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ABSTRACT
The prediction of solubilities of compounds by means of molecular simulation has been receiving increasing attention due to the key role
played by solubility in countless applications. We have predicted the aqueous solubility of urea at 300 K from chemical potential calculations
for two urea model combinations: Özpinar/TIP3P and Hölzl/(TIP4P/2005). The methodology assumes that the intramolecular contribution
of the urea molecule to the chemical potentials is identical in the crystal and in solution and, hence, cancels out. In parallel to the chemical
potential calculations, we also performed direct coexistence simulations of a urea crystal slab in contact with urea-water solutions with the aim
to identify upper and lower bounds to the solubility value using an independent route. The chemical potential approach yielded similar solu-
bilities for both urea models, despite the actual chemical potential values showing a significant dependence on the force field. The predicted
solubilities for the two models were 0.013–0.018 (Özpınar) and 0.008–0.012 (Hölzl) mole fraction, which are an order of magnitude lower
than the experimental solubility that lies in a range of 0.125–0.216 mole fraction. The direct coexistence solubility bounds were relatively wide
and did not encompass the chemical potential based solubilities, although the latter were close to the lower bound values.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0159402

I. INTRODUCTION

The solubility of a substance is a fundamental thermodynamic
quantity that has an impact across a wide spectrum of physico-
chemical phenomena. It is an important determinant of the phase
behavior of biomolecules and the development of pathologies such
as atherosclerosis plaques, the formation of gall and kidney stones,
and the formation of amyloid plaques in diseases such as Alzheimer’s
and diabetes. In pharmaceuticals, the aqueous solubility can dictate
the bioavailability (the rate and extent of absorption) of a therapeutic
agent.1,2 In the chemical industry, differences in solubility between
the product and impurities form the basis for the purification of
compounds. The solubility is also a key determinant of the forma-
tion and dynamics of ecological environments such as soil and the
fate of pollutants.3

The ability to accurately predict the solubility would be
immensely useful, for instance, in in silico screening4 and at con-
ditions inaccessible by experiment, e.g., in supercritical fluids or
the earth’s mantle. There are three distinct approaches to solubility

prediction, each characterized by varying success.5 The long-
established (and perhaps the most commonly employed) approach
is that based on quantitative structure–property relationships
(QSPRs), in which molecule descriptors are correlated with exper-
imentally determined solubility values. Although simple to develop,
the QSPR approach is restricted to the chemical space (solute struc-
ture and choice of solvent) and conditions of temperature and
pressure similar to those in the training set. Extrapolation to sim-
ilar but unseen molecules can yield significant errors.6 The second
approach is quantum mechanical, involving the immersion of the
solute in a uniform, isotropic continuum with the characteris-
tics of the solvent being defined by a specified dielectric constant.
This method therefore neglects solvent degrees of freedom. It also
involves parametrization to fit the free energies of fusion of the solid
phase. The third approach involves molecular simulation to access
thermodynamic quantities via statistical mechanics. In this case,
the input parameters are the intermolecular forces. It is pertinent
to note that whilst the intermolecular interaction parameters (the
force field) are optimized, for the established so-called “universal”
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forcefields, they are optimized not just to reproduce a single particu-
lar property but to reproduce most of the accessible properties of the
system simultaneously, albeit within a selected domain. The molec-
ular simulation approach is potentially the most powerful given that
it is based on first principles rather than correlation, opening up
the possibility of accessing the full chemical and thermodynamic
parameter space (a range of temperatures and pressures) without
recourse to any experimental data. In practice, its success will be
limited by the accuracy of the intermolecular interactions.

The use of molecular simulation to predict solubility is still
very much in its infancy, although the seminal study on the aque-
ous solubility of KF was carried out by Ferrario et al. back in 2002.7
Since then, there has been a flurry of papers employing a variety
of molecular simulation approaches that include chemical potential
calculations,7–9 expanded ensembles,10 density of states,11,12 osmotic
ensemble,13–15 constant chemical potential simulations involving
metadynamics,16 and direct coexistence simulations.17–19 A notable
feature of some of these studies is the focus on reproducing the sol-
ubility of NaCl, which has become a de facto test system for new
methods.8

Whilst some of the solubility predictions from molecular sim-
ulation have been in good agreement with experimental data, there
are cases of reported predictions where the departure from exper-
imental data is gross. Notable examples include the aqueous sol-
ubility of caffeine, for which the predicted solubility was 2 orders
lower than experiment;20 aspirin in water, which was predicted to
be practically insoluble compared with its experimental value of
0.038 mol %;21 and urea in water, where the predicted solubility
was some 45 fold lower than experiment, and in methanol, where
the predicted solubility was roughly 5 fold lower than experiment.12

These results suggest an issue with sparingly soluble and soluble
molecules possibly associated with the failure of current force fields.

