
EURO Journal on Computational Optimization 10 (2022) 100049
Contents lists available at ScienceDirect

EURO Journal on Computational
Optimization

journal homepage: www.elsevier.com/locate/ejco

Upper and lower bounds based on linear

programming for the b-coloring problem

Roberto Montemanni a,∗, Xiaochen Chou a, Derek H. Smith b

a Department of Sciences and Methods for Engineering, University of Modena and
Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
b School of Computing and Mathematics, University of South Wales, Llantwit Rd,
Pontypridd, CF37 1DL, Wales, United Kingdom

a r t i c l e i n f o a b s t r a c t

Keywords:
B-coloring
Linear programming
Graph coloring bounds

B-coloring is a problem in graph theory. It can model
some real applications, as well as being used to enhance
solution methods for the classical graph coloring problem. In
turn, improved solutions for the classical coloring problem
would impact a larger pool of practical applications in
several different fields such as scheduling, timetabling and
telecommunications. Given a graph G = (V, E), the b-coloring
problem aims to maximize the number of colors used while
assigning a color to every vertex in V , preventing adjacent
vertices from receiving the same color, with every color
represented by a special vertex, called a b-vertex. A vertex can
be a b-vertex only if the set of colors assigned to its adjacent
vertices includes all the colors, apart from the one assigned to
the vertex itself.
This work employs methods based on Linear Programming
to derive new upper and lower bounds for the problem. In
particular, starting from a Mixed Integer Linear Programming
model recently presented, upper bounds are obtained through
partial linear relaxations of this model, while lower bounds
are derived by considering different variations of the original
model, modified to target a specific number of colors provided
as input. The experimental campaign documented in the

* Corresponding author.
E-mail addresses: roberto.montemanni@unimore.it (R. Montemanni), xiaochen.chou@unimore.it

(X. Chou), derek.smith@southwales.ac.uk (D.H. Smith).
https://doi.org/10.1016/j.ejco.2022.100049
2192-4406/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Association of European
Operational Research Societies (EURO). This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ejco.2022.100049
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ejco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejco.2022.100049&domain=pdf
mailto:roberto.montemanni@unimore.it
mailto:xiaochen.chou@unimore.it
mailto:derek.smith@southwales.ac.uk
https://doi.org/10.1016/j.ejco.2022.100049
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049
paper led to several improvements to the state-of-the-art
results.
© 2022 The Author(s). Published by Elsevier Ltd on behalf
of Association of European Operational Research Societies

(EURO). This is an open access article under the CC
BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Given an undirected graph G = (V, E), a b-coloring with K colors can be defined as
a function that assigns a color c(i) ∈ C = {1, 2, . . . , K} to each vertex i of V , so that
c(i) �= c(j) for every (i, j) ∈ E. Let N(i) = {j|(i, j) ∈ E} be the neighborhood of i. For
each k ∈ C there must exist a vertex i ∈ V with c(i) = k and with N(i) ∩ {j ∈ V |c(j) =
h} �= ∅ ∀h ∈ C\{k}. Less formally, it is required that for each color k used, there is a
vertex assigned to color k (called b-vertex) such that for every other color used h, there
is at least one of its neighbors assigned to h. A coloring of G with the minimum number
χ(G) of colors must be a b-coloring. Otherwise each vertex assigned a color k which does
not have a b-vertex could be re-colored with one of the colors other than k. This would
contradict the minimality of χ(G).

The b-coloring problem aims to find a b-coloring using the maximum possible number
of colors. Let Xb(G) be the b-chromatic number of a graph G, defined as the maximum
number of colors for which G admits a b-coloring. Fig. 1 provides an example of an
optimal b-coloring.

2. Literature review

Estimating Xb(G) is proved to be NP-hard in [11]. Consequently, the b-coloring prob-
lem is also NP-hard. It has been proved in [15] that the difference between the optimal
solution values of the classical coloring problem ([16]) and b-coloring for the same graph
G can be arbitrarily large. The b-coloring problem can be largely influenced by the girth
(length of a shortest cycle) of the graph, as shown in [3]. As demonstrated in [1], a b-
coloring with k colors does not necessarily exist for all the possible values of k ranging
from the minimum number for which a b-coloring exists up to the b-chromatic number;
gaps might exist.

A hybrid evolutionary algorithm for the b-coloring problem is discussed in [6]. A in-
teger linear programming formulation for the b-chromatic index Xb(G) is introduced in
[14], and this model is at the basis of the branch and cut algorithm provided in [13].
Matheuristic approaches to the problem are introduced in [17]. In the same work, an ef-
fective new mixed integer linear programming model is presented. Another metaheuristic
method, based on an iterative schema and able to improve some of the lower bounds on
the same set of instances, was discussed in [18]. Note that the testbed commonly adopted

http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049 3
Fig. 1. Example of a graph with an associated optimal b-coloring with 4 colors, here represented by numbers.
Vertices with the name in bold are the b-vertices.

for b-coloring is composed of instances originally proposed for other graph problems in
[12].

In the works [7] and [8] b-coloring is used within postal mail sorting systems to model a
new approach for address block localization. The aim is to assist the software for address
recognition. A novel clustering technique based on b-coloring is used by the French
healthcare system to identify and formalize a new typology of hospital stays, as presented
in [5]. As discussed in [2], an important indirect practical motivation for attacking the b-
coloring problem is that it can provide viable bounds for the classical coloring problem.
Note that this in turn may potentially lead to benefits to several important practical
applications such as scheduling [21], timetabling [4] and telecommunications [19,20,9].

The paper is organized as follows. A Mixed Integer Program is discussed in Section 3.
This model will be the starting point for the subsequent results. In Section 4 some upper
bounding technique based on partial linear relaxations are proposed. Section 5 is devoted
to heuristic solutions and lower bounds, while Section 6 presents and summarizes the
computational results of the methods previously described. Section 7 finally concludes
the paper.

3. An integer programming model

In this section an Integer Programming model originally proposed in [17] is described.
There is a set of variables x such that xij = 1 if vertex j is colored with the color of the
representative vertex i, 0 otherwise. A vertex i is a b-vertex, or representative, if and
only if xii = 1. In order to simplify the notation, let N̄(i) = V \ {{i} ∪ N(i)} be the
anti-neighborhood of i.

