
17/04/2024 04:21

The plurality problem with three colors and more / M., Aigner; G., DE MARCO; Montangero, Manuela. - In:
THEORETICAL COMPUTER SCIENCE. - ISSN 0304-3975. - STAMPA. - 337:(2005), pp. 319-330.
[10.1016/j.tcs.2004.12.035]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

The Plurality Problem with Three Colors and

More 1,2

Martin Aigner a Gianluca De Marco b,c,∗

Manuela Montangero b,d

aFreie Universität Berlin, Institut für Mathematik II,
Arnimallee 3, 14195 Berlin, Germany.

bIstituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche,
via Moruzzi 1, 56124 Pisa, Italy.

cDipartimento di Informatica ed Applicazioni, Università di Salerno,
via S. Allende, 84081 Baronissi (SA), Italy.

dFacoltà di Scienze della Comunicazione e dell’Economia, Università di Modena e
Reggio Emilia, 42100 Reggio Emilia, Italy.

Abstract

The plurality problem is a game between two participants: Paul and Carole. We
are given n balls, each of them is colored with one out of c colors. At any step
of the game, Paul chooses two balls and asks whether they are of the same color,
whereupon Carole answers yes or no. The game ends when Paul either produces a
ball a of the plurality color (meaning that the number of balls colored like a exceeds
those of the other colors), or when Paul states that there is no plurality. How many
questions Lc(n) does Paul have to ask in the worst case?

For c = 2, the problem is equivalent to the well known majority problem which has
already been solved [11]. In this paper we show that 3bn/2c−2 ≤ L3(n) ≤ b5n/3c−2.
Moreover, for any c ≤ n, we show that surprisingly the naive algorithm for the
plurality problem is asymptotically optimal.

Key words: Combinatorial Search, Algorithm Analysis, Majority Problem, Game.

∗ Corresponding author.
Email addresses: aigner@math.fu-berlin.de (Martin Aigner),

gianluca.demarco@iit.cnr.it (Gianluca De Marco),
manuela.montangero@iit.cnr.it (Manuela Montangero).
1 Work supported in part by the European RTN Project under contract HPRN-
CT-2002-00278,COMBSTRU.
2 A preliminary version of this paper appeared in Proc. of STACS 2004 [4].

Preprint submitted to Elsevier Science 9 November 2005

1 Introduction

The plurality problem can be stated as a game between two players: Paul
and Carole. There are n balls, each of them colored with one out of c colors.
The plurality color is the color that has been used the most, i.e., such that the
balls colored with it strictly outnumber the balls of any other color. A plurality
ball is any ball colored with the plurality color (see Figure 1.a). Notice that a
plurality color (and ball) not always exists (see Figure 1.b).

At any step of the game, Paul chooses two balls and asks whether they are
of the same color, whereupon Carole answers yes or no. The game ends when
Paul either produces a ball of the plurality color, or when Paul states that
there is no plurality. How many questions Lc(n) does Paul have to ask in the
worst case?

a b

c

Plurality ball

Majority ball

(# balls colored like it >

n/2+1 balls colored
like it)

(there are at least

 # balls of any other color)

No Plurality

(# balls colored like it >

Plurality ball

 # balls of any other color)

Fig. 1.

This problem is a generalization of the well known majority problem in which
we are given n balls and two colors, e.g., white and black. The aim is to
produce a ball of the majority color (meaning that the number of balls with
that color is strictly greater than that of the other color), or to state that
there is no majority (this happens when there is the same number of white
and black balls). The majority problem asks to determine how many questions
Paul needs in the worst case. It is straightforward to observe that the plurality
problem with two colors is equivalent to the majority problem (see Figure 1.c).

This kind of problems finds several interesting applications in the field of fault
diagnosis of multiprocessor systems introduced in [10].