Here we present the prediction of the aqueous solubility of
the strongly soluble solute, urea in polymorphic form I (the sta-
ble form at ambient conditions), for two distinct urea models. Urea
solutions have fascinated scientists for some time attracting consid-
erable interest, especially in regard to the use of urea as a protein
denaturant. Urea is known to enhance the solubility of hydrophobic
molecules, and there is controversy about its aggregation behavior
in water.22,23 Furthermore, the urea molecule is well characterized
by molecular simulation, notably molecular dynamics simulation
studies of crystal growth and dissolution.24

With respect to the methodology, we have opted for the route
of chemical potential calculations using standard alchemical free
energy methods, including thermodynamic integration (TI) and
perturbation. To give us confidence in the methodology and asso-
ciated statistical mechanics, we have also estimated the solubility
by means of direct coexistence simulations of the dissolution of the
urea crystal as well as its crystallization from a super-saturated solu-
tion, with the estimated solubilities from the coexistence simulations
serving as upper and lower bounds. The consistency of these val-
ues (or otherwise) with the predictions from the chemical potential
calculations, therefore, serves to validate the latter.

II. THEORY
A. Solubility

At the solubility limit, the solid phase coexists with its solution,
and the chemical potential of the solute in the solid is equal to the

chemical potential of the solute in solution μcry(T, p) = μsol(T, p),
where T and p are the temperature and pressure, respectively. The
determination of the solubility, in general, therefore, requires the
knowledge of the chemical potential of the solid phase and the
chemical potential of the solute in solution for a series of solute con-
centrations. The solubility is the solute concentration given by the
intersection of the chemical potential of the solid phase and that of
the solution as a function of solute concentration.

B. Chemical potential of the crystal phase
The chemical potential of the solute in the solid phase, being a

pure phase, is given by

μcry =
Gcry

Ncry
= Acry + pVcry

Ncry
, (1)

where Gcry, Acry, Ncry, and Vcry are the Gibbs and Helmholtz free
energies, the number of molecules, and the volume of the crystal
phase, respectively, and p is the external pressure.

Since it is not feasible, in general, to directly calculate the
absolute free energy for such a system, one usually starts with a
simple reference state for which the free energy can be analytically
calculated along with defining a reversible thermodynamic path-
way between the reference and the real crystal. We determine the
Helmholtz free energy of the solid using the Einstein crystal25 as a
reference state. We employ the molecule adaptation,20,26–32 in which
the molecules in the crystal are independent (non-interacting with
each other; intramolecular interactions remain) but tethered to their
lattice sites using a harmonic potential to fix the molecule position
in space using a reference atom, with further harmonic potentials
added later on to at least two more atoms to restrain the molecular
orientations. The chemical potential of the solid phase is then deter-
mined using either thermodynamic integration or the free energy
perturbation route.

Following Bellucci et al.,31 we start by separating the
intramolecular potential contribution in the canonical partition
function Q(V , T) for a single molecule, described collectively by the
3n-dimensional vector R ≡ {r1, r2, . . . , rn} representing the atomic
coordinates with n being the number of atoms comprising the
molecule. For a flexible molecule where the intramolecular potential
depends only on pair distances, one can separate the coordinate of
a chosen atom, labeled here by i = 1, and perform the integral over
its coordinates r1 to obtain the following expression for the single
molecule canonical partition function

Q(V , T) = ∫dRe−U(R)/kBT

∏n
i=1 Λ3

i (T)
= V

Λ3
1(T)

⋅ q(V , T)
∏n

i=2 Λ3
i (T)

, (2)

q(V , T) = ∫ dR′ e−Ũ (R′)/kBT , (3)

where the 3(n − 1)-dimensional vector R′ describes the solute
molecule in the reference frame with atom-1 in the origin, dR′

=∏n
i=2 d(ri − r1) and Λi(T) =

√
h2/2πmikBT. Then, for a fully flex-

ible molecule, Ũ(R′) is the translationally invariant intramolecular
potential energy, and q(V , T) is the configurational partition func-
tion of a solute molecule with atom-1 in a given position. For
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volumes V large in comparison to the characteristic molecular vol-
ume, q can be assumed to be only a function of the temperature T,
and the same term q(V , T) ≅ q(T) can be factorized out in both the
expressions of the Gibbs free energy for the crystal and for the solu-
tion phase, making it possible to cancel out such contributions when
comparing the chemical potential of the two phases.

