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A method for controlling one or more physical machines for
ensuring safety and liveness rules in a state based design of
the physical machines, includes the steps of associating at
least one logical state to at least one physical state that the
physical machine or assemblage of physical machines may
assume, providing state constraints for the logical states, and
checking that a physical state assumed by the physical
machines is associated to a logical state complying with the
state constraints.

munigation medium M

=
2
S 5
S| _| =3
AEIEEE
=]l w|l ©]| O
1| S|R|e
1R S| f ‘ R ‘ | R | ‘ T ‘ ck.e
3|85|85 g ¢l - ck - c¢N
(=)
A B C
N
- J/




Patent Application Publication Mar. 3,2011 Sheet1 of 17 US 2011/0054639 A1

@
™ <
N =
S| 5 o -
© iC
N
"_/'
e
5 o
(/2]
™
i)
-
c =l D
5l ol L

set
tout
Fig. 3



Patent Application Publication

Mar. 3,2011 Sheet2 of 17

US 2011/0054639 A1l

t3
stopping

stopped
Fig. 6

Fig. 8

E
(o]




US 2011/0054639 A1l

Mar. 3,2011 Sheet 3 of 17

Patent Application Publication

L1 B4

Buiddols €l

0|

4}

<vgl19s7 yuo'z| Wogl>

i noy)
paddois

<yUo'L| ‘v4oZl>

1oy}

paddois

Jajjonuoo

OO

uouLey
cl




Patent Application Publication Mar. 3,2011 Sheet4 of 17 US 2011/0054639 A1

= x
- -—
To) Q
3 p + n
A
A
<
N
=
Z c|( & 5
el wd |
<" [} [ o
S | 7)) b7
Ql
o |9 >
- 17} o
< A o
=
o
AP)
< - (ap)]
c N —
o. h v ) .
3z °) g g
o A
v
=
o N
P}
- c u=
£ | o S 5
o
< x
Vv
N
i
2 ./
= o
o = @
= o
Vv .
o

t1

J9||0JJu0D abe|jquasse



US 2011/0054639 A1l

Mar. 3,2011 Sheet5of 17

Patent Application Publication

ARE
GnoL U0 OO GnOL 400 U0 {anoL HOHOWO)
[OIeere) L OO0 . {0noLu0u0No)| m
(UIL'BO'UO'HO): + (UILUO'HOHO) (INOLBO'BO'UO) m
. : " " " (INOL'HO'HO'HO)
‘ Buiddols . ' ob ' :

¢

' ¢l
¢

IIIIIIIIIIIIIIIIIIII

<v1118871 yuogl ‘vioLI>

< uo' >

@



Patent Application Publication

t12.13

1214
G

tl2.t2

2.1

112.13

fl2.t2

R Goga> Y

*—>
2.1

qo0

Mar. 3,2011 Sheet 6 of 17

N
S,

\i
H
H
H
H
H
H
i
£y \‘
\ &
Mnacoccoonnt

“ Lo
= *

@)
O

—— [

Wi VLI

PyLR

2

SV LI

Oo—

>

>

' 112,14

L
G+
o/

R.R4s
4
ﬁRl
J

-
=

v

)
O

LR [y

oc O]

Py LR

erin

>

t2.t4

t12.t4

Fig. 15

US 2011/0054639 A1l

Fig. 16



US 2011/0054639 A1l

Mar. 3,2011 Sheet 7 of 17

Patent Application Publication

61 ‘O

—
‘ o
& “
F
I v

4

QIWWIEL 1SOd

N

gl ‘B4

Q3INNIYL 1SOd




Patent Application Publication Mar. 3, 2011 Sheet 8 of 17 US 2011/0054639 A1




US 2011/0054639 A1l

Mar. 3,2011 Sheet 9 of 17

Patent Application Publication

<,0b6°uLep>

paddoisTurew

|||||||||

"< 0B ureu>
paddoisue]

||||||||

|||||||||

g(d'yd)

|||||||||

<,06°su>

|||||||||

|||||||||

—_———

|||||||||

< 0B me>
paddoissu

||||||||

|||||||||




Patent Application Publication Mar. 3,2011 Sheet100f17  US 2011/0054639 A1l

Fig. 24

~—
—




Patent Application Publication Mar. 3,2011 Sheet110f17  US 2011/0054639 A1l

11
main

Fig. 25

stopping
t3 § E
farm

~—
—




PR

Patent Application Publication Mar. 3,2011 Sheet120f17  US 2011/0054639 A1l
>
T >
" O
g O - I~
O N
L
o
1
Qo
(@)
o MW g eV LR
o [C O— >
vV LI
VYL
N
Ve
> >'_ 2y L >'_\er LI1/< >'_
A o JK O j >
o / e
o —fg
< © < (D \
8 O S 5 ©
4 \ / A
= T i
o -
A \ G /
o
O
L LR v EVIR
=3 AN, L



Patent Application Publication Mar. 3,2011 Sheet130f17  US 2011/0054639 A1l

>.
®
L’
= 2
i O a (o))
[Q\|
3 e
. LL
oc
()
O
i grLn EVLR
N
UL
>
(923
TQ
-«
& O [50)
Al
_.(y "
T% -9
s LL
o
O

(BT FANN! EVILR
S——ar—0C—>>

Py LR



Patent Application Publication Mar. 3,2011 Sheet140f17  US 2011/0054639 A1l

p
prd
5
\_
e
™ N
@)
S
- S
L
4 Y,
5
N
/
5
N




Patent Application Publication Mar. 3,2011 Sheet150f17  US 2011/0054639 A1l

C2N
co[c

Fig. 31




US 2011/0054639 A1l

Mar. 3,2011 Sheet 16 of 17

Patent Application Publication

usuodwoo
ul aoe|d
soye] uonisue.

INES
uoloe

2 uauodwoo
0} payojedsip
[eubis D143

pawnsuoo aq
0} Apeal Juana

v

Jajjonuoo

INO

¢t

"Bi4

90

-

Jlajjonuoo

OWO

7

arepdn
JUBAS JUBLIND pue
91B1S JUd.LIN)

N Wnipaw uoneaiu

19]|01U02 0}

payojedsip

[reubis D101

uauodwod

\

(b

H

suodwoo

00

pajeisuab
[eubis D1

JET[[eF) 1V ]es)
ul aoe(d
s9ye] uolisuel)



Patent Application Publication

=
E
=2
5
@
=
c
=)
=
0
o
jos

Mar. 3,2011 Sheet 17 of 17

-

cation medium M

Q
X
)
- |5
x S
@ |o
wane Indino | o | « | o
eAalte | c | o | »
Vel (o | | »
uonisue] | = | N | @
=
[&]
/
- |5
¥4
w [
@ |o

US 2011/0054639 A1l

Fig. 34



US 2011/0054639 Al

METHOD FOR ENSURING SAFETY AND
LIVENESS RULES IN A STATE BASED
DESIGN

[0001] The present invention concerns a method which
works upon an abstract operational and structural model of
the control of one or more sets of state machines, named
assemblages, by means of other state machines, named con-
trollers. According to the model, such controllers may be
further grouped into assemblages themselves and be con-
trolled, on their turn, by other controllers, and so on.

[0002] The method is based on state constraints, which are
propositions about the global state of an assemblage and
enforces safety in a state based design, that is it checks that
such constraints are always verified, that is when the control-
ler is in a given state the controlled machines in the assem-
blage do not violate the constraint of such state. It moreover
shows how to ensure that a reactive behavior is correctly
implemented, that is when the assemblages moves, in an
uncontrollable way, to a global state which violates the con-
straint of the current state of the controller, then there is a
transition in the controller that is triggered and move the
control out of the violated state. The method enforces also
liveness in a state based design, by checking that any part of
the constraint of a given state may be reached by the global
state of the assemblage.

State machines

[0003] State machines as referred to in this invention are
used in the control of physical machines. Such physical enti-
ties have a behavior, which is a sequence of physical states. In
order to observe and control such a behavior, and therefore the
machine itself, each of the physical states of the machine is
converted into a logical state through a special device named
sensor.

[0004] Conversely, given a set of logical states, a physical
machine may be forced to move to a specific physical state
corresponding to a given logical state, through a special
device named actuator, that converts logical commands of a
state machine into physical commands acting on a physical
machine. It is also possible that a physical machine changes
its state spontaneously.

[0005] The transition among the logical states is referred to
as state transition. A transition among logical states in a
logical machine corresponds therefore to a transition among
physical states in the physical machine.

[0006] Sensor and actuators act therefore as an interface
between a physical device and a computer, which manipu-
lates indeed logical symbols. Since, as observed, there is a
direct and given correspondence among physical and logical
states, with related transitions among them, it is possible to
use the term state machine to denote both the symbolic behav-
ior of a device, as well as its physical counterpart.

[0007] State machines play a twofold role in a control
model, since they have to represent both the behavior to be
controlled as well as the behavior which exercises control
over other state machines. Additionally, the two roles have to
coexist in a single state machine, since controllers may be
further grouped into assemblages which are controlled on
their turn. The behavior of a state machine is represented by a
succession of states and state transitions, originating from an
initial state q,. At each time the state machine is found in a
state, named current state. State transitions take the state
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machine from one current state to another state and are trig-
gered, that is activated, by either:
[0008] adirect, although non mandatory, request coming
from a controller state machine;
[0009] a reaction to a specific state and behavior
observed in one or more controlled state machines;
[0010] A state machine consists of an interface, which
allows an external controller to observe and control the
behaviour of the machine and of an implementation, which
allows the machine acting as a controller to observe and
control, in turn, the behavior of other state machines through
their interfaces.

State Machine Interface

[0011]

[0012] a set of states, among which there is a distin-
guished state, named initial state;

[0013] asetoflogical symbols, named events, which are
partitioned into two sets, respectively named input and
output events;

[0014] a set of state transitions, which are directed
arrows linking states, each state transition comprising:

[0015] (a) an optional state transition trigger, named exter-
nal trigger, which consists of a symbol taken from the input
events of the machine;

[0016] (b) an optional output symbol, which consists of a
symbol taken from the output events of the machine;

A state machine interface consists of:

[0017] The interface of a state machine is therefore for-
mally given by:

[0018] an initial state qq,

[0019] a finite set of states Q={q,,q, - - -, Qas};

[0020] = finite set of state transitions T={t,,t, . .., t,,}

which is partitioned into two sets T, and T, which will
be referred to, respectively, as input and output transi-
tions;

[0021] a state transition function §:QxT—Q), such that
there is a transition t from state S to state T iff 3(S,t)=T;

[0022] afinite set of identifiers B={e ,e,, . . . ex}, named
events, which is partitioned into two sets E; and E,
which will be referred to as, respectively, of input and
output events;

[0023] a transition labelling function event:T—E. Out-
put transitions must be labelled by output events, and
input transitions must be labelled by input events.