2

1.1 Previous work

The majority problem was first solved by Saks and Werman [11], later Alonso,
Reingold, Schott [5] gave a different proof. The elegant combinatorial result
is that L2(n) = n − ν(n) questions are necessary and sufficient in the worst
case, where ν(n) denotes the number of 1’s in the binary representation of n.
Alonso, Reingold, Schott [6] also gave the solution for the average case.

Aigner [2,3] introduced several variants and generalizations of the majority
problem. In particular, in the (n, k)-majority game Paul must exhibit a k-
majority ball z (that is, there are at least k balls colored like z), or declare
there is no k-majority. De Marco and Pelc [8] considered randomized solutions
for the majority problem in the more general case when the balls correspond
to the nodes of an undirected graph and the comparisons can only be made
between adjacent nodes (of course, the problem reduces to the original ma-
jority problem on the complete graph). Fisher and Salzberg [9] studied the
majority problem when the number of colors is any integer up to n. In this
case the majority color is the color such that there are at least n/2+1 balls of
that color. Observe that if a majority ball exists, then this is also a plurality
ball; while a plurality ball might exist when there is no majority ball. They
solved the problem by showing that d3n/2e−2 comparisons are sufficient and
necessary.

As for the plurality problem, it seems to be surprisingly difficult: while it is
mentioned in the 1997 Alonso et al. paper, no results were known, even for the
case of 3 colors. Therefore, prior to the present work, nothing substantial was
known for 3 ≤ c ≤ n− 1. It is easy to see that Ln(n) =

(

n

2

)

. Indeed,
(

n

2

)

is the
total number of distinct comparisons which, of course, allows to determine the
number of balls for each color. On the other hand, if a comparison is omitted,
and hence two balls a and b are never compared, when Carole always gives
“no” answers, Paul is not able to distinguish the case when there are exactly
n balls colored with n distinct colors (no plurality) from the case when n − 2
balls are colored with n − 2 distinct colors and a and b are colored with the
(n − 1)-th color (a and b are plurality balls). Hence, the current knowledge
about the problem can be depicted as follows

n − ν(n) = L2(n) ≤ L3(n) ≤ . . . ≤ Ln(n) =

(

n

2

)

,

where the inequalities are obvious.

3

1.2 Organization of the paper

In Section 2 we give some notation and present a naive algorithm that basically
makes all the possible comparisons avoiding redundancy. The algorithm uses
O(c · n) comparisons in the worst case. In Section 3, we consider the plurality
problem with 3 colors. We exhibit an algorithm that solves the problem using
b5n/3c−2 comparisons in the worst case. On the other hand, we show that any
algorithm that correctly determines the plurality must use at least 3bn/2c−2
comparisons. Note that it was not previously known that n+O(1) comparisons
would not suffice. Finally, in Section 4 we show the surprising result that the
naive algorithm is asymptotically optimal, by giving an Ω(c · n) lower bound
on the number of comparisons, for any 2 ≤ c ≤ n.

2 Preliminaries

Throughout the paper, we use the following notation. A comparison between
two balls a and b, is denoted a : b. The outcome of a comparison (the answer
given by Carole) might be yes or no. We say that Paul wins when the game
ends and he gives the correct solution. A color class is a set of balls having
the same color.

Let us start with a naive algorithm for the plurality problem for c colors, where
2 ≤ c ≤ n. The algorithm uses O(c ·n) comparisons. Surprisingly, in Section 4
we will show that this asymptotic bound cannot be improved. The algorithm
is very simple: Paul makes all the possible comparisons, avoiding redundancy.

Namely, the algorithm consists of a sequence of at most c − 1 steps. At any
step i, 1 ≤ i < c, a new ball is handled and the correspondent color class Ci

is determined.

Initialization. Set S be the set of balls and C0 = ∅.
Step i (for 1 ≤ i < c). Let R = S \ (C0 ∪ · · · ∪ Ci−1). Paul handles any ball

b ∈ R, if it exists. In this step, the following comparisons are made: b : b′,
for all b′ ∈ R \ {b}. Set Ci = {a : a and b have the same color}.