As an example, let us see how factorizing the q(T) term results
in a split of the expression for the chemical potential μ(id)s of an ideal
gas of Ns solute molecules in a given volume V at the temperature T

μ(id)s (Ns, V , T) = −kBT ln
Q(Ns, V , T)

Q(Ns − 1, V , T)

= kBT ln (ρsΛ3
1) + kBT ln(∏

n
i=2 Λ3

i

q
) (4)

into two terms, the first of which is akin to the chemical potential of
an ideal gas of atom-1 particles with ρs = Ns/V . The second term in
the right-hand side of Eq. (4) ultimately depends only on the temper-
ature T and contains the intramolecular contribution q(T) together
with the product of the other (n − 1) thermal wavelengths Λi(T),
which is also needed to make the argument of the logarithm dimen-
sionless. Moreover, as we shall see, such a term will appear in both
the expressions of the crystal chemical potential and in the solute
chemical potential, so that the calculation of q(T) can actually be
avoided.

For the Einstein crystal, the appropriate choice is to determine
the Helmholtz free energy (i.e with reference to the NVT ensem-
ble) rather than the Gibbs free energy G(N, p, T). In fact, in the NpT
ensemble, volume fluctuations would require a pressure-induced
scaling of the Einstein lattice positions with an additional compli-
cation in the definition of the reference system. Moreover, the pV
difference between the two free energies is going to be a small term
for standard pressure conditions, usually of the same order or even
lower than the statistical errors.

In the case of molecules, the Einstein crystal reference state is
the one with N isolated molecules distributed on the lattice sites of
the specific crystal. A selected atom for each molecule, with Eq. (2)
in mind, is tethered with a harmonic spring with a force constant γE
to the reference fixed lattice position in space, rE. The relative single
molecule potential term in the Hamiltonian takes the form

U = γE

2
(r1 − rE)2, (5)

where r1 is the position of the selected atom.
The expression for the free energy AEC of this reference state

can be written, per molecule, as

AEC

N
= −3

2
kBT ln(2πkBT

γEΛ2
1
) − kBT ln( q

∏n
i=2 Λ3

i
). (6)

The free energy of the crystal phase can then be computed by adding
to the above-mentioned reference state value, the free energy dif-
ference for reversibly transforming the reference state to the real
crystal. This is accomplished in a number of steps, starting first
with turning on additional harmonic restraints on selected atoms
of each molecule to control the molecular orientation, for which
the associated free energy contribution is specified as ΔAo−res. The

next two steps involve switching on the real intermolecular inter-
actions, with an associated ‘cost’ in free energy ΔAvdw for turning
on the intermolecular van der Waals forces and ΔAqq for turning
on the electrostatic Coulomb forces. Finally, all harmonic restraints
are removed to yield the crystal phase with an associated free energy
change ΔArm−res.

Summing up all terms gives the required chemical potential of
the crystal phase

μcry =
AEC + ΔAo−res + ΔAvdw + ΔAqq + ΔArm−res

N
+ ΔAsymm +

pV
N

,

(7)

where we have included the correction ΔAsymm = kBT ln(σ) to con-
sider the effects of molecular symmetry, where σ is the symme-
try number of the molecule. In the case of urea, it is just σ = 2
corresponding to the mirror plane in the molecule.

It is convenient to separate out the second term in Eq. (5) to
define

μ′cry = μcry − kBT ln ∏
n
i=2 Λ3

i

q
, (8)

which will enable us, later on, to explicitly cancel out the right-
hand term containing the contribution from the intra-molecular
configurational partition function.