BC : max
∑

i∈V

xii (1)

xij + xik ≤ xii i ∈ V ; j, k ∈ N̄(i); (j, k) ∈ E (2)

xij ≤ xii i ∈ V ; j ∈ N̄(i); �k ∈ N̄(i) : (j, k) ∈ E (3)
∑

k∈N(j),
¯

xik ≥ xii + xjj − 1 i, j ∈ V ; (i, j) /∈ E (4)
k∈N(i)

4 R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049
∑

j /∈N(i)

xji = 1 i ∈ V (5)

xij ∈ {0, 1} i, j ∈ V (6)

The objective function (1) aims at maximizing the number of b-vertices. Constraints
(2) imposes a proper coloring, and at the same time allows a vertex to give a color only
if it is a representative. Constraints (3) again state that only representative can give a
color, and applies to those cases that are not already covered by (2). Constraints (4)
formalize the proper b-coloring restrictions. They imply that if both vertices i and j are
b-vertices, then there must be a neighbor of j which is represented by i. Technically,
if both i and j are representatives then the right-hand side is equal to one, implying
that the summation in the left-hand side (composed by the neighbors of j potentially
represented by i) should be at least one. Constraints (5) ensure that every vertex must be
assigned a color (note that j can take value i in the summation). The domain definition
for the variables is provided by constraints (6). We refer the interested reader to [17] for
a more in-depth discussion of the model.

4. Upper bounds based on partial linear relaxations

The linear relaxation of model (BC) is obtained by substituting constraints (6) with
the following ones:

0 ≤ xij ≤ 1 i, j ∈ V (7)

By definition, the cost of the optimal solution of the linear relaxation provides a valid
upper bound for the optimal cost of BC, the domains of the variables defined by (7)
being a relaxation of the domains originally specified by (6). The linear relaxation is also
much easier to solve with respect to the original BC, which is an integer program. As
a consequence, solving the linear relaxation could turn out to be a suitable method to
efficiently derive effective upper bounds for the costs of b-coloring problems.

Solving BC provides optimal solutions but often has impractical computation times,
while solving the pure linear relaxation provides (possibly weak) upper bounds with a
low computational effort. It is also possible to consider intermediate versions, namely
partial linear relaxations, where only a fraction of the variables are forced to be integer
through constraint (6), while the remaining variables are continuous, as in constraint (7).
The previous studies [17] and [18] indicated that the representative-selection variables
xii are the critical ones, since once they are set, the complexity of the residual problem
boils down substantially. For this reason, our strategy will only operate on them, with
the remaining xij variables continuous. In particular, we will refer to these models as
BC(p), where p indicates the percentage of the representative variables xii forced to be
integer. With such a notation, BC(100) represents a mixed integer program, while BC(0)
is the pure linear relaxation. Note that even when large values of p are considered, only

R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049 5
a fraction of the total variables are set to binary, since only representative variables are
considered while calculating the percentage p. Anyway, all the partial linear relaxations
considered for a same instance can be seen as a tradeoff between precision and speed, as
it will be shown in Section 6.2.1.

When a partial linear relaxation approach is considered, a further question to answer is
about the selection of the p% of the representative variables for which integrality should
be enforced. Similar questions have been shown to be relevant for related problems
such as the maximum clique problem [22]. In our case, preliminary results have clearly
shown that using heuristic criteria, taking into account vertex characteristics such as the
number of neighbors, does not lead to any advantage. In the rest of the paper the p% of
variables forced to be integer are therefore selected at random. This means that different
runs might lead to different results. In our experiments we will consider one run only.
Note that more runs could have produced better results and give more clues about the
robustness of the methods, but the computational power available to us was limited. The
tests proposed however clearly show the potential of the methods proposed.

5. Lower bounds based on models for the decision version of the problem

5.1. Model BCx(T)

Formally, after having decided a target value T for the objective function (1), starting
from model BC it is possible to obtain the following decision model BCx(T).

BCx(T) : xij + xik ≤ xii i ∈ V ; j, k ∈ N̄(i); (j, k) ∈ E (8)

xij ≤ xii i ∈ V ; j ∈ N̄(i); �k ∈ N̄(i) : (j, k) ∈ E (9)
∑

k∈N(j),
k∈N̄(i)

xik ≥ xii + xjj − 1 i, j ∈ V ; (i, j) /∈ E (10)

∑

j /∈N(i)

xji = 1 i ∈ V (11)

∑

i∈V

xii = T (12)

xij ∈ {0, 1} i, j ∈ V (13)

The new model neglects the objective function (1) and has the new constraint (12)
to define the target number of colors. The constraint (12) implies that we accept only
feasible solutions with exactly T b-vertices.

Note that if a feasible solution with T b-vertices exists for an instance, then the model
will return a feasible solution. Otherwise, the solver will return an appropriate message
to signal an infeasible problem, and it is possible to conclude that no feasible solution
exists with the given number T of b-vertices.

6 R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049
The model BCx(T) is a decision model; if a feasible solution is identified, the compu-
tation is stopped, or alternatively the computation stops once the solver proves that such
a solution does not exist. It is possible that faster feasible colorings with T colors can
be obtained by models with a cost function. For these models solutions with a non-zero
cost may exist, although only solutions with cost zero correspond to feasible colorings.
Having a path of solutions with decreasing costs toward a feasible (zero cost) solution
might help the solver. This is the rationale behind the models described in the following
sections.

5.2. Model BCy(T)

Starting from the base model BCx(T), for this model a new set of non-negative integer
variables y defined for each i ∈ V are introduced such that yi represents the number of
excess colors assigned to vertex i, additional to the single color required. With this new
set of variables, it is possible to define the following new model BCy(T) for the decision
version of b-coloring. Unchanged constraints with respect to BCx(T) are repeated for
the sake of clarity.