At the end of any step a new color class is determined. Therefore, at the end,
Paul knows all the color classes, and hence he can give the correct solution.
In order to count the total number of comparisons, it is sufficient to observe
that there are at most c− 1 steps and that during the i-th step at most n− i
comparisons are made. Therefore, the algorithm uses at most

∑c−1
i=1(n − i) =

O(c · n) comparisons.

4

3 Three colors

In this section we consider the plurality problem with 3 colors. We show that
Paul has a strategy that uses no more than 5n/3 − 2 comparisons to solve
the problem. On the other hand, we prove that any algorithm that correctly
determines the plurality must use at least 3bn/2c − 2 comparisons.

3.1 The upper bound

Theorem 3.1 We have L3(n) ≤ 5

3
n − 2, for n ≥ 2.

PROOF. The proof is by induction on n. This is clear for n ≤ 3, so let us
assume n ≥ 4. Paul arranges the balls b1, . . . , bn and compares them one by
one according to Phase I.

Phase I. The phase consists of a sequence of states. Every state Si (after
bi has been handled) is inductively described by a vector (ki, `i, mi), where
ki ≥ `i ≥ mi are the color classes cardinalities. For i ≥ 1, let ri = n − i be
the number of the remaining balls (those that have not been involved in any
comparison yet) and set ti = ri − (ki − `i − 1). The phase ends at state Si, for
i ≥ 1, when one of the following conditions arises:

(A) ki = `i = mi;
(B) ti = 0;
(C) ti = 1.

(Notice that (A) and (B) cannot arise together, as well as (B) and (C). More-
over, if (A) and (C) hold, then i = n.)

Condition (A) simply says that the three color classes have the same cardi-
nality. The problem can, thus, be reduced to the same problem with smaller
size (n − 3ki) and Paul can use induction.

The special cases when ti = 0, 1 give a precise indication on the plurality and
Paul can handle them easily.

Claim 1 Paul has a strategy such that at every state Si of Phase I, the fol-
lowing conditions hold:

(i) ki ≥ `i ≥ mi;
(ii) a representative ball Ki, Li of the two largest classes ki, `i is known (if
not empty);

5

(iii) the number Ti of comparisons up to (and including) Si is less than or
equal to 2ki + `i + 2mi − 2.

PROOF. Proof by induction. After the first ball has been handled, S1 =
(1, 0, 0), T1 = 0 ≤ 2 · 1 + 0 · 1 + 0 · 1 − 2, K1 = b1 and L1 is unknown as the
class is empty. Let 1 ≤ i < n. Suppose Ki and Li are the representatives of
ki and `i respectively and that bi+1 is handled. Conditions (i),(ii) are clearly
preserved if Paul uses the following strategy.

If ki > `i > mi :

bi+1 : Li

if yes Si+1 = (ki, `i + 1, mi)

if no bi+1 : Ki

if yes Si+1 = (ki + 1, `i, mi)

if no Si+1 = (ki, `i, mi + 1)

If ki > `i = mi :

bi+1 : Ki

if yes Si+1 = (ki + 1, `i, `i)

if no Si+1 = (ki, `i + 1, `i), Li+1 = bi+1

If ki = `i then `i > mi (otherwise finished by (A)):

bi+1 : Ki

if yes Si+1 = (ki + 1, ki, mi)

if no bi+1 : Li

if yes Si+1 = (ki + 1, ki, mi)

Ki+1 = bi+1, Li+1 = Ki

if no Si+1 = (ki, ki, mi + 1)

Unless differently stated Ki+1 = Ki and Li+1 = Li.

As for condition (iii), observe that Ti+1 is equal to Ti plus one or two, according
to the number of comparisons Paul did. The proof follows by induction.

Let, for example, ki > `i > mi and assume bi+1 has the same color of Li,
so that Si+1 = (ki, `i + 1, mi). Then Ti+1 = Ti + 1 ≤ 2ki + `i + 2mi − 1 =
2ki + (`i + 1) + 2mi − 2 = 2ki+1 + `i+1 + 2mi+1 − 2. All the other cases can be
proven analogously.