C. Chemical potential of solute solutions
We calculate the chemical potential of the solute in solution,

comprising Ns solute molecules and Nw solvent molecules, as

μsol(Ns, Nw, p, T) = G(Ns, Nw, p, T) −G(Ns − 1, Nw, p, T)

= −kBT ln
Q (Ns, Nw, p, T)

Q (Ns − 1, Nw, p, T) , (9)

where the Gibbs free energy G(Ns, Nw, p, T) is given in terms of the
isothermal-isobaric partition function Q (Ns, Nw, p, T) for the sys-
tem. The chemical potential μsol can then be determined using ther-
modynamic integration or the perturbation approach using Bennett
Acceptance Ratio (BAR) along a reversible path realizing the inser-
tion of one solute molecule into the solution at fixed temperature,
pressure, and number of solvent molecules.

Determining μsol involves the reversible insertion of the addi-
tional solute molecule into the solution, which is achieved by grad-
ually switching on the interaction potential between the inserted
molecule and the solution by means of the λ-coupling parameter.
This transforms the Hamiltonian of the system according to

H (λ) = K (Ns − 1, Nw)+U0(Ns − 1, Nw)

+
n

∑
i=1

p2
i

2mi
+ λU1(Ns, Nw), (10)

where K (Ns − 1, Nw) and U0(Ns − 1, Nw) are the kinetic and poten-
tial energies, respectively, of the starting solution. The momentum
term is the kinetic energy of the additional solute molecule compris-
ing n atoms, and U1(Ns, Nw) is the potential energy resulting from
the insertion of the additional solute molecule into the solution.
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The isothermal-isobaric partition function for the system
described by H (λ), as a function of λ assuming water as the solvent,
can then be written as

Q (Ns − 1, Nw, p, T, λ)

= 1
(Ns − 1)! Nw!

(∏n
i=1 Λi)

−3Ns(∏3
j=1 Λ j)

−3Nw

× ∫ dV exp−βpV ∫ dRNw dRNs−1 e−βU0 ∫ dRse−λβU1 , (11)

where Rs are the coordinates of the n atoms of the inserted molecule.
The respective partition functions for the two systems, with the

inserted solute molecule, (λ = 1), and without, (λ = 0), can then be
written

Q (λ = 0) = Q (Ns − 1, Nw, p, T)
⟨V q(V , T)⟩Ns−1,Nw ,p,T

Λ3
1(T)∏n

i=2 Λ3
i (T)

, (12)

Q (λ = 1) = Ns Q (Ns, Nw, p, T), (13)

where ⟨. . . ⟩Ns−1,Nw ,p,T is the average over the ensemble with fixed
(Ns − 1, Nw, p, T), and for λ = 0, we have performed the integral over
the non-interacting solute molecule as done in Eq. (2).

Then, using the assumption that the volume dependence of q
can be ignored, the corresponding free energies can be written

G(λ = 0) ≅ G(Ns − 1, Nw, p, T) − kBT ln(
⟨V⟩Ns−1,Nw ,p,T

Λ3
1(T)

)

− kBT ln( q(T)
∏n

i=2 Λ3
i (T)

), (14)

G(λ = 1) ≅ G(Ns, Nw, p, T) − kBT ln (Ns). (15)

The chemical potential of the solute is then written as the sum
of the free energy difference between the two end states G(λ = 1)
−G(λ = 0) = ΔGs plus an ideal term plus the term containing the
unknown intramolecular contribution q

μsol(Ns, Nw, p, T) = G(Ns, Nw, p, T) −G(Ns − 1, Nw, p, T)

≅ G(λ = 1) −G(λ = 0) + kBT ln( Ns

⟨V⟩Λ
3
1)

+ kBT ln ∏
n
i=2 Λ3

i

q
, (16)

where ΔGs is the solvation free energy that we determine by either
thermodynamic integration or perturbation methodology using
soft-core potentials.33 The latter removes the divergence in the
ensemble averages resulting from the annihilation or creation of
atoms.

In terms of the solute density ρs = Ns/⟨V⟩, then the ideal term
in the above-mentioned equation is the same as the first one on the
right-hand side of Eq. (4).

As done for the chemical potential in the solid phase [Eq. (7)],
we can define

μ′sol(Ns, Nw, p,T) = μsol(Ns, Nw, p, T) − kBT ln ∏
n
i=2 Λ3

i

q
. (17)

Having assumed the intra-molecular partition function q is indepen-
dent of volume, the contribution of q is identical both in solution and
in the solid state; therefore, the right-hand side term in Eq. (16) can-
cels out with the same term contained in the expression for μ′cry in
Eq. (7), yielding

μ′sol ≅ μ′cry

at coexistence. This is a fair assumption for urea given that it is a
near-rigid molecule due to the high rotational barrier of the N–C
bond. We would expect the assumption to fail for large flexible
molecules, for which the intramolecular partition function is likely
to be more significantly coupled to the intramolecular partition
function, being a particular issue when the structures sampled in the
crystal and solution environments are markedly different.