[0024] It is useful to define the inverse of the transition
labelling function trigger ':E—2%, such that, for any e€E,
trigger~'(e) denotes the set of state transitions which are
labelled by event e,

[0025] Input transitions are controllable through the inter-
face, that is their activation can be requested by the controller.
In any case such a request is not mandatory, that is any
transition request by the controller may either succeed or not.
Output transitions are instead not controllable through the
interface: as such, they will also be called automatic state
transitions, in the sense that they happen with no intervention
from the controller. We distinguish finally a subfamily of
automatic state transitions, that is (automatic) instantaneous
state transition, which are taken, as their name suggests, as
soon as possible.
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[0026] By convention, state transitions departing from the
initial state q, have to be automatic instantaneous state tran-
sitions and do not have to be labelled by any output event.

State Machine Assemblages

[0027] Itisusefulto group state machines into assemblages
A={c,,C,, . ..Cy,}, which are finite set of state machines, each
univocally identified within the assemblage by the distinct
identifiers ¢ ,c,, . . . Cpp

[0028] State machines within an assemblage have to exhibit
a global coordinated behavior. Each state machine within an
assemblage makes visible only its interface, hiding other
details. We will refer to each of the ¢ £A as assemblage
component, or more simply to as component. Components
may be additionally partitioned into two classes: asynchro-
nous and synchronous devices. Such a distinction which will
have an effect on the behavior of the state machine during its
interaction with a controller. Synchrony issues are discussed
more thoroughly here below.

Global State of an Assemblage

[0029] Each state machine C, belonging to an assemblage A
will be found, at any time, in a state belonging to its own set
of'states q. €Q, named the current state of c,. The whole set of
state machines in the assemblage A will be collectively found,
atany time, in a global state =(q..,,q,,s - - - q,,,)» With . €Q,,
for each C,EA, named the current state of the assemblage A,
which in turn belongs to a set Q, of global states of the
assemblage A given by the cartesian product of the sets of
states of each device in A: Q,=Q, xQ_x. . .xQ,, .

Assemblage Commands

[0030] Since the behavior of an assemblage has to be con-
trolled and sensed as a whole by means of a controller, we will
refer to the state transitions and to the event symbols of its
component machines through unique identifiers within the
assemblage. We build such a set of assemblage global iden-
tifiers by prefixing with the assemblage component name c,
each event symbol eEE_ in the event set and each transition
name t belonging to the event set of T,. of c;. A univocally
identifiable event is written as c.e, where e belongs to the set
of events E_while a univocally identifiable state transition is
written as c.t, where t belongs to the set of transitions E_,
where c is the identifier of a state machine within the assem-
blage A.

[0031] Both the univocally identifiable event symbol c.e
and transition c.t will be referred to as assemblage com-
mands. Commands are additionally classified into the sets I,
and O, respectively of input and output commands depend-
ing whether the original event symbol or transition identifier
belongs to the set of, respectively, input or output events and
transitions, in the original component machine.

State Machine Implementation

[0032] The implementation details of a state machine con-
sist of additional features associated to state transitions:
[0033] anoptional state transition trigger, named internal
trigger, which consists of'a symbol taken from the output
events of a controlled machine;
[0034] an optional guard condition associated to a state
transition, consisting of a logical expressions involving
the states of the controlled machines;
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[0035] an optional list of input events, each belonging to
a controlled machine;

[0036] The implementation features of a state machine are
given formally by:

[0037] a transition labelling function trigger: T—I,
which associates input commands to state transitions.
Each input command associated to a transition, if any, is
named transition internal trigger;

[0038] a transition labelling function actions: T—0O%*
which associates a (possibly empty) list of output com-
mands to state transitions;

[0039] a transition labelling function guard: T—e,
which associates a state proposition called transition
condition (also transition guard or guard condition) to a
state transition. When there is no state proposition asso-
ciated to a state transition, it means that the state propo-
sition ANY , (which will be shown to be always true) is
by default associated to the state transition.

[0040] A state machine description may be succinctly writ-
ten by a tuple:

S= < 40,0, T,9,E,event, 1,0, trigger, actions, gua.rd)

[0041] An object of the present invention is to provide a
method for ensuring that an assemblage of state machines
does not reach a global configuration of states which may be
harmful.

[0042] According to the present invention there is provided
amethod for controlling a physical machine or an assemblage
of'physical machines for ensuring safety and liveness rules in
a state based design of said physical machine or assemblage
of'physical machines, characterized in that it comprises asso-
ciating at least one logical state to at least one physical state
said physical machine or assemblage of physical machines
may assume, providing state constraints for said logical
states, checking that a physical state assumed by said physical
machine or assemblage of physical machines is associated to
a logical state complying with said state constraints.

[0043] The invention will now be described, only by way of
non-limitative examples, with reference to the attached draw-
ings in which:

[0044] FIG. 1 shows an example a state machine, i.c a
device, having two states, states On and Off, for instance a
lamp, whose behavior can be totally controlled by means of
input transitions t2 and t3 and input events on and off;
[0045] FIG. 2 shows a semiautomatic device, for instance a
lamp like that of FIG. 1, whose behavior can be partially
controlled by means of an input transition t2 labelled by an
input event on. Transition t3 will be instead taken automati-
cally by the machine when in state On and the output event off
generated;

[0046] FIG. 3 shows another semiautomatic device, atimer,
which can be used in order to implement time intervals in the
behavior of more complex machines;

[0047] FIG. 4 shows another version of the device of FIG.
3, offering more input events and transitions;

[0048] FIGS. 5 and 6 show state machines that are two
versions of an implementation of a traffic light having the
canonical three lamps, Red, Green and Yellow;

[0049] FIG. 7 shows a different implementation of a traffic
light like that of FIGS. 5 and 6;

[0050] FIG. 8 shows an interface of a controller which
coordinates the assemblage of two traffic lights of the same
kind, whose interface has been shown in FIG. 6;
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[0051] FIG. 9 shows the interface of a controller which
coordinates the assemblage of two traffic lights of different
kind, whose interface has been shown in FIG. 6;

[0052] FIG. 10 shows a version of a traffic light controller
which implements a night mode flashing feature required by
the controller of FIG. 8;

[0053] FIG. 11, 12, 13 show the implementation of two
traffic light controllers given the same assemblage of state
machines;

[0054] FIG. 14 illustrates pre and post condition semantics
of each transition in the implementation of a traffic light
controller shown in FIG. 11;

[0055] FIGS. 15 and 16 illustrates feasible state transitions
associated to a fictional state proposition and the exit zones
associated to a same condition;

[0056] FIGS. 17, 18 and 19 illustrates a trimming process
applied to the fictional state proposition of FIGS. 15 and 16;
[0057] FIGS. 20 and 21 illustrate exit zones associated to a
state constraint of a state of a controller;

[0058] FIGS. 22 to 25 illustrate an implementation and
safety verification of cross road controllers;

[0059] FIGS. 26 to 29 illustrate four examples of assem-
blage propositions;

[0060] FIG. 30 illustrates a single level architecture involv-
ing an assemblage of component state machines;

[0061] FIG. 31 illustrates a multilevel architecture involv-
ing an assemblage of component and controller state
machines;

[0062] FIG.32illustrates a communication flow controller-
component;

[0063] FIG. 33 illustrates a communication flow compo-
nent-controller;

[0064] FIG. 34 illustrate a current state array and incoming
event computation.

[0065] FIGS. 1 to 10 illustrate examples of state machine
interfaces.
[0066] InFIGS.1to 10 the following graphical conventions

have been adopted: state machine interfaces are drawn as
directed graphs, where input transitions are drawn as arrows,
output automatic transitions are drawn as arrows which have
a small white circle in correspondence of the transition initial
state and an arrow in correspondence of the arrival state;
finally, instantaneous state transition are distinguished from
the other automatic transition by painting black the small
circle.

[0067] Input events are underlined. State transition identi-
fiers are drawn close to the beginning of the arrow, while input
and output events are drawn instead near the middle of the
arrow. The initial state q, is finally drawn as a black dot.
[0068] The meaning of boolean algebra operators and
expressions used in the rest of this description is explained at
paragraph “The boolean algebra of assemblage expressions™
and subsequent paragraphs here below.

[0069] FIGS.1to4 illustrate examples of state machines to
which the method according to the invention may be applied.
[0070] FIG. 1 shows an example a state machine, i.c a
device, having two states, states On and Off, for instance a
lamp, whose behavior can be totally controlled by means of
input transitions t2 and t3 and input events on and off.
[0071] FIG. 2 shows a semiautomatic device, for instance a
lamp like that of FIG. 1, whose behavior can be partially
controlled by means of an input transition t2 labelled by an
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input event on. Transition t3 will be instead taken automati-
cally by the machine when the machine is in state On and the
output event off is generated.

[0072] FIG. 3 shows another semiautomatic device, atimer,
which can be used in order to implement time intervals in the
behavior of more complex machines. A timer starts and rests
in the TOut state, until it is forced to move to the Tln state by
the controllable (input) transition t2 on the receipt of the input
event Set. It then remains in the TIn state for a definite and
fixed amount of time, that is until the automatic (output)
transition t3 is taken and the corresponding (output) event
tout is generated. A self loop is provided by the input transi-
tion t4 which starts and ends in the state TIn, meaning that,
when the timer is in state TIn and the input event is received
by the machine, then the measurement of the time interval is
restarted.

[0073] FIG. 4 shows another version of the device of FIG.
3, offering more input events and transitions, namely setT1
and setT2, each meaning that a different time interval has to
pass before the timer returns to the timeout state.

[0074] FIGS. 5 and 6 show state machines that are two
versions of an implementation of a traffic light having the
canonical three lamps, Red, Green and Yellow.

[0075] Referring to FIG. 5, each of said lamps, once lit,
corresponds to the three states of the state machine, respec-
tively state R, G and Y. Both of the two versions of the traffic
light controller have an input/controllable transition t2
labelled by the input event go and two automatic output
transitions, which happen automatically. Such a device is then
controlled by a go event, after that it cycles automatically (by
taking automatic transitions t3 and t4) through the other two
states until it returns to the R state.

[0076] FIG. 6 shows a more readable version of the traffic
light controller, which emits output events stopping and
stopped when the two automatic transitions are taken.
[0077] FIG. 7illustrate a different version of the traffic light
controller since it rests in the R state until a stop command is
issued through the input event stop.

[0078] FIG. 8 shows the interface of a controller which
coordinates the assemblage of two traffic lights of the same
kind, whose interface has been shown in FIG. 6.