BCy(T) : min
∑

i∈V

yi (14)

xij + xik ≤ xii i ∈ V ; j, k ∈ N̄(i); (j, k) ∈ E (15)

xij ≤ xii i ∈ V ; j ∈ N̄(i); �k ∈ N̄(i) : (j, k) ∈ E (16)
∑

k∈N(j),
k∈N̄(i)

xik ≥ xii + xjj − 1 i, j ∈ V ; (i, j) /∈ E (17)

∑

j /∈N(i)

xji = 1 + yi i ∈ V (18)

∑

i∈V

xii = T (19)

xij ∈ {0, 1} i, j ∈ V (20)

yi ≥ 0, integer i ∈ V (21)

A feasible solution with T colors for the b-coloring problem exists if and only if a
solution of BCy(T) of cost 0 exists, according to the new objective function (14). Note
that now feasible solutions with non-zero cost for the model are allowed, and the hope
is that this can give an advantage to the solver. The other differences with respect to
the standard model BCx(T) are constraints (18) that substitute (11) and the presence
of the domain constraints (21) for the yi variables.

R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049 7
5.3. Model BCz(T)

Starting from the base model BCx(T), for this model a new set of binary variables z
defined for each (i, j) ∈ E are introduced such that zij = 1 if nodes i and j are assigned
the same color notwithstanding (i, j) ∈ E, 0 otherwise. With this new set of variables,
it is possible to define the following new model BCz(T) for the decision version of b-
coloring. Unchanged constraints with respect to BCx(T) are repeated for the sake of
clarity.

BCz(T) : min
∑

i∈V

∑

j∈V :(i,j)∈E

zij (22)

xij + xik ≤ xii + zjk i ∈ V ; j, k ∈ N̄(i); (j, k) ∈ E (23)

xij ≤ xii i ∈ V ; j ∈ N̄(i); �k ∈ N̄(i) : (j, k) ∈ E (24)
∑

k∈N(j),
k∈N̄(i)

xik ≥ xii + xjj − 1 i, j ∈ V ; (i, j) /∈ E (25)

∑

j /∈N(i)

xji = 1 i ∈ V (26)

∑

i∈V

xii = T (27)

xij ∈ {0, 1} i, j ∈ V (28)

zij ∈ {0, 1} (i, j) ∈ E (29)

A feasible solution with T colors for the b-coloring problem exists if and only if a
solution of BCz(T) of cost 0 exists, according to the new objective function (22). Note
that now feasible solutions with non-zero cost for the model are allowed, and, as explained
previously, the hope is that this can give an advantage to the solver. The other differences
with respect to the standard model BCx(T) are constraints (23) that substitute (8) and
the presence of the domain constraints (29) for the zij variables.

5.4. Model BCw(T)

Starting from the base model BCx(T), for this model a new set of binary variables
w defined for each (i, j) /∈ E are introduced such that wij = 1 if both vertices i and
j are representative but there is no vertex adjacent to j associated with the color of
i (violating therefore a crucial property of b-coloring), 0 otherwise. With this new set
of variables, it is possible to define the following new model BCw(T) for the decision
version of b-coloring. Unchanged constraints with respect to BCx(T) are repeated for
the sake of clarity.

8 R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049
BCw(T) : min
∑

i∈V

∑

j∈V :(i,j)/∈E

wij (30)

xij + xik ≤ xii i ∈ V ; j, k ∈ N̄(i); (j, k) ∈ E (31)

xij ≤ xii i ∈ V ; j ∈ N̄(i); �k ∈ N̄(i) : (j, k) ∈ E (32)
∑

k∈N(j),
k∈N̄(i)

xik ≥ xii + xjj − 1 − wij i, j ∈ V ; (i, j) /∈ E (33)

∑

j /∈N(i)

xji = 1 i ∈ V (34)

∑

i∈V

xii = T (35)

xij ∈ {0, 1} i, j ∈ V (36)

wij ∈ {0, 1} (i, j) /∈ E (37)

A feasible solution with T colors for the b-coloring problem exists if and only if a
solution of BCw(T) of cost 0 exists, according to the new objective function (30). Note
that now feasible solutions with non-zero cost for the model are allowed, and, as explained
previously, the hope is that this can give an advantage to the solver. The other differences
with respect to the standard model BCx(T) are constraints (33) that substitute (10) and
the presence of the domain constraints (37) for the wij variables.

6. Experimental results

6.1. Datasets and settings

The instances considered for the experiments of this paper are based on the DIMACS
benchmark set originally proposed for the minimum coloring and the maximum clique
problems in [12]. The instances have been considered for the first time in the b-coloring
context in [17], where a total of 59 instances from minimum coloring and 78 from max-
imum clique have been adopted. Due to the nature of Linear Programming and the
characteristics of the models, it is not possible to handle all the instances (typically
those with more than 500 nodes are out of reach), moreover the instances for which an
optimal solution is already known have not been considered in this study. This leaves
us roughly with a total of 32 instances from minimum coloring and 55 instances from
maximum clique, although not all the methods proposed will be able to handle all of the
instances.

The routines to create all the models considered have been coded in ANSI C, and all
the experiments reported have been run on a computer equipped with an Intel Core i7
processor running at 2.7 GHz and 16 GB of RAM running Windows 10. All the linear
and integer models have been solved by Gurobi 9.1 [10] running in single-thread mode.

R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049 9
In all the experiments reported a maximum computation time of 1800 seconds is allowed
for each method/instance combination.

6.2. Partial linear relaxations

6.2.1. Percentage of integer variables
The aim of this section is to investigate the trade-off between quality of the upper

bound and computation time while using the partial linear relaxation approach described
in Section 4. We consider three representative instances and chart the values of the
solution of BC(p) and the relative computation time for several values of the percentage
p of representative variables set to be integer. The results are depicted in Fig. 2. One can
observe how in general the quality of the upper bound gets better when higher values
of p are considered, although the computation time required to produce the estimation
increases very quickly with p. This is especially true for the instance R2501c, that does
not appear particularly challenging for the solver: all the partial linear relaxations are
solved to optimality. For the other two instances, when the value of p is increased, the
computation is interrupted after 1800 seconds, and the value of the solution reported is
that of the best heuristic solution found at that time, which is probably not optimal.
The lack of optimality is clear for the instance gen200_p0.9_55, for which the upper
bound oscillates.