In Eqs. (6) and (15), we have hidden a number of correction
terms that are required when simulations are performed, as usual, at
zero constant total momentum P = 0 for the simulation box. Actu-
ally, their contribution is very small (of order N−1, where N is the
number of molecules), which we checked and found that it could
be safely neglected for the system sizes used in our calculations. We
refer the interested reader to Polson et al.34 and the appendices in
Bellucci et al.31

III. METHODS
There are two notable and distinct force field models of urea,

one developed by Özpınar35 and the other by Hölzl.36 In view of
this, we carried out two sets of solubility predictions, one for each
of the models. The Özpınar model is a refinement of the GAFF force
field37 developed to reproduce the crystal structure, whilst the Hölzl
model is an improvement on the Kirkwood–Buff force field (KBFF)
of Weerasinghe and Smith38 being optimized using various experi-
mental and computational data with a focus on reproducing aqueous
solution properties. The respective parameters and associated partial
charges for the Özpınar and Hölzl urea are given in Table I. The cross
terms were evaluated using the Lorentz–Berthelot combining rules.
The TIP3P water model was used with the Özpınar model given that
it is associated with the GAFF force field, and the TIP4P/2005 model
with the Hölzl urea model as specified in the Hölzl study.

All simulations were carried out using the GROMACS molecu-
lar dynamics package version 2018.1.39 The simulations were carried
out in the isothermal-isobaric ensemble at a temperature of 300 K
and a pressure of 1 bar, employing a stochastic integrator to enhance
sampling, unless explicitly specified for a particular set of simula-
tions. The time step was 2 fs, and all bond lengths were constrained
using the LINCS algorithm. The Coulombic interaction forces were
calculated using particle mesh Ewald (PME) with a Fourier spacing
of 0.12 nm, a PME order of 6, and an Ewald tolerance of 1.0 × 10−6.
The van der Waals and real space components of the Coulombic
interactions were truncated at 1.2 nm, with the van der Waals being
moderated by a potential-switch function starting at 1.0 nm. The
pressure was regulated using the Parrinello–Rahman barostat with
a compressibility of 4.5 × 10−5 bar−1.

The urea form I crystal structure used for the free energy and
direct coexistence simulations was taken from the Crystallography
Open Database (entry 1278490), which had been determined using
neutron diffraction at room temperature.40 The crystal structure was
equilibrated for both urea models, Özpınar and Hölzl, at 300 K and
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TABLE I. Force field parameters for the Özpınar and Hölzl urea models. The cis and trans designations on the hydrogens are in relation to the oxygen. The dihedral parameters
are common to both models. All bonds were constrained to their r0 values.

Özpınar

Atom σ (nm) ε (kJ mol−1) q (ec)

H 0.106 91 0.006 57 0.388
C 0.339 97 0.359 80 0.884
N 0.325 00 0.711 30 −0.888
O 0.295 99 0.878 60 −0.660

Bond r0 (nm)

H–N 0.1010
C–N 0.1383
C=O 0.125

U = k/2 (θ − θ0)2

Angle k (kJ mol−1) θ0 (deg)

H–N–H 292.9 120.0
H–N–C 251.0 120.0
N–C–N 585.8 118.6
N–C–O 669.4 120.9

Hölzl

Atom σ (nm) ε (kJ mol−1) q (ec)

H(cis) 0.113 33 0.065 69 0.4026
H(trans) 0.113 33 0.065 69 0.4421
C 0.360 39 0.359 82 0.6068
N 0.344 52 0.511 14 −0.8400
O 0.313 77 0.594 32 −0.6162

Bond r0 (nm)

H–N 0.1010
C–N 0.1335
C=O 0.1229

U = k/2 (θ − θ0)2

Angle k (kJ mol−1) θ0 (deg)