[0079] The two traffic lights are placed on the crossing of
two roads, one running from North to South and the other
from East to West. The controller has four states: state NS,
which means that the road traffic is enabled from North to
South and vice versa, state W1, which means that traffic is
being stopped in such a road, state EW, which means that the
road traffic is enabled from East to West and vice versa and
finally state W2, which means, as in the other case, that traffic
is being stopped in such a road. The basic cycles happens
automatically. A different working mode, corresponding to
state Night (both the roads have yellow flashing light), may be
reached by issuing a command through the input event night
when the state machine is in any state of the basic cycle. From
the night mode it is possible to restart the basic cycle starting
from the NS state, by issuing a command through the input
event day.

[0080] FIG. 9 shows the interface of a controller which
coordinates the assemblage of two traffic lights of different
kind, whose interface has been shown in FIGS. 6 and 7, which
are placed, respectively, on a main road ad on secondary farm
road.

[0081] The controller starts on the Main state, meaning that
the traffic on the main road is enabled to flow and the farm
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road is stopped, and it rests on such state until a command is
issued to the controller through the event farm. The controller
then moves automatically to state W1, where the main road is
stopping and the farm road is still blocked, then to the state
Farm, where the traffic on the farm road is enabled to flow and
the main road is stopped. After some fixed time interval the
controller moves automatically to state VV1, where the farm
road is stopping and the main road is still blocked, and to the
Main state again, where it rests waiting for the next command.
[0082] FIG. 10 shows finally a version of the traffic light
controller which implements the night mode flashing feature
required by the previous cross road controller of FIG. 8. Such
a feature is realized by two additional states, N and B, respec-
tively having the yellow lamp lit and no lamp lit, which
alternate themselves in order to obtain the flashing mode. By
the input events night and day it is possible to switch from the
regular cycle mode to the flashing mode, and back.

[0083] FIGS. 11 to 13 shows the implementation of the two
controller state machines whose interface has been shown in
FIGS. 6 and 7 by using an assemblage of four synchronous
state machines, that is three lamp state machines, identified
by I1, 12 and I3 whose interface is depicted in FIG. 1 and the
timer state machine, identified by t, whose interface is
depicted in FIG. 4.

[0084] The following graphical conventions are adopted:
state machines are drawn as directed graphs and retain all the
details of the interface.

[0085] Guard conditions are enclosed in square brackets
and drawn near the beginning of the arrow, internal triggers
are underlined and command lists are enclosed in angular
brackets. The default state proposition guard ANY , is by
convention not drawn.

[0086] Actions in the action list which are directed towards
assemblage synchronous components are distinguished by
postponing an upper arrow to the command.

[0087] Finally, when it is shown, the controlled assemblage
is drawn by reporting the component state machines above a
dotted line, each identified by the assemblage identifier and
separated by a solid line (as in FIGS. 11 to 13).

State Transition Typologies

[0088] Internal and external features of state transitions can
not be arbitrarily mixed. The following rules must be fol-
lowed, dictated by the rationale that it is not possible to
specify both an internal trigger and an external trigger for a
single state transition.

[0089] State transitions can be thus classified into three
families:
[0090] internally triggerable state transitions, which have

an internal trigger, instantaneous state transitions, which have
no triggers at all and externally triggerable state transitions,
which have an external trigger; such a classification very
easily maps to the interface distinction amongst controllable
and automatic (non controllable) transitions:

[0091] Internally triggerable state transitions are those
which react to changes in the controlled machines. An
exampleis given in FIG. 11 by transitions t; and t, and in FIG.
12 by transition t,. Internally triggerable state transitions give
rise to automatic transition when the state machine is seen
through its interface.

[0092] Instantaneous state transitions are those which do
not specify any trigger, hence are taken as soon as their guard
condition becomes true. An example is given in FIGS. 11 and
12 by transition t,, which is triggered instantaneously and in
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any case it is guarded by the state proposition ANY , which is
always true and is not drawn by convention. They give rise to
automatic instantaneous transition when the state machine is
seen through its interface.

[0093] Externally triggerable state transitions are those
which react to commands sent to the interface of the
machines. An example is given in FIG. 11 by transition t, and
in FIG. 12 by transitions t, and t;.

[0094] By comparing the interface of the controller in FIG.
2 and its implementation in FIGS. 11 to 13 it is clear that a
state machine interface can be obtained from its implemen-
tation; vice versa it is possible to design the behavior by
specifying its interface and then specify its implementation
accordingly.

[0095] The method that is the object of the present inven-
tion will now be described in detail.

Verification Method

[0096] It is important to ensure that an assemblage of state
machines does not reach a global configuration of states
which it may be harmful.

[0097] The problem regards in general having full knowl-
edge about the configuration of states which an assemblage of
state machine can assume. According to the method of the
present invention it is possible to design a controller in such a
way that the controlled assemblage is always under such a
control. By this method it is possible both to ensure that an
assemblage of state machine does not reach a forbidden con-
figuration as well as that any allowed configuration of states
may be reached by the assemblage.

State Constraints

[0098] The method according to the invention works by
first associating to each state S of the controller an assemblage
state proposition, which is a formula which denotes the exact
set of states that the modeler wants to be assumed by the
assemblage when the controller is in a state S. Such a state
proposition is named state constraint and denoted by vinc(S).

State Transition Precondition Semantics

[0099] State transitions denote a set of global states in
which the assemblage must be found in order for the state
transition to be taken. Such set of states is denoted by a state
proposition which is called precondition semantics. It can be
computed according to the features of the transition and to the
different typologies in which it may be classified:

[0100] externally triggerable transition: let t be a transi-
tion originating from a state S of the controller con-
strained by state proposition vinC(S). Necessary condi-
tion for state transition t to be executed is that its guard
condition guard(t) holds, that is, the assemblage must be
in state q such that q satisfies guard(t). Since, at the same
time, the state transition t originates from S we have that
q has necessarily to be contained within the maximal set
of states the assemblage may assume when the control-
ler is in S, that is q satisfies vinC(S). The precondition
semantics pre(.) of state transition t, guarded by state
proposition c, is then given by the intersection of the
transition guard and of the state constraint of the state
from which the transition originates:

pre(f)=guard(z)Ovine(S)



US 2011/0054639 Al

[0101] internally triggerable transition: let t be a transi-
tion originating from a state S of the controller con-
strained by state proposition vinC(S) and triggered by
transition t in component ¢. As in the case above, nec-
essary condition for state transition t to be executed is
that its guard condition guard(t) holds, that is, the assem-
blage must be in state q such that q satisfies guard(t).
Since, at the same time, the state transition t originates
from S we have that q has necessarily to be contained
within the maximal set of states the assemblage may
assume when the controller is in S, that is q satisfies
vine(S) after either a triggering transition c.t happened
within the assemblage or the triggering command c.e is
received from the assemblage. Two cases then arise:

[0102] (a) In the former case we know that such a state
transition happened and therefore the state proposition vinc
(S) has been transformed into transf(vinc(S),c,t), where transf
(vine(S),c,t) is a state proposition p' which means “the assem-
blage was in a state p and a state transition t happened. The
precondition semantics pre(.) is therefore in this case given
by:

pre(?)=guard(z) Otransf(vine(S),c,z) 2)

[0103] (b) In the latter case we know that a command of the
kind c.e may have triggered any of the transitions which have
e as input trigger. We have therefore that the state proposition
vine(S) has been transformed into transfE(vinc(S),c.e),
where

wransfE(vine(S), c.e) = @transf(vinc(S), ¢, 1),
teT

T being the set of transitions that are triggerable by event e in
component ¢, in symbols T=trigger™ (e).

[0104] Theprecondition semantics pre(.) is therefore in this
case given by:

pre(?)=guard(z) OtransfE(vine(S),c.e) 3)

[0105] instantaneous transitions: as in the case of exter-
nally triggerable transitions, the precondition is then
given by the intersection of the transition guard and of
the state constraint of the state from which the transition
originates, hence the precondition semantics pre(.) is
given by Equation 1 above.

[0106] It may be observed that a state transition such that
pre(t)=NONE, will never be executed, hence it may be
removed from the state diagram. It may be further observed
that, necessary condition in order to have at most one external
transition chosen for execution on the receipt of a triggering
event e, if T(e,S)is the set of external transitions having S as
starting state and e as trigger, for any t, ,t,ET(e,S) than pre(t,)
and pre(t,) must be disjoint. We observe, finally, that, in order
to have exactly one external transition taken on the receipt of
e, the set of the transition preconditions in T(e,S) must form a
partition of C(S).

EXAMPLE 1
Calculation of Precondition Semantics
[0107] In this example the semantic precondition of the

transitions of the two versions the traffic light controller
implementation shown in FIGS. 11 and 12 are calculated.
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[0108] 1. First controller (FIG. 11):
[0109] A constraint is first assigned to each of the four
states of the controller:

(a) vinc(go)=ON_' QO 2OOff_BOTOut_*
(b) vinc(R)=0On_' OOF_ OO POTOUL?
(¢) vine(G)=Off L OO 2OOn PO TIn_*
(d) vine(1)=Off* ©On_ OO BOTIn.*

[0110] Wehavethatt, isaninstantaneous transition starting
from Q,: we have therefore to compute its precondition
according to Equation (1):

pre(t, )=vinc(go)Oguard (zo)
=0On_"'©Off 2OOfLOTOu.”

[0111] We have thatt, is an externally triggered transition,
hence its precondition is again calculated through Equation
(1):

pre(t,)=vinc(R)Oguard (£o)

=0On_"'QOff_ OO *OT0ut’

[0112] The next three transitions are instead internally trig-
gered by an assemblage state transition, hence, it is necessary
to calculate the transformation induced on the respective
starting state constraint by such transition. We have then that
their precondition semantics is therefore given by Equation

@

pre(ty)=transf(vine(G),t, tout) Oguard(z;)
=Off /! OO 2OOn_OTOut*

pre(t,)=transf(vine(¥),; tout) Oguard (¢3)
=Off_'©0n_~COff *OTOut_*

[0113] 2. Second controller (FIG. 12)

[0114] We assign first a constraint to each of the four states
of the controller:

(2) vine(go)=On' QOO0 2OTOut*
(b) vinc(R)=0On_" QO POOF_POTOuL
(¢) vine(G)=Off 1 OO POOn_ PO T0ut_?
(d) vine(¥)=Off /! ©On_POOff_POTn_*

[0115] We have then that t; is an instantaneous transition
starting from q,: we have therefore to compute its precondi-
tion according to Equation (1):

pre(z, )=vinc(go)Oguard(z,)
=0n_"'QOff_POOffAOTOUL’

[0116] We have that, in this case, both t, and t; are exter-
nally triggered transition, hence its precondition is again cal-
culated through Equation (1):

pre(t,)=vinc(R)Oguard(z,)
=0On_"'QOff_ OO *OT0ut’

pre(ty)=vine(G)Oguard(z,)=Off_ OOff
F2o0onPorou’

[0117] The last transition is instead internally triggered by
an assemblage state transition, hence, it is necessary to cal-
culate the transformation induced on the respective starting
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state constraint by such transition. We have then that its pre-
condition semantics is given by Equation (2):

pre(t,)=transf(vine(¥),; tout)Oguard(z;)
=Off."' ©On_OO0ff_*OT0ut’

State Transition Postcondition Semantics

[0118] Let tbe a transition in the controller having a list of
associated actions l=actions(t). When the transitions is
started, the assemblage is in any global state Q which satisfies
pre(t). When the state transition is executed, each action
directed towards a synchronous component of the assem-
blage modifies such a state q before the state transition ends
its execution. Let Q' be the state of the assemblage after the
last action is executed. When the state transition is terminated
the assemblage is therefore found in a global state q', which
satisfies the state proposition originating from the precondi-
tion pre(t) of the transition transformed by the occurrence of
the list of actions, let it be called postcondition semantics
post(,) then given by:

post(f)=transfL(pre(?),,) 4
[0119] Where I, is the sublist of 1 containing only actions
directed towards synchronous components and transfl.(¢,*) is

the function which transforms a state proposition according
to a list of actions, which will be defined later.