♦

Claim 2 One of (A), (B), (C) eventually occurs.

6

PROOF. At state S1, we have t1 = n − 1 ≥ 3 as k1 = 1, `1 = 0 and n ≥ 4.
Every time a ball is handled ti changes by 0,−1 or −2. In fact ti+1 − ti =
−1 − (ki+1 − ki) + (`i+1 − `i) and only the cardinality of exactly one of the
three color classes is increased by one. If (A) does not occur, when i = n then
tn = `n − kn + 1 ≤ 1 and hence (B) or (C) must occur.

♦

Let (k, `, m) be the state at the end of Phase I, with K and L representatives of
the two largest color classes (if not empty), r remaining balls, t = r−(k−`−1)
and

T ≤ 2k + ` + 2m − 2 (1)

n = k + ` + m + r . (2)

Phase II. Paul acts differently depending on how Phase I ended.

Case 1: (A) occurred first.
This means that k = ` = m and that the total number of comparisons done
in Phase I is T ≤ 5k − 2, by (1).

If r = 0, then there are no remaining balls and Paul learned that the three
color classes have the same cardinality. Paul wins the game stating there is no
plurality. Hence, as k = n/3 concerning the total number of comparisons we
have

L3(n) ≤ T ≤ 5k − 2 =
5

3
n − 2 .

If r = 1, then Paul wins the game showing the remaining ball as the plurality
ball. In this case, k = (n − 1)/3 and therefore

L3(n) ≤ T ≤ 5k − 2 =
5

3
n −

11

3
.

If r ≥ 2 the plurality among the n balls is the plurality among the r = n− 3k
remaining balls. As 2 ≤ r < n, by induction, Paul wins the game using 5r/3−2
extra comparisons. Hence

7

L3(n) ≤ T +
5r

3
− 2 ≤ 5k − 2 +

5(n − 3k)

3
− 2 =

5n

3
− 4 .

Case 2: (B) occurred first.
Paul wins the game claiming that K is of the plurality color. In fact, t =
r − (k − ` − 1) = 0 means k = ` + r + 1 and even if all remaining balls have
the same color as L, there still is one more ball colored as K. Hence K is the
plurality color.

To count the number of comparisons used by Paul observe that by (2),

k = ` + r + 1 = ` + n − k − ` − m + 1 = n − k − m + 1 ,

and

3k = k + (` + r + 1) + m + (` − m) + r + 1 = n + r + (` − m) + 2 .

Suppose r = 0, then ` > m. Because if ` = m, then the terminal state is
(k, k−1, k−1) and thus the previous state was either (k−1, k−1, k−1) and
the game would have finished by (A), or (k, k − 1, k − 2) and the game would
have finished by (C). Hence max{r, ` − m} ≥ 1, and so 3k ≥ n + 3 implying
k ≥ n/3 + 1.

It follows that

L3(n) ≤ T ≤ 2k + ` + 2m − 2 by (1)

= 2n − ` − 2r − 2 by (2)

= 2n − (` + r + 1) − r − 1

= 2n − k − r − 1 because t = 0

≤ 5n/3 − r − 2 . because k ≥ n/3 + 1

Case 3: (C) occurred first.
We have that t = r − (k − `− 1) = 1 if and only if k = ` + r and, hence, K is
of the plurality color unless all the r remaining balls have the color of L (or
M if ` = m) or unless there are no remaining balls.

If r = 0 then k = ` > m and the game ends with Paul claiming that there
is no plurality. To bound the total number of comparisons, observe that n =
k + ` + m = 2k + m < 3k and hence k > n/3. We have

8

L3(n) ≤ T ≤ 3k + 2m − 2

= 2n − k − 2 by (2)

< 5n/3 − 2 .