In conclusion, considering partial linear relaxation with an increasing percentage of
integer variables moderately improves the quality of the upper bound, at the price of
a substantial increase in the computation time. The technique looks, however, to be
effective.

6.2.2. Results
In this section we summarise the results obtained by BC(p) for different values of p,

namely 0, 5, 10, 20, 40, 60, 80, 100. Only those instances for which a solution was obtained
by at least one of the values of p considered within 1800 seconds, are included in the
tables. The columns of Tables 1 and 2 contain, for each instance reported, the following
information:

• Name: name of the instance;
• V : number of vertices of the graph;
• E: number of edges of the graph;
• Best known UB: the best-known upper bound for the value of Xb(G) available before

the present study (from [17]);
• Best BC(p): the best upper bound retrieved by BC(p) and the value of p corre-

sponding to the best (in case of ties the value of p leading to the fastest solution is
reported). Improved upper bounds are reported in bold font.

10 R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049
Fig. 2. Evolution of the upper bounds and computation times while varying the percentage of integer variables
p in BP (p).

Table 1 covers 44 instances, and 38 improved upper bounds are reported. This indi-
cates that working on partial linear relaxations is indeed a promising approach. Looking
at the values of p leading to the best results within the 1800 seconds allowed, one can

R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049 11
Table 1
Best upper bounds retrieved by BC(p) for clique instances from [12]. Improved upper bounds are shown
for 38 of the 44 instances considered.

Instance Best known
UB [17]

Best BC(p)
Name |V | |E| UB % integer p

brock200_1 200 14834 146 127 0
brock200_2 200 9876 100 119 0
brock200_3 200 12048 120 123 0
brock200_4 200 13089 129 124 0
brock400_1 400 59723 294 254 0
brock400_2 400 59786 295 254 0
brock400_3 400 59681 294 254 5
brock400_4 400 59765 295 254 0
C125.9 125 6963 108 74 40
C250.9 250 27984 220 162 5
C500.9 500 112332 442 327 0
gen200_p0.9_44 200 17910 174 123 40
gen200_p0.9_55 200 17910 174 124 20
gen400_p0.9_55 400 71820 348 261 0
gen400_p0.9_65 400 71820 350 262 0
gen400_p0.9_75 400 71820 350 262 0
hamming6-2 64 1824 58 36 60
hamming6-4 64 704 23 22 60
hamming8-2 256 31616 248 161 10
hamming8-4 256 29864 164 144 5
johnson8-2-4 28 210 16 11 60
johnson8-4-4 70 1855 54 36 40
johnson16-2-4 120 5460 92 55 60
johnson32-2-4 496 107880 436 262 20
keller4 171 9435 106 101 0
MANN_a9 45 918 41 21 60
MANN_a27 378 70551 365 149 80
p_hat300-1 300 10933 91 300 0
p_hat300-2 300 21928 149 177 0
p_hat300-3 300 33390 209 190 5
san200_0.7_1 200 13930 138 126 40
san200_0.7_2 200 13930 134 116 5
san200_0.9_1 200 17910 173 112 60
san200_0.9_2 200 17910 175 124 80
san200_0.9_3 200 17910 176 124 60
san400_0.5_1 400 39900 204 220 0
san400_0.7_1 400 55860 277 253 0
san400_0.7_2 400 55860 277 251 0
san400_0.7_3 400 55860 274 248 0
san400_0.9_1 400 71820 353 264 0
sanr200_0.7 200 13868 137 125 0
sanr200_0.9 200 17863 175 127 5
sanr400_0.5 400 39984 201 400 0
sanr400_0.7 400 55869 276 251 5

observe an inverse correlation between the number of nodes |V | and edges |E| and the
best value of p. This suggests that the size of the instances is an indicator about how
challenging the instances are for the solver. There are however outliers like, for example,
MANN_a27, which is a fairly large instance, but for which the best result is obtained
for p = 80. This happens because a good heuristic solution (upper bound) is retrieved by
the solver within the allowed time. In conclusion, a forecast for the best value of p can
be done by considering the size of the instance under investigation, but this factor does
not fully capture the essence of the problem, and can only be used as a rough indicator.

12 R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049
Table 2
Best upper bounds retrieved by BC(p) for coloring instances from [12]. Improved upper bounds are shown
for 5 of the 15 instances considered.

Instance Best known
UB [17]

Best BC(p)
Name |V | |E| UB % integer p

dsjc125.5 125 3891 63 75 0
dsjc125.9 125 6961 109 74 40
dsjc250.5 250 15668 126 150 0
dsjc250.9 250 27897 219 162 5
dsjr500.1c 500 121275 478 228 80
flat300_26_0 300 21633 146 179 0
fpsol2.i.1 451 8691 79 151 0
mulsol.i.1 197 3925 65 67 40
mulsol.i.2 188 3885 53 69 40
r125.1 125 209 7 38 40
r125.1c 125 7501 116 54 80
r250.1c 250 30227 238 99 100
r250.5 250 14849 119 150 0
school1_nsh 352 14612 101 351 0
school1 385 19095 117 384 0

Similar conclusions can be drawn for the results reported in Table 2, although in this
case only 5 upper bounds have been improved over the 15 instances considered. Note
also that for this second set of instances the correlation between the size of the instances
and the best value of p appears to be less obvious, making the prediction of the right
value of p more difficult.

Observe finally how for two instances – p_hat300-1 and sanr400_0.5 in Table 1 –
only a trivial upper bound equal to the number of nodes is reported, indicating that
the upper bounding methods proposed are not able to properly handle these instances.
The heuristic methods we propose will be however able to improve the best known lower
bounds for these instances (see Section 6.3.2)..

6.3. Models for the decision version of b-coloring

6.3.1. Comparison of the models
In this section we consider some representative instances and after having set a value

of T equal to the cost of the best-known heuristic solution, we report the results obtained
by the four models described in Section 5. Note that in the experiments we purposely
run some values of T equal to the known optimal solution plus one, in order to test the
different models on infeasible problems. The results are reported only for instances for
which at least one of the models considered was able to return a conclusive answer.

The columns of Tables 3 and 4 contain, for each instance reported, the following
information:

• Name: name of the instance;
• V : number of vertices of the graph;
• E: number of edges of the graph;

R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049 13
Table 3
Lower bounds computation results on the relevant clique instances from [12].