EXAMPLE 2
Calculation of Postcondition Semantics

[0120] Referring now to FIG. 14, we calculate the postcon-
dition semantics of the four transitions of the first traffic light
controller example of FIG. 11; in all cases we simply trans-
form the precondition semantics previously calculated in
Example 1 by the operator transfl. (+,*) given the list of
commands that label each transition. We have therefore that:
post (t,)=transfL(pre(t),{}) )=On_"*OOff OOff POTOut_*
where the precondition semantics is:  pre(t;)
=On_*QOff_2OOff POTOut_? In other words, since state
transition t, is labelled with no commands, post and precon-
dition semantics are the same.

post (lz)ztranst(pre(zz),< 1.0ff1,13.0n1,t.set71l

))-Oft /' OO 2O0n_BOTIn ¢
where pre(t,)=On_" QOff_2OO0ff ZOTOut_’
[0121] In other words the effect of the commands I1.0ff7,
13.0on? and t.SetT11%1s, respectively, to turn off lamp I1, to
turn on lamp I3 and to set the timer t1 to state Tin. Since the
three commands are synchronous, their effect is achieved
before the end of the controller transition. We calculate
accordingly the semantics of the last two state transitions:

post(l3):transt(pre(z3),< 3.0fft,12.on1,t.set T21

))-Oft /1 e0n_POO_ PO In_*

where pre(t,)=Off OOff 2O0n_POT0ut "
post(ty)=transfL(pre(z,), < Il.on?,2.0fff
> )=0n_' COff POOff_BOTout_! where

pre(l4):0ﬁ:1 LOOL OO0 2O T0ut_%.

State Transition Semantic Safety

[0122] A statetransition t ending in a state T of the control-
ler is said to be semantically safe iff:

post(?) < €4vine(?) ®
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EXAMPLE 3

[0123] It can be easily checked that in all four cases the
postcondition semantics for the four transitions of the
example presented in FIGS. 11 to 13 satisfy Equation above.
Hence the implementation of the state transitions is safe.

Feasible Transitions Associated to a State Proposition

[0124] The feasible transitions associated to a state propo-
sition C are the set of transitions that can be taken by the
component machines of the assemblage when the system is in
any global state that satisfies C and can be found by Algorithm
1 shown here below, which examines all the state transitions
in all the state machine of the assemblage, determines for
each of such transitions the respective starting state, then
checks the proposition which states that the assemblage is in
such starting state and at the same time in C: if such propo-
sition is true the transition is added to the set of feasible
transitions.

Algorithm 1: Feasible Transitions Algorithm

input: An assemblage of state machines A and an assemblage
proposition C
output: The set F of feasible state transition of A under C
foreach state machine ¢ in the assemblage do
foreach transition t in ¢ do
take the start state of the transition, say S;
form the state proposition p = “state machine ¢ is
in state S”;
compute the state proposition pOC;
if p©OC is not empty then
add transition t to the set F;
end
end
end

[0125] The set of feasible state transitions F can be further
partitioned into two sets, F, and F |, respectively of output and
input feasible transitions, by trivially examining whether they
belong, respectively, to the set T, or T, of output and input
transitions of the state machine to which they belong. F is
called also the set of feasible non controllable transitions
associated to C.

Notation

[0126] We write (X,Y) for the state proposition X_“'QY_2
which denotes a single global state, once the assemblage
having components C1 and C2 is known from the context.

EXAMPLE 4

[0127] LetCrossbe an assemblage composed by a pairofa
traffic light of the kind depicted in FIG. 1. Since each com-
ponent state machine has four states, the whole assemblage
may be found in sixteen states, which are depicted in FIGS. 15
and 16, where traffic light states are laid linearly, together
with the existing transitions, which can distinguished among
controllable or not controllable by the graphical symbology
used so far. Consider the totally fictional assemblage propo-
sition traffic light 1 is in state Green and traffic light 2 is not in
state q0 or traffic lights are both in state Red or both in state
Yellow, which can be written as C=(((G_"'O(~) q0_")@
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R_TOR_NDY_"OY_)). State proposition C can be
easily shown to be satisfied by any of the global states
depicted as round squares in FIG. 15, which also depicts the
transitions which start from such states, that is the set of
feasible transitions F associated to state proposition C. It can
be observed that in some cases a transition leads to a state
which still satisfies proposition C, while in other cases it does
not. For example two transitions can be taken when the
assemblage is in the global state (R, R), namely transition
t12.12 which leads to state (R, ), which does not belong to
proposition p and transition tI1.t2 which leads to state (G,R),
which belongs instead to proposition p.

Exit Zones

[0128] Given a state proposition C, there exist subproposi-
tions of C such that, when the assemblage is within one of
such subpropositions, there are non controllable transitions
such that, if and when taken, move the assemblage to a global
state such that C is no more satisfied. Such subpropositions
are called “exit subpropositions” and play an important role in
detecting when a state constraint may be violated. Given in
fact a proposition C, we are interested in finding all the
couples (p,t), where p is an exit subproposition and t is the non
controllable transition, named “exit transition”, that takes the
assemblage out of C when the assemblage is in p. Algorithm
2 shown here below finds all the exit zones associated to a
state proposition C given the set F,, of feasible non control-
lable transitions associated to C. The algorithm works by
forming, for each state transition t in F,, the state proposition
pre="state machine c is in the start state of t and satisfies C”,
then transform it according to the transition t. The resulting
state proposition, named post="state machine ¢ was in the
start state of t and satisfied C then state transition t happened”,
may be only partially outside of the original proposition C,
then it is trimmed, that is the state predicate
postTrimmed="the assemblage satisfies post and does not
satisfy C” is calculated. By reversing the direction of state
transition t and by transforming postTrimmed according to
such reversed transition, we found the proposition prel-
rimmed, which is the larger subproposition of pre such that:
the assemblage is in a global state which satisfies pre and the
happening of t brings the assemblage in a global state such
that C is no more satisfied.

Algorithm 2: Exit Zones Algorithm

input: The set F,of feasible non controllable state
transition of assemblage A under proposition C
output: The set Ez of exit zones associated to C
foreach transition t in the set F, do
take the start state of transition t, say S;
form the state proposition p = “state machine ¢ is in
state S”;
compute the state proposition pre = pOC;
transform the state proposition pre according to t, let
it be post;
compute state proposition postTrimmed = post&C;
if postTrimmed is not empty then
transform postTrimmed according to t reversed, let
it be preTrimmed;
add (preTrimmed, t) to the set Ez of exit zones of
the assemblage;
end
end
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Exit Zone Coverage

[0129] An exit zone (p,t,) associated to a state constraint C
of a state S of the controller is said to be covered iff there
exists in the controller a set of internally triggerable state
transition T ¢ such thateach transitiontin T has state S as start
state, is triggered by t, and the set of preconditions of the
transitions in T forms a partition of p.

State Safety

[0130] The method ensures that, if all the state transitions in
the controller are semantically safe and if each exit zone in the
diagram has been covered by a state transition set in the
controller then the following proposition holds:

Proposition 1 (State Safety Invariant)

[0131] When the controlleris in any state S, the assemblage
is in a state q which satisfies vinc(S).

[0132] The truth of the proposition above can be induc-
tively checked by ensuring that

[0133] it is true in the initial state of the controller;

[0134] itis true after any state transition in the controller;
we have in fact that if the controller moves from state R
to S by transition t, and if the state transition t is seman-
tically correct, then the Proposition 1 above is verified
since the postcondition semantics is included within the
constraint of T,

[0135] it is true after any state transition in the assem-
blage; In this case, either the state of the assemblage
after the transition still satisfies the constraint for the
state in the controller or it does not. In case it does not
satisfies such constraint for the state, the assemblage
transition necessarily originates from an exit subpropo-
sition of the constraint and the transition has therefore
been previously classified as an exit transition. Since any
exit zone has been covered by a state transition in the
controller, a state transition, say tk, will be triggered and
move the current state of the controller to another state of
the controller, say T. Since the postcondition of tk is such
that it satisfies the constraint of state T (observe that T
may also coincide with S), the state safety invariant
enounced above holds in this case also.

Atomic Proposition

[0136] Given any current state q of the assemblage A it is
possible to form the state proposition “assemblage A is in
global state q”. Such a state proposition is called the atomic
state proposition associated to global state q. When it is clear
form the context and no ambiguity arises, we use the notation
q to denote both the assemblage global state as well as the
associated atomic proposition.

Connected Atomic Propositions

[0137] Given two assemblage atomic state propositions p
and q, we say that they are connected iff there exist an assem-
blage transition, say c.t, such that p is transformed in q by c t,
in symbol gq=transt (p, c, t)

State Liveness

[0138] By state liveness we mean that:

[0139] 1. any state in the controller must be externally
reachable, that is there must be a path of state transitions from
the initial state q,, to any state S in the controller;
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[0140] 2. any atomic subproposition p of the state seman-
tics vine(S) of each externally reachable state S of the con-
troller must in turn be internally reachable by the global state
of the assemblage, that is, there must exists a path of assem-
blage state transitions from any subproposition of post(t) to
subproposition p, where t is one of the incoming transitions to
state S.

[0141] A state proposition is made of parts, that is sub-
propositions of the main state proposition, which are in gen-
eral not connected, that is it does not exist any assemblage
transition, either controllable or not, such that the assemblage
current state will move from a subproposition to another. That
means that some parts of the state constraint may not be
reachable, and therefore, even if the state constraint is not
violated, some expected properties may not be satisfied
(safety and liveness are indeed orthogonal concepts).