If r ≥ 1, Paul takes a ball R from the remaining balls and compares it to the
other r− 1 balls. As soon as Carole answers no, Paul wins the game claiming
K is of plurality color. If Carole always answers yes then Paul wins using one
last comparison.

If ` = m:

R : K

if yes K is of plurality color

if no there is no plurality

If ` > m:

R : L

if yes there is no plurality

if no K is of plurality color

Altogether, the total number of comparisons is L3(n) ≤ T + r. As n = k + `+
m + r = 2k + m < 3k we have k > n/3 and so

L3(n)≤T + r

≤ 2k + ` + 2m − 2 + r by (1)

= 2n − ` − 2r − 2 + r by (2)

= 2n − k − 2 < 5n/3 − 2 .

♦

3.2 The lower bound

For the sake of presentation, we will first assume that n is even and then
explain how to derive the same bound also in the case n is odd. Let the three
colors be red, blue and green.

Any algorithm used by Paul can be seen as a sequence of steps in which Paul
selects a pair of balls x, y and receives from Carole the answer yes or no

respectively meaning that x and y are colored with the same color or not.

During the game, Carole builds a graph H = (V, E) (Carole’s graph), where
each node in V ⊆ [n] = {1, . . . , n} represents a ball that Paul involved in at
least one comparison, and (x, y) ∈ E if and only if Paul asked to compare x

9

and y, where the edges are labeled with yes or no according to the answers
Carole gave. The edges of H will be called yes-edges or no-edges if they are
labeled with yes or no, respectively. Moreover, by HY and HN we denote
respectively the graph induced by the set EY of yes-edges and the set EN of
no-edges of H . Assume n is even, unless differently specified.

Definition 3.1 A graph H is said to be nice, if it satisfies the following prop-
erties:

- HN = (S1 ∪ S2, EN) is a bipartite graph, V = S1 ∪ S2, S1 ∩ S2 = ∅;
- |S1| ≤ n/2 and |S2| ≤ n/2;
- HY has no edge connecting a node x ∈ S1 with a node y ∈ S2.

Let us show by induction that Carole has a strategy such that, at each step
of any algorithm chosen by Paul, Carole’s graph H is nice.

At the beginning of the game, Carole’s graph is empty and thus trivially nice.
Therefore, assume that Carole has a nice graph H = (S1 ∪ S2, E).

Let x, y be the pair of balls selected by Paul at the new step. Carole has to
deal with one of the following cases.

Case 1: x ∈ V and y ∈ [n] \ V .

Suppose w.l.o.g. that x ∈ S1. If |S2| < n/2, then Carole adds y to S2 and
answers no. If |S2| = n/2, then it must be |S1| < n/2. In this case Carole
adds y to S1 and answers yes.

In both cases the new graph H = (V ∪ {y}, E ∪ {(x, y)}) is nice according
to the new partition given by sets S1, S2 ∪ {y} in the former case, and by
S1 ∪ {y}, S2 in the latter.

Case 2: x, y ∈ [n] \ V .

If |S1| < n/2 and |S2| < n/2, Carole adds x to S1 and y to S2 and answers no.
Otherwise, suppose w.l.o.g., that |S1| = n/2. Then it must be |S2| ≤ n/2 − 2
and Carole adds x and y to S2 answering yes.

In both cases the new graph H = (V ∪ {x, y}, E ∪ {(x, y)}) is nice according
to the new partition given by sets S1 ∪ {x}, S2 ∪ {y} in the former case and
by S1, S2 ∪ {x, y} in the latter.

Case 3: x, y ∈ V .

If x ∈ S1 and y ∈ S2, then Carole answers no, otherwise she answers yes.

Therefore, in any case the new graph H = (V, E ∪ {(x, y)}) is nice according

10

to the partition sets S1 and S2.

Since we have shown that Carole has a strategy that allows her to maintain a
graph that is nice, in the following we will always assume that Carole’s graph
is nice. Observe that Carole is always guaranteed that

|EN | ≥ max{|S1|, |S2|} . (3)

In fact, any new node inserted in H is inserted with a new no-edge incident
on it, unless max{|S1|, |S2|} is already n/2.