H–N–H 445 120.0
H–N–C 390 120.0
N–C–N 670 117.2
N–C–O 670 121.4

Common

U = k(1 + cos(nϕ − ϕ0))
Proper dihedral k (kJ mol−1) ϕ0 (deg) n

H–N–C–O 8.368 0 1
H–N–C–O 10.46 180 2
X-C-N-X 10.46 180 2

U = k/2 (ϕ − ϕ0)2

Improper dihedral k (kJ mol−1) ϕ0 (deg)

C 43.932 180
N 4.6024 180
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1 bar using molecular dynamics simulation with anisotropic pres-
sure coupling and Parrinello–Rahman boundary conditions, where
the angles and dimensions of the simulation cell are allowed to vary.
The deviation in the lattice parameters was minimal, being below 5%
for both models. The average cell parameters and atomic coordinates
from the equilibration trajectory were minimized in an NVT ensem-
ble simulation to yield the low potential energy crystal structure that
was used for all subsequent simulations.

The direct coexistence studies were carried out by exposing the
surfaces of a urea crystal slab to pure water or water supersaturated
with urea. The coexistence simulations were attempted for the slow
growing face (110), which is normally exhibited by the urea crystal,
and the more faster growing face (001). For the slower growing face,
little or no dissolution was observed over a trajectory comprising
640 ns, although some dissolution could be observed by removing
a few of the surface molecules from the solution. This overcomes
the 2-D nucleation barrier to dissolution. In view of this, further
coexistence studies were restricted to the faster growing (001) face.

In the coexistence studies, the exposed faces of the urea crystal
slab were aligned perpendicular to the z-axis of the simulation box
and exposed to water. The (001)-exposing slab comprised 10 (a-axis)
× 10 (b-axis) × 12 (c-axis) unit cells, which equated to 12 molecular
layers (perpendicular to the z-axis) of urea molecules. The thickness
of the crystal slab was 5.5 nm. Periodic boundaries were applied in
all 3 dimensions. The thickness of the water layer between the crys-
tal surfaces was ∼16 nm (comprising 15 697 water molecules), which
is about 13 times the non-bonded interaction cutoff, thus, minimiz-
ing the influence of either of the two exposed crystal surfaces on the
processes occurring at the other. The initial simulation box dimen-
sions were 5.604 nm in the x and y axes and 28.009 nm in the z axis.
Pressure scaling was semi-isotropic with the scaling along the z-axis
being decoupled from the x- and y-axes.

The pure water coexistence simulation (dissolution) of the
Özpınar model crystal was simulated for 400 ns, whilst that of
the Hölzl model was simulated for 1000 ns. The simulations were
stopped after observing convergence with respect to the number of
solute molecules in solution and, hence, the different time periods.
The supersaturated water coexistence (crystal growth) simulations
employed the same slab-water set up as above, exposing the same
surface. The water layer in this case was super-saturated with urea
molecules at a concentration of 0.2 M fraction, which translates to
2000 urea molecules in 8000 water molecules.

The free energy simulations for the urea crystal phase were
carried out in a simulation box comprising 5 (a-axis) × 5 (b-axis)
× 6 (c-axis) unit cells of the equilibrated urea crystal (300 molecules,
2400 atoms). The initial simulation box dimensions were 2.831 nm
in the x and y dimensions and 3.286 nm in the z dimension. The
component free energy changes [see Eq. (6)] were determined in
the NVT ensemble for reasons given earlier in the Theory section.
The positional harmonics restraints on the urea molecule defining
the Einstein crystal were located on the central carbon atom using
a force constant of γE = 0.50 × 106 kJ mol−1 nm−2. The thermody-
namic pathway from the reference Einstein crystal to the real crystal
comprised the following stages: (i) gradually turning on additional
positional restraints on the nitrogen atoms to enforce correct ori-
entation; (ii) gradually turning on van der Waals interactions (the
soft-core van der Waals is unnecessary here as the required voids to
accommodate the emerging atoms are unoccupied); (iii) gradually

switching on partial charges; and finally (iv) removing all positional
restraints. As urea is a relatively rigid molecule, one could use any
three non-colinear atoms (colinear atoms would create an axis of
rotation) to restrain the orientation but we decided on the symmet-
rical selection of the carbon and two nitrogens. The calculation of
free energies from the thermodynamic integration and perturbation
ensemble averages was carried out using the Alchemical Analysis
program by The Mobley Lab.41

Whilst the determined crystal free energy is theoretically inde-
pendent of the harmonic restraint force constant, there may be
an optimum value of the restraint force for minimizing numerical
errors. In view of this, we explored the effect of varying the force
constant γE for the Özpınar model using the values of 0.01, 0.05,
0.10, 0.25, 0.50, 0.75, 1.00, 2.00, and 4.00 ×106 kJ mol−1 nm−2. All
of the force constant values other than the lowest (γE = 0.01 ×106

kJ mol−1 nm−2) yielded crystal chemical potential values (μ′cry) that
were very close, differing only by about 0.1 kJ mol−1 (see Table IV
and Fig. 3). In view of this, we proceeded to use the results for γE
= 0.50 ×106 kJ mol−1 nm−2, which lies in the middle of the range
investigated, for the solubility prediction.

