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B-coloring is a problem in graph theory. It can model 
some real applications, as well as being used to enhance 
solution methods for the classical graph coloring problem. In 
turn, improved solutions for the classical coloring problem 
would impact a larger pool of practical applications in 
several different fields such as scheduling, timetabling and 
telecommunications. Given a graph G = (V, E), the b-coloring 
problem aims to maximize the number of colors used while 
assigning a color to every vertex in V , preventing adjacent 
vertices from receiving the same color, with every color 
represented by a special vertex, called a b-vertex. A vertex can 
be a b-vertex only if the set of colors assigned to its adjacent 
vertices includes all the colors, apart from the one assigned to 
the vertex itself.
This work employs methods based on Linear Programming 
to derive new upper and lower bounds for the problem. In 
particular, starting from a Mixed Integer Linear Programming 
model recently presented, upper bounds are obtained through 
partial linear relaxations of this model, while lower bounds 
are derived by considering different variations of the original 
model, modified to target a specific number of colors provided 
as input. The experimental campaign documented in the 
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paper led to several improvements to the state-of-the-art 
results.
© 2022 The Author(s). Published by Elsevier Ltd on behalf 
of Association of European Operational Research Societies 

(EURO). This is an open access article under the CC 
BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Given an undirected graph G = (V, E), a b-coloring with K colors can be defined as 
a function that assigns a color c(i) ∈ C = {1, 2, . . . , K} to each vertex i of V , so that 
c(i) �= c(j) for every (i, j) ∈ E. Let N(i) = {j|(i, j) ∈ E} be the neighborhood of i. For 
each k ∈ C there must exist a vertex i ∈ V with c(i) = k and with N(i) ∩ {j ∈ V |c(j) =
h} �= ∅ ∀h ∈ C\{k}. Less formally, it is required that for each color k used, there is a 
vertex assigned to color k (called b-vertex) such that for every other color used h, there 
is at least one of its neighbors assigned to h. A coloring of G with the minimum number 
χ(G) of colors must be a b-coloring. Otherwise each vertex assigned a color k which does 
not have a b-vertex could be re-colored with one of the colors other than k. This would 
contradict the minimality of χ(G).

The b-coloring problem aims to find a b-coloring using the maximum possible number 
of colors. Let Xb(G) be the b-chromatic number of a graph G, defined as the maximum 
number of colors for which G admits a b-coloring. Fig. 1 provides an example of an 
optimal b-coloring.

2. Literature review

Estimating Xb(G) is proved to be NP-hard in [11]. Consequently, the b-coloring prob-
lem is also NP-hard. It has been proved in [15] that the difference between the optimal 
solution values of the classical coloring problem ([16]) and b-coloring for the same graph 
G can be arbitrarily large. The b-coloring problem can be largely influenced by the girth 
(length of a shortest cycle) of the graph, as shown in [3]. As demonstrated in [1], a b-
coloring with k colors does not necessarily exist for all the possible values of k ranging 
from the minimum number for which a b-coloring exists up to the b-chromatic number; 
gaps might exist.

A hybrid evolutionary algorithm for the b-coloring problem is discussed in [6]. A in-
teger linear programming formulation for the b-chromatic index Xb(G) is introduced in 
[14], and this model is at the basis of the branch and cut algorithm provided in [13]. 
Matheuristic approaches to the problem are introduced in [17]. In the same work, an ef-
fective new mixed integer linear programming model is presented. Another metaheuristic 
method, based on an iterative schema and able to improve some of the lower bounds on 
the same set of instances, was discussed in [18]. Note that the testbed commonly adopted 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. Example of a graph with an associated optimal b-coloring with 4 colors, here represented by numbers. 
Vertices with the name in bold are the b-vertices.

for b-coloring is composed of instances originally proposed for other graph problems in 
[12].

In the works [7] and [8] b-coloring is used within postal mail sorting systems to model a 
new approach for address block localization. The aim is to assist the software for address 
recognition. A novel clustering technique based on b-coloring is used by the French 
healthcare system to identify and formalize a new typology of hospital stays, as presented 
in [5]. As discussed in [2], an important indirect practical motivation for attacking the b-
coloring problem is that it can provide viable bounds for the classical coloring problem. 
Note that this in turn may potentially lead to benefits to several important practical 
applications such as scheduling [21], timetabling [4] and telecommunications [19,20,9].

The paper is organized as follows. A Mixed Integer Program is discussed in Section 3. 
This model will be the starting point for the subsequent results. In Section 4 some upper 
bounding technique based on partial linear relaxations are proposed. Section 5 is devoted 
to heuristic solutions and lower bounds, while Section 6 presents and summarizes the 
computational results of the methods previously described. Section 7 finally concludes 
the paper.

3. An integer programming model

In this section an Integer Programming model originally proposed in [17] is described. 
There is a set of variables x such that xij = 1 if vertex j is colored with the color of the 
representative vertex i, 0 otherwise. A vertex i is a b-vertex, or representative, if and 
only if xii = 1. In order to simplify the notation, let N̄(i) = V \ {{i} ∪ N(i)} be the 
anti-neighborhood of i.