Instance T BCx(T) BCy(T) BCz(T) BCw(T)
Name |V | |E| Res Sec Res Sec Res Sec Res Sec
c-fat200-1 200 1534 19 N 120 N 280 N 182 - -
c-fat200-2 200 3235 35 N 260 - - N 874 - -
c-fat200-5 200 8473 87 N 699 N 1072 - - -
c-fat500-1 500 4459 22 N 1394 - - N 1604 - -
C250.9 250 27984 128 Y 241 Y 1063 - - -
gen200_p0.9_55 200 17910 105 - - - - - Y 1510
hamming6-2 64 1824 36 - - N 202 N 1166 N 95
hamming8-4 256 20864 53 Y 13 Y 1139 - - - -
johnson8-2-4 28 210 10 N 3 N 33 N 8 N 26
johnson32-2-4 496 107880 41 - - Y 246 - -
MANN_a9 45 918 22 N 1 N 3 N 0 N 0
MANN_a27 378 70551 145 N 10 N 270 N 181 N 127
p_hat300-1 300 10933 48 - - - - - - Y 501
p_hat300-2 300 21928 83 - - Y 453 - - - -
p_hat500-3 500 93800 152 Y 1053 Y 150 - - - -
san200_0.9_2 200 17910 106 - - - - - - Y 1249
san200_0.9_3 200 17910 104 Y 150 Y 349 Y 182 Y 1206
san400_0.7_3 400 55860 81 - - Y 369 Y 799 - -
sanr200_0.7 200 13868 68 - - Y 1431 - - - -
sanr200_0.9 200 17863 104 Y 199 - - - - Y 628
sanr400_0.5 400 39984 75 - - - - - - Y 419
sanr400_0.7 400 55869 106 Y 1320 - - - - - -

Table 4
Lower bounds computation results on the relevant coloring instances from [12].

Instance T BCx(T) BCy(T) BCz(T) BCw(T)
Name |V | |E| Res Sec Res Sec Res Sec Res Sec
dsjc125.1 125 736 18 N 115 - - N 139 - -
dsjc250.9 250 27897 128 Y 861 - - - - Y 1109
DSJR500.1c 500 121275 143 - - Y 649 Y 258 Y 241
inithx.i.1 864 18707 78 Y 2 - - - - - -
le450_5c 450 9803 36 - - - - - - Y 472
le450_15c 450 16680 55 Y 475 - - - - - -
R125.1 125 209 8 N 22 N 235 N 18 - -
R125.1c 125 7501 54 N 0 N 1 N 1 N 0
R250.1 250 867 13 N 1222 N 1410 - - - -
zeroin.i.1 211 4100 55 N 1165 N 178 - - N 1707
zeroin.i.2 211 3541 42 N 1534 - - - - - -

• T : target value for the number of colors;
• For each different model BC∗(T) considered we report:

– Res: the outcome of the solver on the model: “Y” means a feasible b-coloring with
T colors has been retrieved; “N” means it has been proved that a b-coloring with
T colors does not exist; “-” means that the computation has been inconclusive
within the 1800 seconds allowed;

– Sec: the total computation time (approximated to seconds) taken to solve the
model. In case of an inconclusive run, “-” is reported.

14 R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049
From Tables 3 and 4 the base model BCx(T) appears to be the most effective and
fastest method in general. This was expected, since it has fewer variables and constraints
than the other models. On the other hand, there are also several instances for which the
other models are able to return an answer while BCx(T) fails. These are the improve-
ments we were hoping for. In particular, models BCy(T) and BCw(T) appear to be able
to succeed in finding a feasible solution (answer “Y”) for some instances while all the
other methods are unable to close the computation within the 1800 seconds allowed.
On the other hand, model BCz(T) appears to be always dominated on the instances
considered (it is the fastest one reporting an answer only for instance R125.1), but it
is interesting to observe that with respect to the other methods, it seems consistently
effective in identifying infeasible models (answers “N”). The results justify a full experi-
mental campaign, where all the four methods are run on all the instances in reach, with
increasing values of T (starting from the best-known solution plus one) as far as possible.

6.3.2. New heuristic solutions
The models presented in Section 5 can be used to retrieve improved heuristic solutions,

by setting the value of T to values higher than the currently best known lower bound.
We systematically run the four models discussed in Section 5 on each instance, starting
from a value of T equal to the current best known result from [17] and [18], increased
by one. Given each instance and each model, the value of T was repeatedly increased by
one until the instance was not closed in the given 1800 seconds. The best value of T for
which a solution had been retrieved (answer “Y”) is then reported as the best improved
heuristic solution retrieved.

The columns of Tables 5 and 6 contain, for each instance reported, the following
information:

• Name: name of the instance;
• V : number of vertices of the graph;
• E: number of edges of the graph;
• Best known LB: the best-known lower bound for the value of Xb(G) available before

the present study (from [17] and [18]);
• New best BC∗(T): the best lower bound retrieved by the models described in Sec-

tion 5. The value (LB) and the model able to obtain it (Model) are reported.

From the results presented in Tables 5 and 6 it is possible to appreciate the contri-
butions of models BCx(T), BCy(T) and BCw(T) to the new best heuristic solutions.
This indicates that considering the models with more variables and constraints could be
a good strategy to increase the probability of retrieving high quality solutions.

6.3.3. Upper bounds reduction
In addition to the natural approach to retrieve new heuristic solutions, the models

discussed in Section 5 can be used in a reverse way to prove no solution exists for a given

R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049 15
Table 5
Improved heuristic solutions for the clique instances from [12].

Instance Best known
LB [17], [18]

New best BC∗(T)
Name |V | |E| LB Model
C250.9 250 27984 127 128 x
gen200_p0.9_55 200 17910 104 105 w
hamming8-4 256 29864 48 56 x
johnson32-2-4 496 107880 40 42 y
p_hat300-1 300 10933 39 48 w
p_hat300-2 300 21928 71 85 y
p_hat500-3 500 93800 151 152 x
san200_0.9_2 200 17910 105 106 w
san200_0.9_3 200 17910 103 104 x
san400_0.7_3 400 55860 80 82 y
sanr200_0.7 200 13868 67 68 y
sanr200_0.9 200 17863 103 104 x
sanr400_0.5 400 39984 74 75 w
sanr400_0.7 400 55869 105 106 x

Table 6
Improved heuristic solutions for the coloring instances from [12].