In the following we will say that a nice graph admits a coloring if the coloring
is consistent with the labelling of yes and no edges.

Lemma 3.1 Let H = (S1 ∪ S2, E) be Carole’s graph at the end of the game.
Paul wins the game only if S1 and S2 are yes-components of cardinality n/2
each.

PROOF. In order to prove the lemma, we will show that if S1 and S2 are
not yes-components of cardinality n/2 each, then whenever Paul claims that
there is no plurality, Carole is able to show that H admits a coloring having
a plurality color. On the other hand, whenever Paul indicates that u is of
plurality color, Carole is able to show that H admits another coloring in
which u is not of the plurality color. In the following, given a color col ∈
{red, blue, green}, for any u ∈ V , f(u) = col means that u is colored with col
and for any set S ⊆ V , f(S) = col means that all the balls in S are colored
with col.

Assume first that min{|S1|, |S2|} = |S1| < n/2. Let V1, V2 ⊆ V be two disjoint
sets of nodes such that V1 ∪ V2 = V \ (S1 ∪ S2) and |Vj| + |Sj| = n/2, for
j ∈ {1, 2}. Of course, |V1| > 0 and |V2| ≥ 0.

If Paul claims that there is no plurality or if he claims that u ∈ S1 is of the
plurality color, Carole shows the coloring f such that f(S1) = red, f(V1) =
blue and f(S2 ∪ V2) = green. Graph H admits f , but f has a plurality color
different from f(u).

If Paul claims that u ∈ S2 is of the plurality color, Carole shows the coloring
f such that f(S1 ∪ V1) = red and f(S2 ∪ V2) = green. It is easy to see that H
admits f , but f has no plurality color.

In any case Paul is wrong.

Therefore, we can assume |S1| = |S2| = n/2. To prove that S1 and S2 have

11

to be yes-components, we can proceed analogously, assuming there is a third
yes-component that plays the role of V1.

♦

Theorem 3.2 To solve the plurality problem with 3 colors, Paul needs at least
3n/2 − 2 comparisons in the worst case.

PROOF. Let H = (S1 ∪ S2, E) be Carole’s graph at the end of a game Paul
won. Then by Lemma 3.1 S1 and S2 are yes-components of cardinality n/2
each. Thus, the number of yes-edges in each yes-component is at least n/2−1.
From (3) it follows that the number of no-edges in H is at least n/2.

The number of comparisons used by Paul is the number of edges in H , that
is, the number of edges in HY plus the number of edges in HN , i.e., 3n/2− 2.

♦

Let us now see how to derive the same lower bound in the case n is odd. When
n is odd, Carole cannot generalize the strategy she used for the case n even
by just building a nice graph in which S1 has cardinality bn/2c and S2 has
cardinality dn/2e (or vice-versa). In fact, once Paul has a yes-component of
cardinality dn/2e, he wins the game by claiming that the color of the nodes
in that yes-component is the plurality color. The point is that Paul can build
a yes-component of dn/2e nodes using only 2dn/2e = n + 1 comparisons.

Hence Carole’s strategy has to be slightly modified. As in the case n even,
she builds a nice graph H where the cardinality of sets S1 and S2 is bounded
by bn/2c. When Paul involves the last node, say l, in a comparison for the
first time, Carole puts l in a third set S3 and answers that the two nodes have
different colors. In the sequel, whenever l will be involved in a comparison,
Carole will say that the two nodes have different colors and will label all
edges incident on l with nn. Such edges are called nn-edges and the set of all
nn-edges is denoted by ENN .

Let H = (S1 ∪ S2 ∪ {l}, E) be Carole’s graph at the end of the game and
assume that Si contains ki yes-components, for i = 1, 2.