BC : max
∑

i∈V

xii (1)

xij + xik ≤ xii i ∈ V ; j, k ∈ N̄(i); (j, k) ∈ E (2)

xij ≤ xii i ∈ V ; j ∈ N̄(i); �k ∈ N̄(i) : (j, k) ∈ E (3)
∑

k∈N(j),
¯

xik ≥ xii + xjj − 1 i, j ∈ V ; (i, j) /∈ E (4)
k∈N(i)
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∑

j /∈N(i)

xji = 1 i ∈ V (5)

xij ∈ {0, 1} i, j ∈ V (6)

The objective function (1) aims at maximizing the number of b-vertices. Constraints 
(2) imposes a proper coloring, and at the same time allows a vertex to give a color only 
if it is a representative. Constraints (3) again state that only representative can give a 
color, and applies to those cases that are not already covered by (2). Constraints (4)
formalize the proper b-coloring restrictions. They imply that if both vertices i and j are 
b-vertices, then there must be a neighbor of j which is represented by i. Technically, 
if both i and j are representatives then the right-hand side is equal to one, implying 
that the summation in the left-hand side (composed by the neighbors of j potentially 
represented by i) should be at least one. Constraints (5) ensure that every vertex must be 
assigned a color (note that j can take value i in the summation). The domain definition 
for the variables is provided by constraints (6). We refer the interested reader to [17] for 
a more in-depth discussion of the model.

4. Upper bounds based on partial linear relaxations

The linear relaxation of model (BC) is obtained by substituting constraints (6) with 
the following ones:

0 ≤ xij ≤ 1 i, j ∈ V (7)

By definition, the cost of the optimal solution of the linear relaxation provides a valid 
upper bound for the optimal cost of BC, the domains of the variables defined by (7)
being a relaxation of the domains originally specified by (6). The linear relaxation is also 
much easier to solve with respect to the original BC, which is an integer program. As 
a consequence, solving the linear relaxation could turn out to be a suitable method to 
efficiently derive effective upper bounds for the costs of b-coloring problems.

Solving BC provides optimal solutions but often has impractical computation times, 
while solving the pure linear relaxation provides (possibly weak) upper bounds with a 
low computational effort. It is also possible to consider intermediate versions, namely 
partial linear relaxations, where only a fraction of the variables are forced to be integer 
through constraint (6), while the remaining variables are continuous, as in constraint (7). 
The previous studies [17] and [18] indicated that the representative-selection variables 
xii are the critical ones, since once they are set, the complexity of the residual problem 
boils down substantially. For this reason, our strategy will only operate on them, with 
the remaining xij variables continuous. In particular, we will refer to these models as 
BC(p), where p indicates the percentage of the representative variables xii forced to be 
integer. With such a notation, BC(100) represents a mixed integer program, while BC(0) 
is the pure linear relaxation. Note that even when large values of p are considered, only 
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a fraction of the total variables are set to binary, since only representative variables are 
considered while calculating the percentage p. Anyway, all the partial linear relaxations 
considered for a same instance can be seen as a tradeoff between precision and speed, as 
it will be shown in Section 6.2.1.

When a partial linear relaxation approach is considered, a further question to answer is 
about the selection of the p% of the representative variables for which integrality should 
be enforced. Similar questions have been shown to be relevant for related problems 
such as the maximum clique problem [22]. In our case, preliminary results have clearly 
shown that using heuristic criteria, taking into account vertex characteristics such as the 
number of neighbors, does not lead to any advantage. In the rest of the paper the p% of 
variables forced to be integer are therefore selected at random. This means that different 
runs might lead to different results. In our experiments we will consider one run only. 
Note that more runs could have produced better results and give more clues about the 
robustness of the methods, but the computational power available to us was limited. The 
tests proposed however clearly show the potential of the methods proposed.

5. Lower bounds based on models for the decision version of the problem

5.1. Model BCx(T )

Formally, after having decided a target value T for the objective function (1), starting 
from model BC it is possible to obtain the following decision model BCx(T ).

BCx(T ) : xij + xik ≤ xii i ∈ V ; j, k ∈ N̄(i); (j, k) ∈ E (8)

xij ≤ xii i ∈ V ; j ∈ N̄(i); �k ∈ N̄(i) : (j, k) ∈ E (9)
∑

k∈N(j),
k∈N̄(i)

xik ≥ xii + xjj − 1 i, j ∈ V ; (i, j) /∈ E (10)

∑

j /∈N(i)

xji = 1 i ∈ V (11)

∑

i∈V

xii = T (12)

xij ∈ {0, 1} i, j ∈ V (13)

The new model neglects the objective function (1) and has the new constraint (12)
to define the target number of colors. The constraint (12) implies that we accept only 
feasible solutions with exactly T b-vertices.