Instance Best known
LB [17], [18]

New best BC∗(T)
Name |V | |E| LB Model
dsjc250.9 250 27897 127 128 x
DSJR500.1c 500 121275 142 150 y
le450_5c 450 9803 35 36 w
le450_15c 450 16680 54 55 x

instance and a given value of T , with the aim of reducing known upper bounds. Starting
from the current best-known upper bounds from [17] and Section 6.2, we systematically
run the four models discussed in Section 5 on each instance. Given each instance and each
model, the value of T was repeatedly decreased by one until the instance was not closed in
the given 1800 seconds, or the best known lower bound (from [17], [18] and Section 6.3.3)
was matched. In case during the process a solution should be provided (answer “Y”), it
would be a new best, but this never happens in our experiments. Every run for which an
answer “N” is returned, coincides with a value of T for which no solution exists. A chain
of consecutive values starting from the best known upper bounds for which no solution
exists, means an improved upper bound.

The columns of Tables 7 and 8 contain, for each instance reported, the following
information:

• Name: name of the instance;
• V : number of vertices of the graph;
• E: number of edges of the graph;
• Best known UB: the best-known upper bound for the value of Xb(G) from [17] and

Section 6.2;

16 R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049
Table 7
Improved upper bounds from infeasible models for the clique instances from [12].

Instance Best known UB
[17], Section 6.2

New best BC∗(T)
Name |V | |E| UB Model
C125.9 125 6963 72 71 z
C250.9 250 27984 162 152 x
gen200_p0.9_44 200 17910 123 118 x
gen200_p0.9_55 200 17910 124 119 x
hamming6-2 64 1824 36 35 w
hamming8-2 256 31616 161 160 x
johnson8-2-4 28 210 11 9 z
johnson8-4-4 70 1855 36 35 x
johnson16-2-4 120 5460 55 46 x
MANN_a27 378 70551 149 144 z
san200_0.7_1 200 13930 126 124 x
san200_0.7_2 200 13930 116 115 x
san200_0.9_1 200 17910 112 111 x
san200_0.9_2 200 17910 124 119 x
san200_0.9_3 200 17910 124 119 x
san400_0.9_1 400 71820 264 259 x
sanr200_0.9 200 17863 127 119 x
sanr400_0.5 400 39984 400 385 z

Table 8
Improved upper bounds from infeasible models for the coloring instances from [12].

Instance Best known UB
[17], Section 6.2

New best BC∗(T)
Name |V | |E| UB Model
dsjc125.9 125 3891 74 72 x
dsjc250.9 250 27897 162 150 x
DSJR500.1c 500 121275 228 221 x
R125.1c 125 7501 54 53 x
R250.1c 250 30227 100 89 x

• New best BC∗(T): the best upper bound retrieved by proving a model described in
Section 5 is infeasible for some sequential values of T . The value (UB) and the model
used to derive it (Model) are reported.

The results of Tables 7 and 8 suggest that models can be used to refine upper bounds,
by proving some values of the number of colors T infeasible. Note that most of the
improvements have been obtained with the standard model BCx(T), but also model
BCz(T) substantially contributed by proving four new bounds.

6.4. Summary of the improved bounds

In this section we summarise all the improved upper and lower bounds found in our
study. Only the relevant instances are included in the table. The columns of Tables 9
and 10 contain, for each instance reported, the following information:

• Name: name of the instance;
• V : number of vertices of the graph;

R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049 17
• E: number of edges of the graph;
• Lower Bounds: the best-known lower bound for the value of Xb(G) available before

the present study (from [17] and [18], Old) and the new bounds retrieved in this
study (New);

• Upper Bounds: the best-known upper bound for the value of Xb(G) available before
the present study (from [17] and [18], Old) and the new bounds retrieved in this
study (New);

• Newly Closed: This column contains an asterisk in correspondence of the instances
for which optimality of a solution has been provided for the first time in this study.

The tests for lower bounds have been run on 55 instances out of the 78 of the testbed
introduced in [17], leaving out those instances already closed, or out of reach for the
current methods due to their size. Improved results are summarized in Table 9 (note
that non relevant instances are omitted). According to the table, 13 improved heuristic
solutions (lower bounds) have been retrieved for clique instances by the new methods
proposed. The newly proposed upper bounding techniques were instead able to improve
38 best-known upper bounds. Finally, the optimality of the solution of 4 instances has
been provided for the first time.

The tests for heuristic solutions have been run on 32 instances out of the 59 of the
testbed introduced in [17], leaving out those instances already closed, or out of reach for
the current methods due to their size. Improved results are summarized in Table 10 (note
that non relevant instances are omitted). According to the table, 4 improved heuristic
solutions (lower bounds) have been retrieved for coloring instances by the new methods
proposed. The newly proposed upper bounding techniques were instead able to improve
11 best-known upper bounds. Finally, the optimality of the solution of 7 instances has
been provided for the first time.

It is worth observing that for all the newly closed instances reported in Tables 9
and 10, the optimal lower bound was known already, and the optimality proof has been
provided by reducing the upper bound. This can be read as an indication of the quality
of the heuristic methods previously available, and of those introduced for the first time
in the present study.

7. Conclusions

In this paper we presented several ideas on how to use Linear and Mixed-Integer
Programming to obtain upper and lower bounds for the optimal solution cost of b-
coloring, given an input graph. Such improvements have a direct potential impact on
some real applications that can be modeled as b-coloring problems, and an indirect im-
pact on the many applications that can be modeled with traditional graph coloring,
since b-coloring can improve some bounding techniques for the classical coloring prob-
lem.

