . It
follows that χ′A(n,k) = 3 in this case.

If n is even, k odd and k2 ≡ −1 mod n, from Proposition 1 the automorphic
group A(n, k) is < H,α >. Suppose there exists an H-automorphic 3-coloring
E of GP (n, k). Two colors o0, o1 are used to color the outer rim and a color
s0 /∈ {o0, o1} is used to color the spokes. Since α(O0) = I0 and α(I0) = O−1,
then the color of the edge I0 must be different from o0, o1, s0. Therefore there
not exist a 3-coloring of GP (n, k) preserved by < H, α >. Moreover, an edge-
coloring preserved by < H, α > must have at least two colors o0, o1 for the
outer rim and at least two other different colors i0, i1 for the inner rim. Hence,
a 4-coloring E of GP (n, k) preserved by < H, α > does not exist: the spokes
required at least a fifth different color.

Now we describe a 5-coloring of GP (n, k) preserved by A(n, k) with set-color
{o0, o1, i0, i1, s0}. Color Oj either with the color o0 or o1 according to the parity
of j. Color also Ij either with the color i0 or i1 according to the parity of j. Color
all the spokes with the same color s0. This coloring is preserved by A(n, k). In
particular α acts on the set of colors as the permutation (o0, i0, o1, i1). Therefore,
in this case χ′A(n,k) = 5.

Let n odd and k2 6≡ ±1 mod n or n even and k even. From Propositions 1
and 3 and Theorem 1 in Section 1 the statement follows (Note that if n is odd
then en,k = +∞).

If n is odd and k2 ≡ ±1 mod n, Proposition 1 states that χ′H = dn,k. The full
automorphism group is < H, α >. The minimal dn,k-coloring described in the
proof of Proposition 1 is preserved not only by H but also by α. In particular
α acts on the set of colors as following:

α(oj) =

{
o k+l−1

2 +kj if k is even

on+k+l−1
2 +kj if k is odd ,

and the color o l−1
2

is fixed by α. Therefore, in this case χ′A(n,k) = dn,k. Since
en,k = +∞ the statement follows. ¤

5 Exceptional cases

In this section we compute χ′A(n,k) with (n, k) ∈ {(4, 1), (5, 2), (8, 3), (10, 2),
(10, 3), (12, 5), (24, 5)}.

Define the permutation λ on V (GP (10, 2)) to have the following cycle struc-
ture λ = (u0, v2, v8)(u1, v4, u8)(u2, v6, u9)(u3, u6, v9)(u4, u7, v1)(u5, v7, v3). More-
over, for (n, k) ∈ {(4, 1), (8, 3), (12, 5), (24, 5)} let σ be the permutation de-
fined on V (GP (n, k)) as follows: σ(u4i) = u4i, σ(v4i) = u4i+1, σ(u4i+1) =
u4i−1, σ(u4i−1) = v4i, σ(u4i+2) = v4i−1, σ(v4i−1) = v4i+5, σ(v4i+1) = u4i−2,
σ(v4i+2) = v4i−6; finally, define the permutations µ and µ′ on V (GP (10, 3)) and
V (GP (5, 2)) to have the following cycle structures µ = (u2, v1)(u3, v4)(u7, v6)
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(u8, v9)(v2, v8) (v3, v7) and µ′ = (u2, v1)(u3, v4)(v2, v3), respectively. Then, the
following result holds (see [6]):

Proposition 4. A(10, 2) =< ρ, λ >, A(10, 3) =< ρ, µ >, A(5, 2) =< ρ, µ′ >
and A(n, k) =< ρ, δ, σ > for (n, k) ∈ {(4, 1), (8, 3), (12, 5), (24, 5)}.

Note that H ≤ A(n, k) holds also for all exceptional cases. The following
proposition complete the proof of the Main Theorem.

Proposition 5.

χ′A(n,k) =

{
3 if (n, k) ∈ {(4, 1), (8, 3), (12, 5), (24, 5)}
5 if (n, k) ∈ {(5, 2), (10, 2), (10, 3)}.

Proof. If (n, k) ∈ {(4, 1), (8, 3), (12, 5), (24, 5)} then χ′A(n,k) ≥ χ′(GP (n, k)) =
3. In Figure 2 an A(n, k)-automorphic 3-coloring of GP (n, k) is shown.

Figure 2: Automorphic 3-colorings of GP (4, 1), GP (8, 3), GP (12, 5) and
GP (24, 5).

If (n, k) ∈ {(5, 2), (10, 2)}, then H ≤ A(n, k) and χ′A(5,2) ≥ χ′H = d5,2 = 5
(see Proposition 1) and χ′A(10,2) ≥ χ′H = min{d10,2, e10,2 + 2} = 5 (see Propo-
sition 3). In Figure 3 an A(n, k)-automorphic 5-coloring of GP (n, k) is shown.

If (n, k) = (10, 3), then χ′A(10,3) ≥ 3, but the unique H-automorphic 3-
coloring of GP (10, 3) (see Proposition 2) is not preserved by the automorphism
µ of A(10, 3). Moreover, an H-automorphic 4-coloring of GP (10, 3) does not
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Figure 3: Automorphic 5-colorings of GP (5, 2), GP (10, 2) and GP (10, 3)

exist. An A(10, 3)-automorphic coloring of GP (10, 3) uses m colors to colors
the inner rim with m | 10 and m - 3 (see Lemma 1). Since d10,3 = 5, then
χ′A(10,3) ≥ 5. In Figure 3 an A(10, 3)-automorphic 5-coloring is shown. ¤
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