Note that if a feasible solution with T b-vertices exists for an instance, then the model 
will return a feasible solution. Otherwise, the solver will return an appropriate message 
to signal an infeasible problem, and it is possible to conclude that no feasible solution 
exists with the given number T of b-vertices.
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The model BCx(T ) is a decision model; if a feasible solution is identified, the compu-
tation is stopped, or alternatively the computation stops once the solver proves that such 
a solution does not exist. It is possible that faster feasible colorings with T colors can 
be obtained by models with a cost function. For these models solutions with a non-zero 
cost may exist, although only solutions with cost zero correspond to feasible colorings. 
Having a path of solutions with decreasing costs toward a feasible (zero cost) solution 
might help the solver. This is the rationale behind the models described in the following 
sections.

5.2. Model BCy(T )

Starting from the base model BCx(T ), for this model a new set of non-negative integer 
variables y defined for each i ∈ V are introduced such that yi represents the number of 
excess colors assigned to vertex i, additional to the single color required. With this new 
set of variables, it is possible to define the following new model BCy(T ) for the decision 
version of b-coloring. Unchanged constraints with respect to BCx(T ) are repeated for 
the sake of clarity.

BCy(T ) : min
∑

i∈V

yi (14)

xij + xik ≤ xii i ∈ V ; j, k ∈ N̄(i); (j, k) ∈ E (15)

xij ≤ xii i ∈ V ; j ∈ N̄(i); �k ∈ N̄(i) : (j, k) ∈ E (16)
∑

k∈N(j),
k∈N̄(i)

xik ≥ xii + xjj − 1 i, j ∈ V ; (i, j) /∈ E (17)

∑

j /∈N(i)

xji = 1 + yi i ∈ V (18)

∑

i∈V

xii = T (19)

xij ∈ {0, 1} i, j ∈ V (20)

yi ≥ 0, integer i ∈ V (21)

A feasible solution with T colors for the b-coloring problem exists if and only if a 
solution of BCy(T ) of cost 0 exists, according to the new objective function (14). Note 
that now feasible solutions with non-zero cost for the model are allowed, and the hope 
is that this can give an advantage to the solver. The other differences with respect to 
the standard model BCx(T ) are constraints (18) that substitute (11) and the presence 
of the domain constraints (21) for the yi variables.
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5.3. Model BCz(T )

Starting from the base model BCx(T ), for this model a new set of binary variables z
defined for each (i, j) ∈ E are introduced such that zij = 1 if nodes i and j are assigned 
the same color notwithstanding (i, j) ∈ E, 0 otherwise. With this new set of variables, 
it is possible to define the following new model BCz(T ) for the decision version of b-
coloring. Unchanged constraints with respect to BCx(T ) are repeated for the sake of 
clarity.

BCz(T ) : min
∑

i∈V

∑

j∈V :(i,j)∈E

zij (22)

xij + xik ≤ xii + zjk i ∈ V ; j, k ∈ N̄(i); (j, k) ∈ E (23)

xij ≤ xii i ∈ V ; j ∈ N̄(i); �k ∈ N̄(i) : (j, k) ∈ E (24)
∑

k∈N(j),
k∈N̄(i)

xik ≥ xii + xjj − 1 i, j ∈ V ; (i, j) /∈ E (25)

∑

j /∈N(i)

xji = 1 i ∈ V (26)

∑

i∈V

xii = T (27)

xij ∈ {0, 1} i, j ∈ V (28)

zij ∈ {0, 1} (i, j) ∈ E (29)

A feasible solution with T colors for the b-coloring problem exists if and only if a 
solution of BCz(T ) of cost 0 exists, according to the new objective function (22). Note 
that now feasible solutions with non-zero cost for the model are allowed, and, as explained 
previously, the hope is that this can give an advantage to the solver. The other differences 
with respect to the standard model BCx(T ) are constraints (23) that substitute (8) and 
the presence of the domain constraints (29) for the zij variables.

5.4. Model BCw(T )

Starting from the base model BCx(T ), for this model a new set of binary variables 
w defined for each (i, j) /∈ E are introduced such that wij = 1 if both vertices i and 
j are representative but there is no vertex adjacent to j associated with the color of 
i (violating therefore a crucial property of b-coloring), 0 otherwise. With this new set 
of variables, it is possible to define the following new model BCw(T ) for the decision 
version of b-coloring. Unchanged constraints with respect to BCx(T ) are repeated for 
the sake of clarity.
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BCw(T ) : min
∑

i∈V

∑

j∈V :(i,j)/∈E

wij (30)

xij + xik ≤ xii i ∈ V ; j, k ∈ N̄(i); (j, k) ∈ E (31)

xij ≤ xii i ∈ V ; j ∈ N̄(i); �k ∈ N̄(i) : (j, k) ∈ E (32)
∑

k∈N(j),
k∈N̄(i)

xik ≥ xii + xjj − 1 − wij i, j ∈ V ; (i, j) /∈ E (33)

∑

j /∈N(i)

xji = 1 i ∈ V (34)

∑

i∈V

xii = T (35)

xij ∈ {0, 1} i, j ∈ V (36)

wij ∈ {0, 1} (i, j) /∈ E (37)

A feasible solution with T colors for the b-coloring problem exists if and only if a 
solution of BCw(T ) of cost 0 exists, according to the new objective function (30). Note 
that now feasible solutions with non-zero cost for the model are allowed, and, as explained 
previously, the hope is that this can give an advantage to the solver. The other differences 
with respect to the standard model BCx(T ) are constraints (33) that substitute (10) and 
the presence of the domain constraints (37) for the wij variables.