18 R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049
Table 9
Improved bounds for the clique instances from [12].

Instance Lower Bounds Upper Bounds Newly
ClosedName |V | |E| Old New Old New

brock200_1 200 14834 73 146 127
brock200_4 200 13089 63 129 124
brock400_1 400 59723 123 294 254
brock400_2 400 59786 121 295 254
brock400_3 400 59681 123 294 254
brock400_4 400 59765 125 295 254
C125.9 125 6963 68 108 71
C250.9 250 27984 127 220 152
C500.9 500 112332 250 442 327
gen200_p0.9_44 200 17910 104 174 118
gen200_p0.9_55 200 17910 104 105 174 119
gen400_p0.9_55 400 71820 200 348 261
gen400_p0.9_65 400 71820 200 350 262
gen400_p0.9_75 400 71820 200 350 262
hamming6-2 64 1824 35 58 35 *
hamming6-4 64 704 15 23 22
hamming8-2 256 31616 144 248 160
hamming8-4 256 29864 48 56 164 144
johnson8-2-4 28 210 9 16 9 *
johnson8-4-4 70 1855 28 54 35
johnson16-2-4 120 5460 37 92 46
johnson32-2-4 496 107880 40 42 436 262
keller4 171 9435 48 106 101
MANN_a9 45 918 21 41 21 *
MANN_a27 378 70551 144 365 144 *
p_hat300-1 300 10933 39 48 91
p_hat300-2 300 21928 71 85 149
p_hat300-3 300 33390 113 209 190
p_hat500-3 500 93800 151 152 351
san200_0.7_1 200 13930 82 138 124
san200_0.7_2 200 13930 60 134 115
san200_0.9_1 200 17910 105 173 111
san200_0.9_2 200 17910 105 106 175 119
san200_0.9_3 200 17910 103 104 176 119
san400_0.7_1 400 55860 113 277 253
san400_0.7_2 400 55860 108 277 251
san400_0.7_3 400 55860 80 82 274 248
san400_0.9_1 400 71820 203 353 259
sanr200_0.7 200 13868 67 68 137 125
sanr200_0.9 200 17863 103 104 175 119
sanr400_0.5 400 39984 74 75 201
sanr400_0.7 400 55869 105 106 276 251

The upper bounding techniques rely on partial linear relaxations of a b-coloring model,
and are able to improve the best known bound for 49 of the 87 instances considered. The
procedure devised to derive heuristic solution is based on the solution of four variations
of a decisional model that takes in input an instance and a target value for the number of
colors, and return either a feasible b-coloring solution with T colors, or a message stating
that no feasible solution with such a number of colors exists. With a proper selection
of the target number of nodes, the proposed methods were able to improve 17 heuristic
solutions over the 87 instances considered. As a side effect, it was also possible to prove
optimality for 11 instances for the first time.

R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049 19
Table 10
Improved bounds for the coloring instances from [12].

Instance Lower Bounds Upper Bounds Newly
ClosedName |V | |E| Old New Old New

dsjc125.9 125 3891 68 109 72
dsjc250.9 250 27897 127 128 219 150
DSJR500.1c 500 121275 142 150 478 221
fpsol2.i.1 451 8691 77 79 77 *
inithx.i.1 864 18707 72 74 72 *
inithx.i.2 645 13979 50 52 50 *
inithx.i.3 621 13969 50 52 50 *
le450_5c 450 9803 35 36 52
le450_15c 450 16680 54 55 93
mulsol.i.1 197 3925 64 65 64 *
mulsol.i.2 188 3885 51 53 51 *
R125.1c 125 7501 53 116 53 *
R250.1c 250 30227 86 238 89

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to thank the anonymous reviewers for the careful reading and
useful suggestions provided.

References

[1] Dominique Barth, Johanne Cohen, Taoufik Faik, On the b-continuity property of graphs, Discrete
Appl. Math. 155 (13) (2007) 1761–1768.

[2] Victor A. Campos, Carlos V. Lima, Nicolas A. Martins, Leonardo Sampaio, Marcio C. Santos, Ana
Silva, The b-chromatic index of graphs, Discrete Math. 338 (11) (2015) 2072–2079.

[3] Victor A. Campos, Carlos V. Lima, Ana Silva, B-coloring graphs with girth at least 8, in: Proceedings
of the Seventh European Conference on Combinatorics, Graph Theory and Applications, 2013,
pp. 327–332.

[4] Amal Dandashi, Mayez Al-Mouhamed, Graph coloring for class scheduling, in: ACS/IEEE Interna-
tional Conference on Computer Systems and Applications - AICCSA 2010, 2010, pp. 1–4.

[5] Haytham Elghazel, Veronique Deslandres, Mohand-Said Hacid, Alain Dussauchoy, Hamamache
Kheddouci, A new clustering approach for symbolic data and its validation: application to the
healthcare data, Lect. Notes Comput. Sci. 4203 (2006) 373–482.

[6] Iztok Fister, Iztok Peterin, Marjan Mernik, Matej Črepinšek, Hybrid evolutionary algorithm for the
b-chromatic number, J. Heuristics 21 (2015) 501–521.

[7] Djamel Gaceb, Veronique Eglin, Frank Lebourgeois, Hubert Emptoz, Improvement of postal mail
sorting system, Int. J. Doc. Anal. Recognit. 11 (2008) 67–80.

[8] Djamel Gaceb, Veronique Eglin, Frank Lebourgeois, Hubert Emptoz, Robust approach of address
block localization in business mail by graph coloring, Int. Arab J. Inf. Technol. 6 (3) (2009) 221–229.

[9] James S. Graham, Roberto Montemanni, Jim N.J. Moon, Derek H. Smith, Frequency assignment,
multiple interference and binary constraints, Wirel. Netw. 14 (4) (2008) 449–464.

[10] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.
[11] Robert W. Irving, David F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math.