It is clear that “no plurality” is always possible by coloring S1 red, S2 blue
and l green. Hence since Paul wins he must be able to exclude the possibility
that there is a plurality. From this we conclude:

12

1. Node l must be connected to S1 and S2. Otherwise, if e.g., l is not con-
nected to S1, f(S1 ∪ {l}) = red, f(S2) would be a plurality coloring.

2. If ki ≥ 3 (i = 1, 2), then l must be connected to every yes-component
of Si. Otherwise, if C ⊆ S1 is a component not connected to l then
f(S1 \ C) = red, f(S2) = blue f(C ∪ {l}) = green would give a blue
plurality.

It follows that l is connected by at least ki−1 edges to Si. With |EN | ≥ bn/2c
(as in the case when n is even) we have that

L3(n) ≥ |EN |+|EY |+|ENN | ≥ bn/2c+2bn/2c−k1−k2+(k1+k2−2) = 3bn/2c−2 .

This concludes the proof of Theorem 3.2 both for n even and odd.

4 More colors

In this section, we prove that in order to solve the plurality problem with c
colors, Paul needs Ω(c · n) questions in the worst case. In view of the naive
algorithm of section 2 this bound is asymptotically optimal.

We are given c colors. For the sake of presentation, we assume that n is a
multiple of c. As in the lower bound for c = 3, during the game, Carole keeps
a graph H = (V, E) according to Paul’s questions, where nodes correspond
to balls and there is a yes-edge (respectively a no-edge) between two nodes
if and only if Carole’s answer on these two nodes was yes (respectively no).
As in Section 3.2, a yes-component is a component of H connected only by
yes-edges. Nodes that are not in any yes-component are called singletons.

At the beginning, Carole arranges all n nodes in c disjoint sets, S1, . . . , Sc,
with n/c nodes each. A singleton v ∈ Si is j-movable, for some j 6= i, if it
has no no-edge towards set Sj . Sets can be in two different states: marked or
unmarked. At the beginning all sets are unmarked.

Carole uses the following strategy:

Whenever Paul asks for two nodes from different sets, Carole answers no.

Whenever Paul asks for two nodes x, y from the same set Si:

1. If the set is marked, Carole answers yes.
2. If the set is unmarked:

a. If both nodes belong to yes-components, then Carole answers yes.
b. If each of the two nodes has at least c/2 incident no-edges, then

Carole answers yes.
c. If there are at least n/5 incident no-edges in Si, Carole answers yes

13

and mark Si.
d. Let x be the node not in the yes-component:

i. If x is j-movable (for some j 6= i) and in Sj there is an i-movable
node, Carole exchanges the nodes and answers no.

ii. Otherwise Carole answers yes.

The following fact is straightforward.

Fact 3 Before Carole goes through 2.d.ii, then in any unmarked set, every
node that belongs to a yes-component has at least c/2 incident no-edges.

Lemma 4.1 When the game is over, there is no movable node.

PROOF. Let x ∈ Sj be an i-movable node. Then the graph admits the
following two colorings:

• For i = 1, 2, . . . , c, color set Si with color ci; this coloring has no plurality.
• Color Si ∪{x} with color ci; color Sj \ {x} with color cj; color any other set

Sh, h 6= i, j, with color ch; this coloring has plurality in Si.

♦

Lemma 4.2 If there are c/4 marked sets, there are at least c ·n/40 no-edges.

PROOF. By simple calculation

1

2
· # marked sets · # no-edges per set ≥

1

2
·
c

4
·
n

5
=

c

40
n.

♦

Theorem 4.1 To solve the plurality problem with c colors, Paul needs Ω(c ·n)
questions in the worst case.

PROOF. When the game ends, two cases are possible: either (a) Carole never
went through 2.d.ii, or (b) Carole did. To prove the theorem, we show that in
both cases the number of no-edges is Ω(c · n).