6. Experimental results

6.1. Datasets and settings

The instances considered for the experiments of this paper are based on the DIMACS 
benchmark set originally proposed for the minimum coloring and the maximum clique 
problems in [12]. The instances have been considered for the first time in the b-coloring 
context in [17], where a total of 59 instances from minimum coloring and 78 from max-
imum clique have been adopted. Due to the nature of Linear Programming and the 
characteristics of the models, it is not possible to handle all the instances (typically 
those with more than 500 nodes are out of reach), moreover the instances for which an 
optimal solution is already known have not been considered in this study. This leaves 
us roughly with a total of 32 instances from minimum coloring and 55 instances from 
maximum clique, although not all the methods proposed will be able to handle all of the 
instances.

The routines to create all the models considered have been coded in ANSI C, and all 
the experiments reported have been run on a computer equipped with an Intel Core i7 
processor running at 2.7 GHz and 16 GB of RAM running Windows 10. All the linear 
and integer models have been solved by Gurobi 9.1 [10] running in single-thread mode. 
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In all the experiments reported a maximum computation time of 1800 seconds is allowed 
for each method/instance combination.

6.2. Partial linear relaxations

6.2.1. Percentage of integer variables
The aim of this section is to investigate the trade-off between quality of the upper 

bound and computation time while using the partial linear relaxation approach described 
in Section 4. We consider three representative instances and chart the values of the 
solution of BC(p) and the relative computation time for several values of the percentage 
p of representative variables set to be integer. The results are depicted in Fig. 2. One can 
observe how in general the quality of the upper bound gets better when higher values 
of p are considered, although the computation time required to produce the estimation 
increases very quickly with p. This is especially true for the instance R2501c, that does 
not appear particularly challenging for the solver: all the partial linear relaxations are 
solved to optimality. For the other two instances, when the value of p is increased, the 
computation is interrupted after 1800 seconds, and the value of the solution reported is 
that of the best heuristic solution found at that time, which is probably not optimal. 
The lack of optimality is clear for the instance gen200_p0.9_55, for which the upper 
bound oscillates.

In conclusion, considering partial linear relaxation with an increasing percentage of 
integer variables moderately improves the quality of the upper bound, at the price of 
a substantial increase in the computation time. The technique looks, however, to be 
effective.

6.2.2. Results
In this section we summarise the results obtained by BC(p) for different values of p, 

namely 0, 5, 10, 20, 40, 60, 80, 100. Only those instances for which a solution was obtained 
by at least one of the values of p considered within 1800 seconds, are included in the 
tables. The columns of Tables 1 and 2 contain, for each instance reported, the following 
information:

• Name: name of the instance;
• V : number of vertices of the graph;
• E: number of edges of the graph;
• Best known UB: the best-known upper bound for the value of Xb(G) available before 

the present study (from [17]);
• Best BC(p): the best upper bound retrieved by BC(p) and the value of p corre-

sponding to the best (in case of ties the value of p leading to the fastest solution is 
reported). Improved upper bounds are reported in bold font.



10 R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049
Fig. 2. Evolution of the upper bounds and computation times while varying the percentage of integer variables 
p in BP (p).

Table 1 covers 44 instances, and 38 improved upper bounds are reported. This indi-
cates that working on partial linear relaxations is indeed a promising approach. Looking 
at the values of p leading to the best results within the 1800 seconds allowed, one can 
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Table 1
Best upper bounds retrieved by BC(p) for clique instances from [12]. Improved upper bounds are shown 
for 38 of the 44 instances considered.

Instance Best known 
UB [17]