[0142] Inorderto ensure that any part of a state proposition
be reachable, control to each isolated part must be brought
directly by different state transition of the controller. It may be
observed that the state semantics vinc(S) may be viewed as a
set of directed graphs made of subproposition arranged as
Strongly Connected Components (SCC). Any atomic propo-
sition within a SCC is such that it is reachable by any other
atomic proposition within the same SCC. An atomic sub-
proposition is itself a SCC. SCCs may be connected, and in
such a case the resulting graph is acyclic, since if there were
a cycle among two directed SCCA, then any atomic proposi-
tion in the former will be reachable from atomic proposition
in the latter, and the two SCCs will become, by definition, a
single SCC. Any state proposition can be therefore seen as a
set of directed graphs having SCCs as nodes and assemblage
state transitions as arcs. Any direct graph has one or more
sources, that is elements of the digraph such that that there are
not incoming arcs. Starting from the sources of a graph it is
possible to reach any other part of the graph.

[0143] Inordertherefore to reach all the subpropositions of
a state proposition, like the semantics vinc(S) of a state S in
the controller, we have therefore to ensure that all the sources
in any graph associated to such a proposition be reachable by
at least one transition in the controller. As observed, each state
transition denotes a set of states, named transition postcondi-
tion semantics, such that the assemblage is in one of such
states when the transition is completed. Ift is a transition in
the controller such that its ending state is S, by checking that
post(t) < e s, for any source SCC s of any directed graphs
associated to vinc(S) ensures that all the subproposition of the
state semantics are reachable.

EXAMPLE 5

[0144] FIGS. 26 to 29 shows four state proposition (sup-
pose they represent the semantics vine(S) of state S in the
controller) in the same layout of FIGS. 15 and 16 In FIG. 26
the proposition forms a single Strongly Connected Compo-
nent (SCC). In this case, in order to ensure that any subpropo-
sition is reachable, we have simply to have one incoming
transition covers at least one of the atomic propositions which
make it such as, for example post(t)=(G, R) or post(t)=(G, G),
and so on. In FIG. 27 it is instead shown a condition which
consists of three different graphs, each one consisting of a
single node, which is at the same time, the source of the graph.
In order to ensure reachability, at least three transition {t,, t,,
t;} must reach T in case the condition is the semantics of such
a state, each one being such that post(t, )=(R, R), post(t, )=(G,
) and post(t;)=(Y, Y). The state proposition shown in FIG.
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28 gives rise to two graphs, each consisting of a single SCC
node. We show finally that the condition shown in FIG. 29
consists of a single graph with two nodes, where the SCC
formed by the atomic propositions (G, R), (G, G) and (G,Y)
is the source node.

State Proposition Boolean Algebra

[0145] It is possible to express logical propositions, that is
statements which are either true or false, with respect to the
state of a single device in the assemblage as well as proposi-
tions with respect to the global state of the entire assemblage.
The former kind of propositions will be named state machine
propositions, while the latter will be named assemblage state
propositions. They will be collectively referred to as state
propositions.

[0146] State machine and assemblage propositions are
employed both to formulate operational aspects of the con-
troller (like transition guard conditions) as well as to express
constraints on the global behavior of the assemblage during
the process of verification.

[0147] State machine and assemblage propositions will be
denoted by symbolic expressions, named state machine and
assemblage expressions.

EXAMPLE 6

[0148] Let“lightl” be atraffic light device, whose behavior
can be depicted by a state machine, which in turn can be found
in state “Red”, “Yellow” or “Green”. Then “light1 is in state
Red”, “lightl is in state Yellow” and “light1 is in state Green”
are state machine propositions, which are true or false
depending on the state of the device. Other state machine
propositions can be built from simpler ones by ordinary
propositional connectives, such as “light1 is in state Red and
(or) light1 is in state Green”, as well as “light1 is not in state
Red”.

EXAMPLE 7

[0149] Let “lightl” and “light2 ” be traffic light devices
within an assemblage, such that each traffic light may be in
state “Red”, “Yellow” or “Green”. Then “light1 is in state Red
and light2 is in state Green” is an example of an assemblage
state propositions, which is either true or false depending on
the global state of the assemblage. Observe that any state
machine proposition is also an assemblage proposition.
Assemblage state propositions can be built from simpler ones
by ordinary propositional connectives, such as “light1 is in
state Red and light2 is in state Green (or) light2 is in state
Red”.

Syntax

[0150] Let dEA be any state machine of the assemblage A.

We define basic state machine expressions the union of con-

stant and atomic state machine expressions, defined as:

[0151] 1. none_? and any_? are state machine expression,
which are said constant state machine expressions;

[0152] 2.If SEQ, is any state of the state machine d, then
S_“is a state machine expression, which is said atomic state
machine expression.

EXAMPLE 8

[0153] Let “light1” and “light2” be traffic light devices
within an assemblage, such that each traffic light may be in



US 2011/0054639 Al

state “Red”, “Yellow” or “Green”. Constant state machine
expression any_"#""' denotes the state proposition which
always holds, that is the proposition that “says” that device
“light1” may be found in state “Red”, “Yellow” or “Green”.
Conversely, constant device expression none_“#"*! denote the
state proposition which never holds. In other words, in “any
state of the world”, that is in any global state of the assem-
blage, the first proposition is always true and the latter is
always false.

EXAMPLE 9

[0154] Let “light1” and “light2” be the traffic light devices
within the assemblage of the example above. Then examples
of atomic expressions are Red & Red_"#"2 and
Green_"#"" which denote, respectively, the propositions
which hold, respectively, when traffic light “light1” is in state
“Red”, when traffic light “light2” is in state “Red” and when
traffic light “light1” is in state “Green”.

Assemblage expressions

[0155] Assemblage expressions are built starting from state
machine expressions and special assemblage constant
expressions, which are combined, by means of the operators
©, @ and - into more complex assemblage expressions.
[0156] 1. Any state machine expression is also an assem-
blage expressions;

[0157] 2. If A is a device assemblage, then ANY , and
NONE , are assemblage expressions, named assemblage con-
stant expressions;

[0158] 3.Ife,,e, are assemblage expressions, then e, Oe,,
e,Pe, and 7 e, are assemblage expressions, named assem-
blage compound expressions.

[0159] If e, and e, are expressions which denote state
propositions, then the compound state expression e,Oe,
denotes the conjunction of the two state propositions, that is
the state proposition that holds when both the original state
propositions hold.

[0160] In the same way, the expression e,De, denotes the
disjunction of the two state propositions, that is the state
proposition that holds when at least one of the original state
propositions holds.

[0161] Finally, if e is an expression which denotes a state
proposition, then the expression 7 e denotes correspondingly
the negation of the state proposition, that is the proposition
which does not hold iff the original proposition holds.

EXAMPLE 10

[0162] Lete, be the expression Red_“¢"*!. Then e, denotes
the state proposition which holds if and only if the device
“light1” within an assemblage is in the state “Red”. If, more-
over, e, is the expression Green_“#"”2, then the expression
Red_“#" OGreen_"#"" denotes the compound state proposi-
tion which holds iff device “lightl” is in state “Red” and
device “light2” is in state “Green”. Similarly the expression
Red_“#"'®Green_"#"* denotes the compound state proposi-
tion which holds iff either device “light1” is in state “Red” or
device “light2” is in state “Green”. Expression - Red_"&"*!
denotes finally the proposition which does not hold if device
“light1” is in state “Red” and holds in all the other states.

State Machine Expression Semantics

[0163] Given any state machine dEA, and given any state q
in which state machine d can be found, there exists a method
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for telling whether the proposition denoted by any device
expression holds or does not hold.

[0164] There exists indeed a boolean valued function [[e]]
poor Q> 1true false}, where Q, is the set of states of the
device, which assigns a truth value to any state machine
expression e depending on the current state of the state
machine. Such a boolean valued function represents the bool-
ean semantics of device expressions and is recursively
defined as follows:

[0165] For any device dEA and for any choice of states
quEQd:
[0166]

[[none_]]5,,,(¢)=true and [[any_]],,.,(q)=Talse for
any ¢€0,

[0167)]

[[S2 1 poodq) is true if and only if ¢=S.

1. Constant state machine expressions:

2. Atomic state machine expressions:

Assemblage Expression Semantics

[0168] The semantics of an assemblage expression e is a
boolean valued function [[e]],,,,Q—{true false}, where
Q, is the set of global states of the assemblage A, which
assigns a truth value to any assemblage expression e depend-
ing on the global states of the assemblage. Such a boolean
valued function represents the boolean semantics of state
machine expressions and is recursively defined as follows:
[0169] 1. if e is a state machine expression then: [[e]],,.,
(@=llellpo0q), Where q is the component of the global state
q corresponding to the state machine to which expression e is
referred to;

[0170] 2. [[S_°OT_(),00lq)=false if S=T, where ¢ is any
state machine of the assemblage;

[0171] 3. [[e,Ces]lpuor(@=11e1 1500 DA €:1pour() other-
wise;

[0172] 4. [[e,Bes11500 @[ o0l @V [e:11500(@)
[0173] V&, T1100(Q) is true iffl[e, 1] o(q) is false;

where 7 and A are the usual boolean logical operators.
[0174] It may be observed that:

[0175] the semantics of the assemblage expression con-
sisting of a single state machine expression (Rule 1)
corresponds to the value of the semantics for such device
expression, as defined in State machine expression
semantics; in other words the semantics of device
expressions is embedded within the semantics of assem-
blage expressions;

[0176] the semantics of the meet (©) operator between
two atomic device expressions is given by two different
cases.

[0177] Rule 2 applies in the case in which both oper-
ands are atomic state machine expressions and the two
expressions are referred to distinct states of the same
device: it should be noted that it evaluates to false
independently of the current state of the device, since
the device may be found, at any time, in state S or in
state T, but not in both;

[0178] Rule 3 applies in all the other cases.

The Boolean Algebra of Assemblage Expressions

[0179] It may be shown that the set of assemblage expres-
sions form a Boolean Algebra, and as such it enjoys the
related theorems. By analogy, we name the three operators as
their boolean algebra counterparts, that is conjunction (©),
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disjunction (&) and negation (™) . We define also a minimal
and a maximal element, respectively given by the expressions
NONE, and ANY .

Containment Relationship Among Assemblage Expressions

[0180] Wedefine a containment relationship among assem-
blage expressions, written as <e, as follows: for any
e,,e,E€,, we say that e, is contained within e,, in symbols e,
e, e, iff e,0e,=e, or iff e,Pe,=e,. We also define ad
equivalence relationship =, among state proposition by say-
ing thata=, biffaX, bandb=_ a.

[0181] Deciding whether any assemblage expression is
contained within any other any assemblage expression will be
carried out by:

[0182] 1.transformingboth assemblage expressions into
the equivalent normal form called sum of products (see
the paragraph Sum of products here below), consisting
of the join, named sum, of a finite number of special
assemblage expressions named products, consisting in
turn of a fixed number of device expressions;

[0183] 2. comparing such sums of products by the algo-
rithm in paragraph Containment among sums of prod-
ucts (see below), which in turn relies on the comparabil-
ity among products of paragraph Containment among
products (see below), which in turn relies on the com-
parability among device expressions of paragraph Con-
tainment among state machine expression (see below).