Case (a). Let m and u be respectively the number of marked and unmarked
sets at the end of the game. We have 0 ≤ m ≤ c and u = c − m

14

By Fact 3, every node that belongs to a yes-component has at least c/2 inci-
dent no-edges. By Lemma 4.1, singletons cannot be movable, hence, each of
them must have at least (c−1) incident no-edges. Therefore, in any unmarked
set S, if Y denotes the number of nodes involved in yes-components and N
denotes the number of singletons (where Y + N = n/c), we have that the
number of no-edges incident on S is at least

c

2
Y + (c − 1)N ≥

c

2
·
n

c
=

n

2
.

Moreover, any marked set has at least n/5 incident no-edges. In total, there
are at least

1

2

(

m
n

5
+ u

n

2

)

≥
c

10
n

no-edges.

Case (b). Consider the first time when Carole goes through 2.d.ii. Let C be
the family of sets Si such that x is i-movable. Since Carole went through 2.d.ii,
then the number of no-edges incident on x is less than c/2. This implies that
|C| > c/2.

By Lemma 4.2, we can assume that m < c/4. Let C ′ be the family of unmarked
sets in C, we have |C ′| ≥ |C| − m > c/4.

Let s be the number of singletons in C ′. As there is no i-movable node in C,
then each singleton in C ′ must have a no-edge towards set Si. Therefore, we
have s < n/5, otherwise Carole would have passed through 2.c.

The number of nodes in C ′ that belong to yes-components is at least

nodes − # singletons ≥ |C ′| ·
n

c
− s >

c

4
·
n

c
−

n

5
=

n

20
.

Hence, recalling Fact 3, the number of no-edges incident on these sets is at
least

nodes in yes-comp · # no-edges per node ≥
n

20
·
c

2
=

c

40
n.

♦

15

5 Conclusion and open problems

In this paper we studied the plurality problem which is a generalization of the
well known majority problem. We gave the first algorithm for this problem
with three colors and an almost matching lower bound.

The first natural question left open by this paper is to close the gap between
upper and lower bound for three colors. Needless to say, it would be very nice
to find a general optimal strategy for any number c ≤ n of colors.

Asymptotically, we have showed that Θ(c · n) questions are necessary and
sufficient. As our Ω(c · n) lower bound shows that the naive deterministic
algorithm is asymptotically the best possible, it would be interesting to see if
randomization might help.

References

[1] M. Aigner, Combinatorial Search. Wiley 1988.

[2] M. Aigner, Two colors and more, preprint.

[3] M. Aigner, Variants of the majority problem, Discrete Applied Mathematics
137 (1) 2004, 3-26.

[4] M. Aigner, G. De Marco and M. Montangero, The plurality problem with three
colors, Proc. 21st Ann. Symp. on Theoretical Aspects of Computer Science,
STACS 2004, Montpellier, France, LNCS 2996, 513-521.

[5] L. Alonso, E. M. Reingold, and R. Schott, Determining the majority,
Information Processing Letters 47 (1993), 253-255.

[6] L. Alonso, E. M. Reingold, and R. Schott, The average-case complexity of
determining the majority, SIAM Journal on Computing 26 (1997), 1-14.

[7] L. Alonso, P. Chassaing, E. M. Reingold, and R. Schott, The chip problem,
preprint. (Available at http://emr.cs.uiuc.edu/∼reingold/chips.ps.)

[8] G. De Marco and A. Pelc, Randomized algorithms for determining the majority
on graphs, Proc. 28th Int. Symp. on Mathematical Foundations of Computer
Science, MFCS 2003, Bratislava, Slovak Republic, LNCS 2747, 368-377.

[9] M. Fisher and S. Salzberg, Finding a majority among n votes, Journal of
Algorithms 3 (1982), 375-379.

[10] F.P. Preparata, G. Metze and R.T. Chien, On the connection assignment
problem of diagnosable systems, IEEE Trans. on Electr. Computers 16 (1967),
848-854.

16

[11] M. E. Saks and M. Werman, On computing majority by comparisons,
Combinatorica 11 (1991), 383-387.

[12] G. Wiener, Search for a majority element, Journal of Statistical Planning and
Inference, 100 (2002), 313-318.

17