Best BC(p)
Name |V | |E| UB % integer p

brock200_1 200 14834 146 127 0
brock200_2 200 9876 100 119 0
brock200_3 200 12048 120 123 0
brock200_4 200 13089 129 124 0
brock400_1 400 59723 294 254 0
brock400_2 400 59786 295 254 0
brock400_3 400 59681 294 254 5
brock400_4 400 59765 295 254 0
C125.9 125 6963 108 74 40
C250.9 250 27984 220 162 5
C500.9 500 112332 442 327 0
gen200_p0.9_44 200 17910 174 123 40
gen200_p0.9_55 200 17910 174 124 20
gen400_p0.9_55 400 71820 348 261 0
gen400_p0.9_65 400 71820 350 262 0
gen400_p0.9_75 400 71820 350 262 0
hamming6-2 64 1824 58 36 60
hamming6-4 64 704 23 22 60
hamming8-2 256 31616 248 161 10
hamming8-4 256 29864 164 144 5
johnson8-2-4 28 210 16 11 60
johnson8-4-4 70 1855 54 36 40
johnson16-2-4 120 5460 92 55 60
johnson32-2-4 496 107880 436 262 20
keller4 171 9435 106 101 0
MANN_a9 45 918 41 21 60
MANN_a27 378 70551 365 149 80
p_hat300-1 300 10933 91 300 0
p_hat300-2 300 21928 149 177 0
p_hat300-3 300 33390 209 190 5
san200_0.7_1 200 13930 138 126 40
san200_0.7_2 200 13930 134 116 5
san200_0.9_1 200 17910 173 112 60
san200_0.9_2 200 17910 175 124 80
san200_0.9_3 200 17910 176 124 60
san400_0.5_1 400 39900 204 220 0
san400_0.7_1 400 55860 277 253 0
san400_0.7_2 400 55860 277 251 0
san400_0.7_3 400 55860 274 248 0
san400_0.9_1 400 71820 353 264 0
sanr200_0.7 200 13868 137 125 0
sanr200_0.9 200 17863 175 127 5
sanr400_0.5 400 39984 201 400 0
sanr400_0.7 400 55869 276 251 5

observe an inverse correlation between the number of nodes |V | and edges |E| and the 
best value of p. This suggests that the size of the instances is an indicator about how 
challenging the instances are for the solver. There are however outliers like, for example, 
MANN_a27, which is a fairly large instance, but for which the best result is obtained 
for p = 80. This happens because a good heuristic solution (upper bound) is retrieved by 
the solver within the allowed time. In conclusion, a forecast for the best value of p can 
be done by considering the size of the instance under investigation, but this factor does 
not fully capture the essence of the problem, and can only be used as a rough indicator. 
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Table 2
Best upper bounds retrieved by BC(p) for coloring instances from [12]. Improved upper bounds are shown 
for 5 of the 15 instances considered.

Instance Best known 
UB [17]

Best BC(p)
Name |V | |E| UB % integer p

dsjc125.5 125 3891 63 75 0
dsjc125.9 125 6961 109 74 40
dsjc250.5 250 15668 126 150 0
dsjc250.9 250 27897 219 162 5
dsjr500.1c 500 121275 478 228 80
flat300_26_0 300 21633 146 179 0
fpsol2.i.1 451 8691 79 151 0
mulsol.i.1 197 3925 65 67 40
mulsol.i.2 188 3885 53 69 40
r125.1 125 209 7 38 40
r125.1c 125 7501 116 54 80
r250.1c 250 30227 238 99 100
r250.5 250 14849 119 150 0
school1_nsh 352 14612 101 351 0
school1 385 19095 117 384 0

Similar conclusions can be drawn for the results reported in Table 2, although in this 
case only 5 upper bounds have been improved over the 15 instances considered. Note 
also that for this second set of instances the correlation between the size of the instances 
and the best value of p appears to be less obvious, making the prediction of the right 
value of p more difficult.

Observe finally how for two instances – p_hat300-1 and sanr400_0.5 in Table 1 – 
only a trivial upper bound equal to the number of nodes is reported, indicating that 
the upper bounding methods proposed are not able to properly handle these instances. 
The heuristic methods we propose will be however able to improve the best known lower 
bounds for these instances (see Section 6.3.2)..

6.3. Models for the decision version of b-coloring

6.3.1. Comparison of the models
In this section we consider some representative instances and after having set a value 

of T equal to the cost of the best-known heuristic solution, we report the results obtained 
by the four models described in Section 5. Note that in the experiments we purposely 
run some values of T equal to the known optimal solution plus one, in order to test the 
different models on infeasible problems. The results are reported only for instances for 
which at least one of the models considered was able to return a conclusive answer.

The columns of Tables 3 and 4 contain, for each instance reported, the following 
information:

• Name: name of the instance;
• V : number of vertices of the graph;
• E: number of edges of the graph;
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Table 3
Lower bounds computation results on the relevant clique instances from [12].

Instance T BCx(T ) BCy(T ) BCz(T ) BCw(T )
Name |V | |E| Res Sec Res Sec Res Sec Res Sec
c-fat200-1 200 1534 19 N 120 N 280 N 182 - -
c-fat200-2 200 3235 35 N 260 - - N 874 - -
c-fat200-5 200 8473 87 N 699 N 1072 - - -
c-fat500-1 500 4459 22 N 1394 - - N 1604 - -
C250.9 250 27984 128 Y 241 Y 1063 - - -
gen200_p0.9_55 200 17910 105 - - - - - Y 1510
hamming6-2 64 1824 36 - - N 202 N 1166 N 95
hamming8-4 256 20864 53 Y 13 Y 1139 - - - -
johnson8-2-4 28 210 10 N 3 N 33 N 8 N 26
johnson32-2-4 496 107880 41 - - Y 246 - -
MANN_a9 45 918 22 N 1 N 3 N 0 N 0
MANN_a27 378 70551 145 N 10 N 270 N 181 N 127
p_hat300-1 300 10933 48 - - - - - - Y 501
p_hat300-2 300 21928 83 - - Y 453 - - - -
p_hat500-3 500 93800 152 Y 1053 Y 150 - - - -
san200_0.9_2 200 17910 106 - - - - - - Y 1249
san200_0.9_3 200 17910 104 Y 150 Y 349 Y 182 Y 1206
san400_0.7_3 400 55860 81 - - Y 369 Y 799 - -
sanr200_0.7 200 13868 68 - - Y 1431 - - - -
sanr200_0.9 200 17863 104 Y 199 - - - - Y 628
sanr400_0.5 400 39984 75 - - - - - - Y 419
sanr400_0.7 400 55869 106 Y 1320 - - - - - -