Transformation of a State Proposition Induced by a State
Transition

[0184] Given an assemblage state proposition p and given a
state transition tin a component ¢ of the assemblage A, we say
that p is transformed by transition t of component ¢ into the
state proposition p' after the only transition t happened, in
symbols p'=transf(p, c, t). State proposition p' is the state
proposition which means “the assemblage was in state p and
the state transition t happened”.

Transformation of a State Proposition Induced by an Assem-
blage Event

[0185] Given an assemblage state proposition p and given a
transition request e directed towards a component ¢ of the
assemblage, namely, a command c.e, we say that, once such a
transition request has been successfully accomplished, the
assemblage is found in a state transfE (p, c.e). In general there
are different transitions which are labelled by the same input
event e in component ¢; let T be the set of such transitions. We
define:

wransfE(p, c.e) = @tmnsf(p, 5]

teT

where T is the set of transitions which are triggerable by event
e in component ¢, in symbols T=trigger™(e).

Transformation of a State Proposition Induced by a List of
Actions

[0186] Letlbealistofactions,let{), according to the usual
notation be the empty list, lethead(1) be the first element of the
list and let tail(l) be the list containing the remaining elements
when head(l) is removed from 1. Then the transformation
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induced by | on an assemblage state proposition p is given by
transfl(p,l), which is computed recursively as follows:

[0187] 1.if1=(),i.e, 1is empty, then transfL(p,{) )=p;
[0188] 2.ifhead(l)=c.e,i.e, the trigger is an assemblage
event, then transfl(p,])=transfl (transtE(p,c.e), tail(1));
[0189] 3.ifhead(l)=c.t, i.e, the trigger is an assemblage
transition, then transtl(p,l)=transfl.(transf(p,c,t), tail
@
that is, the empty list induces no transformation at all, the list
which has at least one element induces a transformation on
the state proposition depending on whether the command is
an assemblage event or an assemblage transition.

Sum of Products

[0190] Let A={m,,m,, ... m,} be an assemblage of state
machines. A sum of products is a canonical form which is
given by the join (that is, the OR of the algebra of state
propositions) of a finite number of terms x,, called products:

s=n, P, D. . . By,
where each product
7, =D, (m1)Oby(m) Obp(my,)

is the meet (that is, the AND of the algebra of state proposi-
tions) of exactly N state machine propositions b,(m,), which is
a basic state machine proposition related to state machine
mEA.

[0191] Sumsofproducts are a canonical form of the algebra
of'state propositions. A sum of product is a special expression
which denotes a state proposition. An effective method for
transforming any state expression into a sop expression is
described in paragraph Containment Among Products (see
below); in the paragraph The Boolean Algebra of Sum of
Products (see below) it is observed that sum of products form
a boolean algebra themselves.

[0192] It is possible moreover to describe effective algo-
rithms for computing basic operations in the algebra of sum of
products (sop algebra) as well as to decide whether one
expression is contained within another. It is therefore possible
to compute any operation or make any comparison among
state propositions by:

[0193] 1. first transforming the operand state proposi-
tions into their equivalent sop normal form by the Algo-
rithm in paragraph Containment Among Products;

[0194] 2. applying the corresponding computable opera-
tion or comparison operator of the sop algebra to the sop
operands.

EXAMPLE 11

[0195] Let “light1” and “light2” be traffic light devices
within an assemblage, such that each traffic light may be in
state “Red”, “Yellow” or “Green”. It is then possible to write,
among the others, the following products:

1, =Red_# ORed_152;
,=Red_“#"1OGreen_"#"2;

Ty :Red:light 1 @any:ligh 2 ;

Notation

[0196] In order to improve readability:
[0197] 1. we enclose the operands making a sum within
braces and separate them by commas: we write thus
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s={m, 7Ty, . . . , T, in place of s=, D, D. . . D, we
also say that the sum s “contains” products 7T, 7T, and so
on;

[0198] 2. we enclose the operands making a product
within square brackets and separate them by commas:
we write thus [Red_"¢"!, Red_"¢"*] in place of
RedilightloRedilighﬂ;

[0199] 3. we omit constant device expressions of the
kind any:d: we write thus [Red:hg’” 1 in place of
Red:h’ghtl Oany:h'ghﬂ.

[0200] 4. the term “sum of products” will be shortened
either to simply “sum” or to the acronym SOP (Sum Of
Products) or “sop”; we will speak also of “sop normal
form” when referring to sop expressions.

[0201] Finally, products which are equivalent to the empty
state proposition NONE , can be omitted from a sum s, yield-
ing a sum s' which can be easily proven equivalent to the
original one.

EXAMPLE 12

[0202] The products of the example 11 above may then be

written as:
[0203]
[0204]

o :[Red:h’ghtl , Red:h’ghﬂ] ;
J_|:2:[I{ed:h'ghtl , Green:h'ghﬂ]
[0205] st,=[Red_“&")
[0206] A sum containing the three products above then may
be written as
[0207] {[Red “&"*,
Green:h'ghﬂ] , [Red:h'ghtl ] }

Red:h’ghﬂ] , [Red:h’ghtl ,

The Boolean Algebra of Sum of Products

[0208] Sum of products form a Boolean algebra which is
isomorphic to the algebra of state propositions. It can be
observed that:

[0209] 1. for any operator of the algebra of state proposi-
tions there exists a correspondent operator in the algebra of
sum of products:

[0210] (a) meet operator ©', described in paragraph
Meet Among Sum of Products (see below) and used to
compute the intersection of two sums;

[0211] (b) join operator &', described in paragraph Join
Among Sum of Products (see below), used to compute
the union of two sums;

[0212] (c) complement operator 1, described in para-
graph Complement of a Sum of Products (see below),
used to compute the complement of a sum;

[0213] 2. there exist two special sums of products which act
as the zero and unity elements of the algebra:

[0214] (a) an empty sum s of products denotes the zero
value of the algebra of assemblage state propositions
associated with assemblage A, that is s=e ,NONE ,. We
use therefore the empty sum { } in order to denote such
value;

[0215] (b) different sums s may denote the unity value of
the algebra of state propositions associated with assem-
blage A, that is, for any of such sums, s=e ,ANY ,.

We refer collectively to such equivalence class by introducing
a special sum symbol, that is {ANY ,}.

Algorithm for Transforming State Propositions into Sum of
Products: sop

[0216] It is possible to transform any assemblage expres-
sion e denoting a state proposition into a sum of products
SOp(e) by the following recursive algorithm:
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[0217] Algorithm 3 computes the sum of products corre-
sponding to any assemblage expression e by recursive calls to
itself (SOp(e), Algorithm 3) as well as by calls to Algorithms
which calculate the meet (meetSums, Algorithm 6), the join
(joinSums, Algorithm 5) and the complement (complement-
Sum, Algorithm 7) of sums.

[0218] Algorithm 3 works by assuming that the sum of
products corresponding to the meet of two expressions e, e,
is the meet of the sums of the two operand expressions e, e,;
the sum of products corresponding to the join of two expres-
sions e,, e, is the join of the sums of the two operand expres-
sions e,, e, and finally the sum of products corresponding to
the complement of an expressions e is the complement of the
sum of the operand expression e. The base case is given by the
assemblage expression which consists only of a state machine
expression d about component machine m: in this case sop(d)
returns a sum {m,} containing a single product 7, which is
built as a meet of the state machine expression d and of a
constant state machine expression any_° for any other com-
ponent ¢ different from m.

Algorithm 3: sop(e) Sum of Products Generation Algorithm

input :  An assemblage expression e of the form e = ¢,De,,
e=e,Oe, or e = T, or e=d, where d is a state machine
expression
output: A sum of products
if e = e;Oe, then
return: meetSums(sop(e,), sop(e,));
end
if e = e,Pe, then
return: joinSums(sop(e,), sop(e,));
end

if e="Te, then
return: complementSum(e,);

end
if e=d then
return: {m };
end
EXAMPLE 13
[0219] Suppose we want to transform the compound
expression

T (Red?*O(Green_ 7 DRed_72))

into a sum of products. Then:

[0220] 1. We take the complement of the sum obtained by
transforming the expression < (Red_'O
(Green_"*@Red_"?)) into a sum (see step 2) below); let such
asum be s;;

[0221] 2. transforming the expression Red ”'O
(Green_"*@Red_"2) into a sum involves transforming the
operands Red_™" and (Green_"'@Red_"?) into the corre-
sponding sums and then taking their intersection (see steps 3
and 4 below): let such a sum be s,;

[0222] 3.the expression Red_”" is a device expressions and
then it is transformed into the sum s,={[Red_""]}

[0223] 4 . transforming the expression Green_“*@PRed_"?
into a sum, requires to transform the operands Green_?* and
Red_“? into the corresponding sums and then taking their
union (see steps 5 and 6 below) : let such a sum be s ,;
[0224] 5. the expression Green_“* is a device expressions
and then itnsformed into the sum s;={[Green_""]};
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[0225] 6. the expression Red_??is a device expressions and
then it is transformed into the sum sy={[Red_"*]};

[0226] We have therefore that

[0227] s,=s,O's,={[Green_™'],[Red_"*]}

[0228] s,=s,O's,={[Red_""|}O[Green_""],[Red_"*]}
[0229] We then take the meet of the product in the first sum
and the first product of the second sum

[0230] x,=[Red_']O"[Green_"']=[Red_”* ,Green_"']
and we then take the meet of the product in the first sum and
the second product of the second sum m,=[Red_“']O"
[Red:”z]:[Red:’” , Red:t12]

[0231] Sum s, will contain only product i, since product T,
denotes the empty state proposition: s,={[Red_"' Red_"*]}
[0232] Finally: s,=7's,={[Green_"*],[Green_"'],
[Yellow_"1,[ Yellow_""]}

Addition of a Product to a Sum of Products: AddProduct-
ToSum

[0233] Givenasum s and a product ' we want to obtain the
sum s' such that s' denotes the state proposition which is
equivalent to the state proposition séPrt'. See Algorithm 4.

Algorithm 4: addProductToSum (s,x')

input ;A sum of product s and a product %
output : A sum of products s’
ifs={}then
return: ' = {a'};
end
if head(s)%e 4ot then
return: s' = addProductToSum (tail (s), w');

end

if w3 shead(s) then
return: s' =s;

end

if ' 3¢ head(s) and head(s) 3% at’ then
return: s’ = joinSums (s, {x'}) ;
end

Join Among Sums of Products: JoinSums

[0234] The products in the two sums are added sequen-
tially, by Algorithm 4, to a sum s' initially empty. See Algo-
rithm 5.