91 (1) (1999) 127–141.

http://refhub.elsevier.com/S2192-4406(22)00025-9/bib4A921CA28E1EC206B193BD9D8D9E795Bs1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib4A921CA28E1EC206B193BD9D8D9E795Bs1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibBC4A97CA209BF477B62BA2493BEE04C1s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibBC4A97CA209BF477B62BA2493BEE04C1s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibBA93BDB8F26F89D293CA60431675A49Ds1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibBA93BDB8F26F89D293CA60431675A49Ds1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibBA93BDB8F26F89D293CA60431675A49Ds1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib2BA277E97FA7ACA8C1D1793538608FB3s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib2BA277E97FA7ACA8C1D1793538608FB3s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib14FE910361DAB9A71DA71EB0B4331C77s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib14FE910361DAB9A71DA71EB0B4331C77s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib14FE910361DAB9A71DA71EB0B4331C77s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib2F0E1B531CF0C8F8754FFB8C38809D7Es1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib2F0E1B531CF0C8F8754FFB8C38809D7Es1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib00BCA47B3E2324D42EC1F15045D7B026s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib00BCA47B3E2324D42EC1F15045D7B026s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib74AE6E6CBC1E1A8C006CAE87910BAC9Es1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib74AE6E6CBC1E1A8C006CAE87910BAC9Es1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib0DF59F3915DE8AFCF5A3AD7733C21AF8s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib0DF59F3915DE8AFCF5A3AD7733C21AF8s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib7EBC5572C111D9CF0A0EFF36FA75E754s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibB8EE53D9E08DE60BF174187B60F5FF85s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibB8EE53D9E08DE60BF174187B60F5FF85s1

20 R. Montemanni et al. / EURO Journal on Computational Optimization 10 (2022) 100049
[12] David S. Johnson, Michael A. Trick, Cliques, coloring, and satisfiability: second DIMACS imple-
mentation challenge, Am. Math. Soc. 26 (1996).

[13] Ivo Koch, Javier Marenco, An integer programming approach to b-coloring, Discrete Optim. 32
(2019) 43–62.

[14] Ivo Koch, Iztok Peterin, The b-chromatic index of direct product of graphs, Discrete Appl. Math.
190–191 (2015) 109–117.

[15] Jan Kratochvíl, Zsolt Tuza, Margit Voigt, The b-chromatic number of a graph, Lect. Notes Comput.
Sci. 2573 (2002) 310–320.

[16] Enrico Malaguti, Paolo Toth, A survey on vertex coloring problems, Int. Trans. Oper. Res. 17 (1)
(2010) 1–34.

[17] Rafael A. Melo, Michell F. Queiroz, Marcio C. Santos, A matheuristic approach for the b-coloring
problem using integer programming and a multi-start multi-greedy randomized metaheuristic, Eur.
J. Oper. Res. 295 (1) (2021) 66–81.

[18] Roberto Montemanni, Derek H. Smith, An iterative matheuristic algorithm for the B-coloring prob-
lem, in: The 3rd International Conference on Industrial Engineering and Industrial Management
(IEIM 2022), 2022, pp. 265–270.

[19] Roberto Montemanni, Derek H. Smith, Stuart M. Allen, Lower bounds for fixed spectrum frequency
assignment, Ann. Oper. Res. 107 (1) (2001) 237–250.

[20] Roberto Montemanni, Derek H. Smith, Stuart M. Allen, An improved algorithm to determine lower
bounds for the fixed spectrum frequency assignment problem, Eur. J. Oper. Res. 156 (3) (2004)
736–751.

[21] Roberto Montemanni, Derek H. Smith, Andrea E. Rizzoli, Luca Maria Gambardella, Sequential
ordering problems for crane scheduling in port terminals, Int. J. Simul. Process Model. 5 (4) (2009)
248–261.

[22] Derek H. Smith, Roberto Montemanni, Stephanie Perkins, The use of an exact algorithm within a
tabu search maximum clique algorithm, Algorithms 13 (10) (2020).

http://refhub.elsevier.com/S2192-4406(22)00025-9/bib74B57C2C8454CA3AFFCF71ABEFDB2DB6s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib74B57C2C8454CA3AFFCF71ABEFDB2DB6s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibAF3AC4C30B22A7BAB89A136D925C9B49s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibAF3AC4C30B22A7BAB89A136D925C9B49s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib8C3789824914D5BA5929ADE7461C2BF1s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib8C3789824914D5BA5929ADE7461C2BF1s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib07A48BD4F86EAF62591ADB93AEA47A0Ds1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib07A48BD4F86EAF62591ADB93AEA47A0Ds1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib0670FC85A45E1E87A414BB9AEFDA9CD7s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib0670FC85A45E1E87A414BB9AEFDA9CD7s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib8EF972ACFACC62CE4354FEDD4508A9F3s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib8EF972ACFACC62CE4354FEDD4508A9F3s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib8EF972ACFACC62CE4354FEDD4508A9F3s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib4C1867A340ED17888A756AF40BE5946As1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib4C1867A340ED17888A756AF40BE5946As1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib4C1867A340ED17888A756AF40BE5946As1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib9094CB6187FD9D9E78A45D2CFCADA3E9s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib9094CB6187FD9D9E78A45D2CFCADA3E9s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibD57068240A6CF9ED9603ECFA552C7139s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibD57068240A6CF9ED9603ECFA552C7139s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibD57068240A6CF9ED9603ECFA552C7139s1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib20C6433FDF622A32F557E042FF43712Fs1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib20C6433FDF622A32F557E042FF43712Fs1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bib20C6433FDF622A32F557E042FF43712Fs1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibABFB87A02C2AED79954722B46C582F5Cs1
http://refhub.elsevier.com/S2192-4406(22)00025-9/bibABFB87A02C2AED79954722B46C582F5Cs1

	Upper and lower bounds based on linear programming for the b-coloring problem
	1 Introduction
	2 Literature review
	3 An integer programming model
	4 Upper bounds based on partial linear relaxations
	5 Lower bounds based on models for the decision version of the problem
	5.1 Model BCx(T)
	5.2 Model BCy(T)
	5.3 Model BCz(T)
	5.4 Model BCw(T)

	6 Experimental results
	6.1 Datasets and settings
	6.2 Partial linear relaxations
	6.2.1 Percentage of integer variables
	6.2.2 Results

	6.3 Models for the decision version of b-coloring
	6.3.1 Comparison of the models
	6.3.2 New heuristic solutions
	6.3.3 Upper bounds reduction

	6.4 Summary of the improved bounds

	7 Conclusions
	Declaration of competing interest
	Acknowledgements
	References