Table 4
Lower bounds computation results on the relevant coloring instances from [12].

Instance T BCx(T ) BCy(T ) BCz(T ) BCw(T )
Name |V | |E| Res Sec Res Sec Res Sec Res Sec
dsjc125.1 125 736 18 N 115 - - N 139 - -
dsjc250.9 250 27897 128 Y 861 - - - - Y 1109
DSJR500.1c 500 121275 143 - - Y 649 Y 258 Y 241
inithx.i.1 864 18707 78 Y 2 - - - - - -
le450_5c 450 9803 36 - - - - - - Y 472
le450_15c 450 16680 55 Y 475 - - - - - -
R125.1 125 209 8 N 22 N 235 N 18 - -
R125.1c 125 7501 54 N 0 N 1 N 1 N 0
R250.1 250 867 13 N 1222 N 1410 - - - -
zeroin.i.1 211 4100 55 N 1165 N 178 - - N 1707
zeroin.i.2 211 3541 42 N 1534 - - - - - -

• T : target value for the number of colors;
• For each different model BC∗(T ) considered we report:

– Res: the outcome of the solver on the model: “Y” means a feasible b-coloring with 
T colors has been retrieved; “N” means it has been proved that a b-coloring with 
T colors does not exist; “-” means that the computation has been inconclusive 
within the 1800 seconds allowed;

– Sec: the total computation time (approximated to seconds) taken to solve the 
model. In case of an inconclusive run, “-” is reported.
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From Tables 3 and 4 the base model BCx(T ) appears to be the most effective and 
fastest method in general. This was expected, since it has fewer variables and constraints 
than the other models. On the other hand, there are also several instances for which the 
other models are able to return an answer while BCx(T ) fails. These are the improve-
ments we were hoping for. In particular, models BCy(T ) and BCw(T ) appear to be able 
to succeed in finding a feasible solution (answer “Y”) for some instances while all the 
other methods are unable to close the computation within the 1800 seconds allowed. 
On the other hand, model BCz(T ) appears to be always dominated on the instances 
considered (it is the fastest one reporting an answer only for instance R125.1 ), but it 
is interesting to observe that with respect to the other methods, it seems consistently 
effective in identifying infeasible models (answers “N”). The results justify a full experi-
mental campaign, where all the four methods are run on all the instances in reach, with 
increasing values of T (starting from the best-known solution plus one) as far as possible.

6.3.2. New heuristic solutions
The models presented in Section 5 can be used to retrieve improved heuristic solutions, 

by setting the value of T to values higher than the currently best known lower bound. 
We systematically run the four models discussed in Section 5 on each instance, starting 
from a value of T equal to the current best known result from [17] and [18], increased 
by one. Given each instance and each model, the value of T was repeatedly increased by 
one until the instance was not closed in the given 1800 seconds. The best value of T for 
which a solution had been retrieved (answer “Y”) is then reported as the best improved 
heuristic solution retrieved.

The columns of Tables 5 and 6 contain, for each instance reported, the following 
information:

• Name: name of the instance;
• V : number of vertices of the graph;
• E: number of edges of the graph;
• Best known LB: the best-known lower bound for the value of Xb(G) available before 

the present study (from [17] and [18]);
• New best BC∗(T ): the best lower bound retrieved by the models described in Sec-

tion 5. The value (LB) and the model able to obtain it (Model) are reported.

From the results presented in Tables 5 and 6 it is possible to appreciate the contri-
butions of models BCx(T ), BCy(T ) and BCw(T ) to the new best heuristic solutions. 
This indicates that considering the models with more variables and constraints could be 
a good strategy to increase the probability of retrieving high quality solutions.

6.3.3. Upper bounds reduction
In addition to the natural approach to retrieve new heuristic solutions, the models 

discussed in Section 5 can be used in a reverse way to prove no solution exists for a given 
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Table 5
Improved heuristic solutions for the clique instances from [12].