Algorithm 5: joinSums(s;,s,)

input: Two sum of products s, and s,
output: A sum of products s
s'={}
foreach ;t, € 5, do

s' = addProductTo Sum(s',x;);
end
foreach zt; € 5, do

s' = addProductTo Sum(s',);
end
return: s';

Meet Among Sums of Products: MeetSums

[0235] For any pair of products in the two sum a new
product is created, through Algorithm 9, then such product is
added, by Algorithm 4, to a sum s initially empty. See Algo-
rithm 6.
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Algorithm 6: meetSums(s;, s,) Algorithm

input:  Two sum of products s, and s,
output: A sum of products s
s={}
foreach o, € s,
foreach z; € s, do
# = meetProducts(7,;);
s = addProductTo Sum(s,x)
end
end
return: s;

Complement of a Sum of Products: ComplementSum

[0236] For each product m, in sum s we compute the sum s
which denotes the negation of the product through Algorithm
10 and add each product , in s to the sum s' through Algo-
rithm 4. See Algorithm 7.

Algorithm 7: complementSum(s )

input : A sum of products s;
output : A sum of products s’
s={}
foreach ; € s, do
s = complementProduct(s,);
foreach m; € s do
S' = addProductTo Sum(s',a,);
end
end
return: s';

Containment Among Sums of Products: ContainmentAm-
ongSums

[0237] We compare for containment each product m, in the
first sum with each product mt; in the second sum through
Algorithm 11. It returns true iff any comparison for contain-
ment among products x; and 7, is true. See Algorithm 8.

Algorithm 8: containmentAmongSums(sy,s,)

input: Two sums of products s,
output: A boolean value
foreach ;; € s; do
foreach z; € s, do
if containmentAmongProducts(x;,;) = false then
return: false;
end
end
end
return: true;

Meet Among Products: MeetProducts

[0238] Letb,, () be the operand of a product which is the
state machine proposition related to state machine m, given an
assemblage A. The meet of two products is then given by the
product which has the state machine proposition given by the
meet of the two state propositions related to state machine m
in the two operand products. See Algorithm 9.
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Algorithm 9: meetProducts(s, )

input: Two products 7, and 7,
output: A product %
% =any.™;
foreach m € A do
b, (1) = meetAmongStateMachinePropositions(b,,(5;),b,,(7,));
end
return: Jt;

Complement of a Product: ComplementProduct

13
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Transformation of a Product: TransformStateMachinePropo-
sition

[0242] We take each state machine expression in the prod-
uct and we transform it . The result is a sum. Let t,=O, - /b,
(m) where b, (m) is the basic state machine expression corre-
sponding to the component m of the assemblage A. Then, &,
is transformed by the transition t of component ¢ into the sum
s as follows : let s, be the sum corresponding to the transfor-
mation of the state machine expression b,(c) induced by
transition t of component ¢. Let s, =,_, . Then the
transformation is given by the sums =P,_, 7', where each
product ', =0, ,b'(m) is obtained by the corresponding
product 7,=O,  b(m) of s_ by the rules: b'(m)=b(m) if c=m

[0239] See Algorithm 10. and b'(m)=b,(m) if c=m.
Intersection Among State Machine Expressions
Algorithm 10: complementProduct (1) [0243] The algorlthm is expressed in tabular form as shoyvn
below; p and q are distinct states belonging to state machine
input: A product % having rolename r.
output: A sum s
s={}
foreach m € A do
if' b,,(7) = any_" then
return: s = { }; o none_" P q" any "
endif none_” none_" none_" none_" none_"
else if b, () = none_"then P:: none:: p.” R none:: P::
return: s = {ANY 4}; q- hone. hone. q- q-
endif any.” none_" P 9" any_”
else if b,,(7w) = T_™ then
7= ANY
foreach S € Q,, do . . .
if S = T then Containment Among State Machine Expressions
b, () =8 . . .
endif [0244] The algorithm is expressed in tabular form as shown
end below; p and q are distinct states belonging to state machine
5= addProductTo Sum(s,m); haVing rolename r.
endif
end
return: s;
="¢ none_" pS " any_”
none_” true false false false
EXAMPLE 14 P false true false true
liohtl lioht2 . . q” false false true true
[0240] Let it; Red_*#""" OGreen_"#"*“. Its negation 7 m, is any_” false false false true

then computed by taking the sum resulting from the negation
of the basic device expressions Red_“#"" and Green_"#", In
the former case we have that s,=Yellow_“&""@Green_"&"",
while the latter results in the sum
s,=Yellow_“&"@Red_“&"2, The final sum is then given by

Communication and Synchronization

[0245] The control model provides two very general mod-

s=s,Ds,=Yellow_"#""'DGreen_"=""' @ Yellow_"5">*PRed_"#"". ¢ls of synchrony.

Containment Among Products: ContainmentAmongProd-
ucts

[0241] See Algorithm 11.

Algorithm 11: containmentAmongProducts(z ,7t,)

input: Two sums of products 7,7,
output: A boolean value
foreachm e A
if containmentAmongStateMachinePropositions(b,, (7, ),b,,(5,)) =
false;
then
return: false;
end
end
return: true;

[0246] 1. state machines operate through an internal,
never ending cycle, which iterates a basic computation
step. During a computation step, signals sent to the
machine are evaluated, and one, if any, state transition is
chosen for execution. A state transition execution con-
sists in computing a new current state and in sending out
signals directed to other state machines;

[0247] 2. state machines communicate through some
communication medium, which again operates through
one or more never ending cycles. Such cycles iterate
basic communication computations, which consist,
essentially, in delivering signals from one machine to the

another.
[0248] 3.
[0249] In the asynchronous model each machine is driven

by a separate thread (by using a software oriented language)
or a separate processor (by using an hardware oriented lan-
guage). The communication medium is again driven by one or
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more (different) threads or processors. The three main entities
of the control model (controller and controlled machines,
communication medium) are therefore behaviorally indepen-
dent and synchronize only through communication ports. A
communication port is a block of memory which is shared
among the different processes. The processes read and write
control signals by a typical producer consumer pattern of
execution. To prevent processes from reading or writing the
shared data at the same time, one or more mutex or read-write
locks are employed. Finally, the shared block of memory can
be structured as a FIFO list, in order to have the producer not
to stop in case a new control signal is produced before a
previously produced control message has been consumed.
[0250] In the synchronous model both the controller and
the controlled state machines, as well as the communication
medium, are driven by a unique thread or processor. By using
the software oriented language, that means that while execut-
ing its internal cycle, the controller state machine stops and
starts executing both computations of the communication
medium as well as, sequentially, the internal cycle of each
controlled machine. By using an hardware oriented language,
either the controlled machines are part of the processor and
execute in its main cycle, or some sort of time driven, or
master-slave synchronization is implemented through differ-
ent processors.
[0251] The control model will be able not only to provide
both kinds of synchronization, but also to host a mix of them.
In other words, given a controller state machine and a set of
controlled state machines, it may be the case that some
machines in the set are controlled through the asynchronous
model, and the others through the synchronous one. As an
example, the same computer processor may control other
machines asynchronously through a field bus and, at the same
time control other internal state machines synchronously, like
timers or adders, by the internal motherboard communication
bus.
[0252] Finally, a simple, yet abstract, way of differentiating
the two models independently of implementation issues, con-
sist in contrasting them by comparing execution times:
[0253] Asynchronous behavior: each request of behavior
is served within a given delay, due to the internal work of
the controlled machine and to the propagation time
taken by the request in travelling from a controller to a
controlled machine; in the same way, notification of
behavior takes some time to travel back from the con-
trolled to the controller machine.
[0254] Synchronous behavior: each request of behavior
is served instantaneously.

Current-State Array

[0255] Each state machine is equipped with an array of
symbols, each denoting the currently known state of a com-
ponent machine of the assemblage under control of the
machine.

[0256] Such an array of symbol is kept up to date with the
current state of the component machines as part of the work-
flow of the state machine and of the communication medium,
by means of the messages exchanged, as explained below in
paragraph Current State Array and Incoming Event Compu-
tation (see below).

Incoming Internal Event

[0257] Each state machineis equipped with a variable hold-
ing the event symbol (if any) associated to the last transition
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which took place in a component machine. The content of
such variable is kept up to date as part of the workflow of the
state machine and of the communication medium, by means
of'the messages exchanged, as explained below in paragraph
Current State Array and Incoming Event Computation.

Incoming Internal Transition Symbol

[0258] FEach state machine is equipped with a variable,
which coincides with the CMO port of paragraph CMOP
Communication Medium Output Port (see below), holding
the symbol which denotes the last transition which happened
within the assemblage in the form of'a TCIC signal (see below
paragraph TCIC—Transition Completed in Component).

Control Signals

[0259] Control signals are used in order to coordinate the
joint behavior of the assemblage and of the controller. They
are generated by either one of the assemblage components or
by the controller, and processed by the communication
medium.

TC—Transition Completed

[0260] A transitioncompleted signal is generated by acom-
ponent state machine in order to notify that a specific transi-
tion happened within the machine. It consists of the bare
transition identifier and is sent to the communication
medium.

TCIC—Transition Completed in Component

[0261] A TCIC signal identifies univocally a transition
within the whole assemblage of components. A TCIC signal
is generated by the communication medium as part of its
workaround: once a TC signal t generated by a state machine
¢ is received by the communication medium, the TCIC signal
(c, 1) is sent to the controller.

ERIC—Event Required in Component

[0262] This signal, which will be referred to as command,
is generated by the controller in order to ask a specific com-
ponent state machine to undertake some state transition
labelled by a specific input event. A command consists of the
identifier of the machine plus an event symbol belonging to
the machine input events. For example, by sending the com-
mand (c, e) the controller asks the state machine ¢ to under-
take a state transition, if any, departing from the current state
of'c and labeled by the input event e. Such a transition tis such
that event (t)=e.

Communication Ports

[0263] We distinguish the different kinds of ports by the
typology of message exchanged and by the producer and the
consumer of such signals.

COP Component Output Port.

[0264] This port is placed between a component state
machine and the communication medium and hosts a queue
of TC signals, which are produced by the component state
machine and consumed by the communication medium.

CMOP Communication Medium Output Port.

[0265] This port is placed between the communication
medium and the controller and hosts a queue of TCIC signals,
which are produced by the communication medium and con-
sumed by the controller.

CIP Component Input Port.

[0266] This port is placed between the communication
medium and the component state machine and hosts a queue
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of event signals, which are produced by the communication
medium and consumed by the component state machine.

CMIP Communication Medium Input Port.

[0267] This port is placed between the communication
medium and the controller and hosts a queue of ERIC signals,
which are produced by the controller and consumed by the
communication medium.