Instance Best known 
LB [17], [18]

New best BC∗(T )
Name |V | |E| LB Model
C250.9 250 27984 127 128 x
gen200_p0.9_55 200 17910 104 105 w
hamming8-4 256 29864 48 56 x
johnson32-2-4 496 107880 40 42 y
p_hat300-1 300 10933 39 48 w
p_hat300-2 300 21928 71 85 y
p_hat500-3 500 93800 151 152 x
san200_0.9_2 200 17910 105 106 w
san200_0.9_3 200 17910 103 104 x
san400_0.7_3 400 55860 80 82 y
sanr200_0.7 200 13868 67 68 y
sanr200_0.9 200 17863 103 104 x
sanr400_0.5 400 39984 74 75 w
sanr400_0.7 400 55869 105 106 x

Table 6
Improved heuristic solutions for the coloring instances from [12].

Instance Best known 
LB [17], [18]

New best BC∗(T )
Name |V | |E| LB Model
dsjc250.9 250 27897 127 128 x
DSJR500.1c 500 121275 142 150 y
le450_5c 450 9803 35 36 w
le450_15c 450 16680 54 55 x

instance and a given value of T , with the aim of reducing known upper bounds. Starting 
from the current best-known upper bounds from [17] and Section 6.2, we systematically 
run the four models discussed in Section 5 on each instance. Given each instance and each 
model, the value of T was repeatedly decreased by one until the instance was not closed in 
the given 1800 seconds, or the best known lower bound (from [17], [18] and Section 6.3.3) 
was matched. In case during the process a solution should be provided (answer “Y”), it 
would be a new best, but this never happens in our experiments. Every run for which an 
answer “N” is returned, coincides with a value of T for which no solution exists. A chain 
of consecutive values starting from the best known upper bounds for which no solution 
exists, means an improved upper bound.

The columns of Tables 7 and 8 contain, for each instance reported, the following 
information:

• Name: name of the instance;
• V : number of vertices of the graph;
• E: number of edges of the graph;
• Best known UB: the best-known upper bound for the value of Xb(G) from [17] and 

Section 6.2;
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Table 7
Improved upper bounds from infeasible models for the clique instances from [12].

Instance Best known UB 
[17], Section 6.2

New best BC∗(T )
Name |V | |E| UB Model
C125.9 125 6963 72 71 z
C250.9 250 27984 162 152 x
gen200_p0.9_44 200 17910 123 118 x
gen200_p0.9_55 200 17910 124 119 x
hamming6-2 64 1824 36 35 w
hamming8-2 256 31616 161 160 x
johnson8-2-4 28 210 11 9 z
johnson8-4-4 70 1855 36 35 x
johnson16-2-4 120 5460 55 46 x
MANN_a27 378 70551 149 144 z
san200_0.7_1 200 13930 126 124 x
san200_0.7_2 200 13930 116 115 x
san200_0.9_1 200 17910 112 111 x
san200_0.9_2 200 17910 124 119 x
san200_0.9_3 200 17910 124 119 x
san400_0.9_1 400 71820 264 259 x
sanr200_0.9 200 17863 127 119 x
sanr400_0.5 400 39984 400 385 z

Table 8
Improved upper bounds from infeasible models for the coloring instances from [12].

Instance Best known UB 
[17], Section 6.2

New best BC∗(T )
Name |V | |E| UB Model
dsjc125.9 125 3891 74 72 x
dsjc250.9 250 27897 162 150 x
DSJR500.1c 500 121275 228 221 x
R125.1c 125 7501 54 53 x
R250.1c 250 30227 100 89 x

• New best BC∗(T ): the best upper bound retrieved by proving a model described in 
Section 5 is infeasible for some sequential values of T . The value (UB) and the model 
used to derive it (Model) are reported.

The results of Tables 7 and 8 suggest that models can be used to refine upper bounds, 
by proving some values of the number of colors T infeasible. Note that most of the 
improvements have been obtained with the standard model BCx(T ), but also model 
BCz(T ) substantially contributed by proving four new bounds.

6.4. Summary of the improved bounds

In this section we summarise all the improved upper and lower bounds found in our 
study. Only the relevant instances are included in the table. The columns of Tables 9
and 10 contain, for each instance reported, the following information:

• Name: name of the instance;
• V : number of vertices of the graph;
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• E: number of edges of the graph;
• Lower Bounds: the best-known lower bound for the value of Xb(G) available before 

the present study (from [17] and [18], Old) and the new bounds retrieved in this 
study (New);

• Upper Bounds: the best-known upper bound for the value of Xb(G) available before 
the present study (from [17] and [18], Old) and the new bounds retrieved in this 
study (New);

• Newly Closed: This column contains an asterisk in correspondence of the instances 
for which optimality of a solution has been provided for the first time in this study.

The tests for lower bounds have been run on 55 instances out of the 78 of the testbed 
introduced in [17], leaving out those instances already closed, or out of reach for the 
current methods due to their size. Improved results are summarized in Table 9 (note 
that non relevant instances are omitted). According to the table, 13 improved heuristic 
solutions (lower bounds) have been retrieved for clique instances by the new methods 
proposed. The newly proposed upper bounding techniques were instead able to improve 
38 best-known upper bounds. Finally, the optimality of the solution of 4 instances has 
been provided for the first time.

The tests for heuristic solutions have been run on 32 instances out of the 59 of the 
testbed introduced in [17], leaving out those instances already closed, or out of reach for 
the current methods due to their size. Improved results are summarized in Table 10 (note 
that non relevant instances are omitted). According to the table, 4 improved heuristic 
solutions (lower bounds) have been retrieved for coloring instances by the new methods 
proposed. The newly proposed upper bounding techniques were instead able to improve 
11 best-known upper bounds. Finally, the optimality of the solution of 7 instances has 
been provided for the first time.

It is worth observing that for all the newly closed instances reported in Tables 9
and 10, the optimal lower bound was known already, and the optimality proof has been 
provided by reducing the upper bound. This can be read as an indication of the quality 
of the heuristic methods previously available, and of those introduced for the first time 
in the present study.

7. Conclusions

In this paper we presented several ideas on how to use Linear and Mixed-Integer 
Programming to obtain upper and lower bounds for the optimal solution cost of b-
coloring, given an input graph. Such improvements have a direct potential impact on 
some real applications that can be modeled as b-coloring problems, and an indirect im-
pact on the many applications that can be modeled with traditional graph coloring, 
since b-coloring can improve some bounding techniques for the classical coloring prob-
lem.
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Table 9
Improved bounds for the clique instances from [12].

Instance Lower Bounds Upper Bounds Newly 
ClosedName |V | |E| Old New Old New

brock200_1 200 14834 73 146 127
brock200_4 200 13089 63 129 124
brock400_1 400 59723 123 294 254
brock400_2 400 59786 121 295 254
brock400_3 400 59681 123 294 254
brock400_4 400 59765 125 295 254
C125.9 125 6963 68 108 71
C250.9 250 27984 127 220 152
C500.9 500 112332 250 442 327
gen200_p0.9_44 200 17910 104 174 118
gen200_p0.9_55 200 17910 104 105 174 119
gen400_p0.9_55 400 71820 200 348 261
gen400_p0.9_65 400 71820 200 350 262
gen400_p0.9_75 400 71820 200 350 262
hamming6-2 64 1824 35 58 35 *
hamming6-4 64 704 15 23 22
hamming8-2 256 31616 144 248 160
hamming8-4 256 29864 48 56 164 144
johnson8-2-4 28 210 9 16 9 *
johnson8-4-4 70 1855 28 54 35
johnson16-2-4 120 5460 37 92 46
johnson32-2-4 496 107880 40 42 436 262
keller4 171 9435 48 106 101
MANN_a9 45 918 21 41 21 *
MANN_a27 378 70551 144 365 144 *
p_hat300-1 300 10933 39 48 91
p_hat300-2 300 21928 71 85 149
p_hat300-3 300 33390 113 209 190
p_hat500-3 500 93800 151 152 351
san200_0.7_1 200 13930 82 138 124
san200_0.7_2 200 13930 60 134 115
san200_0.9_1 200 17910 105 173 111
san200_0.9_2 200 17910 105 106 175 119
san200_0.9_3 200 17910 103 104 176 119
san400_0.7_1 400 55860 113 277 253
san400_0.7_2 400 55860 108 277 251
san400_0.7_3 400 55860 80 82 274 248
san400_0.9_1 400 71820 203 353 259
sanr200_0.7 200 13868 67 68 137 125
sanr200_0.9 200 17863 103 104 175 119
sanr400_0.5 400 39984 74 75 201
sanr400_0.7 400 55869 105 106 276 251

The upper bounding techniques rely on partial linear relaxations of a b-coloring model, 
and are able to improve the best known bound for 49 of the 87 instances considered. The 
procedure devised to derive heuristic solution is based on the solution of four variations 
of a decisional model that takes in input an instance and a target value for the number of 
colors, and return either a feasible b-coloring solution with T colors, or a message stating 
that no feasible solution with such a number of colors exists. With a proper selection 
of the target number of nodes, the proposed methods were able to improve 17 heuristic 
solutions over the 87 instances considered. As a side effect, it was also possible to prove 
optimality for 11 instances for the first time.
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Table 10
Improved bounds for the coloring instances from [12].

Instance Lower Bounds Upper Bounds Newly 
ClosedName |V | |E| Old New Old New

dsjc125.9 125 3891 68 109 72
dsjc250.9 250 27897 127 128 219 150
DSJR500.1c 500 121275 142 150 478 221
fpsol2.i.1 451 8691 77 79 77 *
inithx.i.1 864 18707 72 74 72 *
inithx.i.2 645 13979 50 52 50 *
inithx.i.3 621 13969 50 52 50 *
le450_5c 450 9803 35 36 52
le450_15c 450 16680 54 55 93
mulsol.i.1 197 3925 64 65 64 *
mulsol.i.2 188 3885 51 53 51 *
R125.1c 125 7501 53 116 53 *
R250.1c 250 30227 86 238 89
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