Communication Architecture

[0268] By communication architecture we mean the global
arrangement of component and controller state machine and
of the communication medium by means of communication
ports.
[0269] A typical communication architecture involving an
assemblage of component state machines A={C,,C,,...C,}
and a controller state machine C is shown in FIG. 30. Each
component state machine is connected to the communication
medium M by two ports, respectively a component input
(CIP) and output (COP) port. The communication medium M
is on its turn connected to the controller C by two ports,
respectively a communication medium input (CMI) and out-
put (CMO) port.
[0270] It is also possible to have a multilevel arrangement
of component and controller state machines, since each con-
troller can be attached to another communication medium as
if it were a component on its turn. A typical case of multilevel
arrangement is shown in FIG. 31, where two assemblages,
namely A, ={C;,,C,,,...,C,n} and A,={C;,,C,,, ..., Cop}
are controlled, respectively, by the controller state machines
C, and C,, through the communication media M, and M, and
the respective communication ports.
[0271] Controller state machines C, and C, are moreover
attached on their turn to a third communication medium M3,
and as such they become component of a third assemblage
A,={C,,C,}. The communication medium M is finally con-
nected to the controller C by a communication medium input
(CMI) and output (CMO) port.
[0272] Itis possible to observe that state machines may be
grouped into different typologies, depending on the control
they exercise upon other machines or, vice versa, the control
other machines exercise upon them:
[0273] 1. state machines which are simply controlled,
like the state machines in the assemblages A; and A,;
[0274] 2. state machine which exercise control and are at
the same time controlled, like the state machines C, and
C, making the assemblage A;
[0275] 3. state machines which simply exercise control
other state machines like state machine C.

Communication Medium Workflow

[0276] The communication between the controller and the
controlled state machines happens through a communication
medium which is an operating entity whose aim is to bring
control signals from the components to the controller and vice
versa. We present an abstract operational model of the behav-
ior (whose main tasks are depicted in FIGS. 32 and 33) which
may be implemented in a variety of different ways upon
different communication technologies.

[0277] controller-component communication: this task
(depicted in FIG. 32) is aimed at notifying the controller
that a transition happened within a specific controlled
machine ¢ of the assemblage. The component machine
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does not contain any information regarding neither the
existence of any controller nor that the state machine
itself is identified by ¢ within the assemblage. It there-
fore simply emits a transition completed (TC) signal
towards the communication medium, which has the duty
of completing it with the additional information that
such a signal was produced by c. The communication
medium therefore wraps the TC signal within a TCIC
signal, which indeed embeds the additional information
about the source of the TC signal. The TCIC is finally
dispatched to the controller, which then updates its
knowledge about both the current state of ¢ and the
output event optionally emitted;

[0278] component-controller communication: this task
(depicted in FIG. 33) is aimed at notifying the compo-
nent c that an action, say c.e has been sent to it from the
controller. This time the controller is aware of the exist-
ence of component ¢, therefore the communication
medium simply unwraps the ERIC signal by using the
destination part to deliver the message to the component
and by depositing the event part to the component input
port (CI) for being consumed and processed.

Current State Array and Incoming Event Computation

[0279] When a TRIC signal c.t is dispatched to the state
machine, the state machine updates the array of the current
states and the incoming output event variable, as shown in
FIG. 34:

[0280] 1.thelaststate observed in component ¢ is known
by the current array entry;

[0281] 2. given the state transition identifier t it becomes
possible to fetch the new current state of the component
and to update such an array; we assume that a state
machine acting as a controller for another state machine
¢ is equipped with a description (say in tabular form) of
the controlled machine;

[0282] 3. in the same way it becomes possible to know
the output event associated with the transition, and to
update the incoming output event variable accordingly.

State Transition Selection

[0283] Given the current state s of a state machine, the
current state array, a current internal incoming event (if any),
a current external incoming event (if any) and the array of
current component states, we say that a (possibly empty) set
of state transitions is selected for being executed iff for each
state transition in such a set the following conditions are
verified:
[0284] 1. the transition has the state s as its departing
state; and
[0285] 2. the guard condition is satisfied; and
[0286] (a) the internal incoming event matches the
transition internal trigger (if any); Or
[0287] (b) the external incoming event matches the
transition external trigger (if any); or
[0288] (c) the transition is automatic (it has neither an
internal nor an external trigger);

State Transition Execution

[0289] Given a state transition belonging to a state machine
the state transition is executed when:
[0290] 1. the target state of the state transition becomes
the current state;
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[0291] 2.the actions in the action list which labels, if any,
the state transition are sent to the communication
medium input (CMI) port;

[0292] 3.atransition completed (TC) signal is sent to the
component output (CO) port.

State Machine Behavior

[0293] The behavior ofa state machine consists in perform-
ing an initialization phase, then in repeating indefinitely an
execution cycle.

[0294] In the initialization phase:

[0295] 1. it is requested that each component of the
assemblage under control of the state machine (if any)
communicates at least once its internal status and current
event;

[0296] 2. a subset of the automatic state transitions which
have the initial state as initial state are selected for execution
and the first transition in the subset is chosen for execution.
[0297] The execution cycle consists of the alternate fetch of
signals coming from both the components and the controller
and on the execution of either the transitions which have those
signals as triggers or are automatic:

[0298] 1. the component input port (CI) is looked up;
[0299] (a)incasea transition completed in component

[0300] (TCIC) signal is present, it is fetched and removed
from the port, then the current state array and the current event
are updated;
[0301] (b)asetof transition are selected for execution;
[0302] (c) the first transition in the set of transition
obtained at the previous point is chosen for execution;
[0303] 2. the communication medium input (CMI) port is
looked up;

[0304] (a) in case an input event signal is present, it is
fetched and removed from the port;

[0305] (b) a set of transition are selected for execution;

[0306] (c) the first transition in the set of transition
obtained at the previous point is chosen for execution.

1-27. (canceled)

28. A method for controlling a physical machine or an
assemblage of physical machines for ensuring safety and
liveness rules in a state based design of said physical machine
or assemblage of physical machines, comprising the steps of
associating at least one logical state to at least one physical
state that said physical machine or assemblage of physical
machines may assume, providing state constraints for said
logical states, and checking that a physical state assumed by
said physical machine or assemblage of physical machines is
associated to a logical state complying with said state con-
straints.

29. A method according to claim 28, and further compris-
ing the steps of moving said physical machine or assemblage
of physical machines out of a physical state if said physical
state is not associated to a logical state that complies with said
state constraints, and forcing said physical machine or assem-
blage of physical machines to assume a physical state asso-
ciated to a logical state that complies with said state con-
straints.

30. A method according to claim 28, wherein said state
constraints comprise a set of logical states associated to
physical states that said physical machine or assemblage of
physical machines is allowed to assume.

31. A method according to claim 30, and further compris-
ing the step of verifying whether each state of said set of
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logical states may be reached as a result of a transition starting
from another logical state of said set of logical states.

32. A method according to claim 30, and further compris-
ing the step of verifying that said physical machine or assem-
blage of physical machines is capable of reaching any physi-
cal state associated to a logical state of said set of logical
states.

33. A method according to claim 30, and further compris-
ing the step of verifying that each physical state assumed by
said physical machine or assemblage of physical machines
during a transition from an initial physical state to a final
physical state is associated to a logical state of said set of
logical states.

34. A method according to claim 28, and further compris-
ing the step of associating to a physical machine a state
machine that is a logical machine having logical states, each
of which corresponds to at least one physical state of said
physical machine.

35. A method according to claim 28, and further compris-
ing the step of associating to an assemblage of physical
machines an assemblage of state machines, said assemblage
of state machines having logical states each of which corre-
sponds to at least one physical state of said assemblage of
physical machines.

36. A method according to claim 35, wherein each state
machine of said assemblage of state machines is associated
with a respective physical machine of said assemblage of
physical machines, each logical state of each state machine
corresponding to a physical state of the respective physical
machine.

37. A method according to claim 34, wherein a state
machine is associated to a respective physical machine by
means of an interface, said interface comprising a sensor
capable of converting a physical state of said physical
machine into a logical state of said state machine and an
actuator capable of converting logical commands of said state
machine into physical commands acting on said physical
machine.

38. A method according to claim 34, wherein said state
constraints comprise a set of logical states that a state machine
is allowed to assume.

39. A method according to claim 35, wherein said state
constraints comprise a set of logical states that an assemblage
of state machines is allowed to assume.

40. A method according to claim 35, wherein a state
machine may act as a controller of another state machine or
assemblage of state machines, or be controlled by another
state machine or assemblage of state machines.

41. A method according to claim 40, wherein said state
constraints comprise a set of logical states a state machine or
an assemblage of state machines controlled by a controller
may assume when said controller is in a given state.

42. A method according to claim 38, and further compris-
ing the step of verifying whether a state machine is in a logical
state complying with said constraints before a transition from
said logical state to a second logical state occurs.

43. A method according to claim 42, and further compris-
ing the step of verifying that said second logical state com-
plies with said constraints.

44. A method according to claim 39, and further compris-
ing the step of verifying whether an assemblage of state
machines is in a logical state complying with said constraints
before a transition from said logical state to a second logical
state occurs.
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45. A method according to claim 44, further comprising
verifying that said second logical state complies with said
constraints.

46. A method according to claim 42, wherein a transition
from a logical state to said second logical state in said state
machine is associated with a logical command that may be
converted into a physical command for generating a physical
transition in a physical machine associated with said state
machine.

47. A method according to claim 44, wherein a transition
from a logical state to said second logical state in said assem-
blage of state machines is associated with a logical command
that may be converted into a physical command for generat-
ing a physical transition in an assemblage of physical
machines associated with said assemblage of state machines.

48. A method according to claim 34, wherein a transition
from a physical state to a second physical state in said physi-
cal machine generates a transition from a logical state to a
second logical state in a state machine associated with said
physical machine.

49. A method according to claim 48, wherein said state
machine verifies whether said transition complies with said
state constraints.

50. A method according to claim 49, wherein said state
machine generates a logical command that may be converted
into a physical command for forcing said physical machine to
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assume a physical state associated to a logical state of said
state machine that complies with said state constraints, if said
transition does not comply with said state constraints.

51. A method according to claim 35, wherein a transition
from a physical state to a second physical state in said assem-
blage of physical machine generates a transition from a logi-
cal state to a second logical state in an assemblage of state
machines associated with said assemblage physical
machines.

52. A method according to claim 51, wherein said assem-
blage of state machines verifies whether said transition com-
plies with said state constraints.

53. A method according to claim 52, wherein said assem-
blage of state machines generates a logical command that
may be converted into a physical command for forcing said
assemblage of physical machines to assume a physical state
associated to a logical state of said assemblage of state
machines that complies with said state constraints, if said
transition does not comply with said state constraints.

54. A method according to claim 40, and further compris-
ing the step verifying whether only one transition is activated
by an external event, if there exist a plurality of transitions that
may be activated by said external event under respective given
conditions.