The Gibbs free energy of solvation of urea was determined
for a set of aqueous urea solutions of varying concentration com-
prising a total of 1001 molecules (urea plus water) using thermo-
dynamic integration.25 The composition ratios (urea:water) of the
urea solutions were: 0.0005 (with 2001 molecules), 0.001, 0.011,
0.031, 0.051, 0.101, 0.151, 0.201, 0.251, and 0.301. The simula-
tions employed the soft-core van der Waals potential to minimize
divergence of the ensemble averages due to particle creation or
annihilation.33 The soft-core parameters were sc-alpha: 0.5, sc-
r-power: 6, sc-power: 1, and sc-sigma: 0.3. The van der Waals
parameters were gradually switched on first, followed by the par-
tial charges. Switching on both the van der Waals and Coulombic
interactions simultaneously is problematic unless one employs a
damping potential for the electrostatics.42 The number of λ-states
for van der Waals and electrostatics was 26 and 11, respectively,
with linear spacing (λvdw : 0.0, 0.04, 0.08, . . . , 0.92, 0.96, 1.0; λqq :
0.0, 0.1, 0.2, . . . , 0.8, 0.9, 1.0). Only the intermolecular non-bonded
forces were transformed by the lambda-coupling.

IV. RESULTS AND DISCUSSION
A. Reproduction of the crystal structure of urea

The averaged equilibrated lattice parameters for the urea crys-
tal structure resulting from the molecular dynamics simulations at
300 K and 1 bar are compared with experimental data for both the
Özpınar and the Hölzl models in Table II.

For both urea models, all of the predicted lattice parameters
show a relatively low percentage deviation, being ≤3.3% for the
Özpınar model and ≤2.5% for the Hölzl model (which is impressive
considering this model was not optimized for the crystal phase). The
simulation cell angles did not drift from 90.0 indicating no breaking
of the unit cell symmetry. These results give confidence that the crys-
tal structure is well described by both urea models. The lattice energy
for the Özpınar model was calculated to be 96.5 kJ mol−1, which is
appreciably lower than the experimental value of 99.43 kJ mol−1.
In contrast, the calculated lattice energy for the Hölzl model was
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TABLE II. Average lattice parameters for urea polymorph I from molecular dynamics
simulation at 300 K and 1 bar for the Özpınar and Hölzl models of urea, compared
with experimental data.40 Percentage deviation from the experimental data is given
in brackets. Ulatt is the lattice potential energy per molecule, Umolecule is the potential
energy of the equilibrated isolated molecule, and Elatt is the lattice energy deter-
mined using Elatt = −(Ulatt − Umolecule) − 2RT. Urea polymorph I is tetragonal (unit
cell parameters: a = b ≠ c, α = β = γ = 90○) in the space group P-4 21 m with 2
molecules in the unit cell (Z = 2).

Cell parameter Exp. Özpınar Hölzl

a (nm) 0.5661 0.5477 (−3.3) 0.5647 (−2.5)
c (nm) 0.4712 0.4714 (0.04) 0.4713 (0.02)
U latt (kJ mol−1) ⋅ ⋅ ⋅ −775.8 −777.9
Umolecule (kJ mol−1) ⋅ ⋅ ⋅ −674.3 −662.0
Elatt (kJ mol−1) 99.43 96.50 (−2.9) 110.90 (11.5)

110.90 kJ mol−1, which is significantly (∼11%) higher than the
experimental value.

B. Solubility bounds from direct coexistence
simulation

The evolution of the molar fraction of urea in solution as a
function of time for the direct coexistence simulations in which the
crystal slab is exposed to pure water and to a supersaturated solution
is given in Fig. 1 for both urea models. In general, the rate at which
the solution concentration decays for the crystal growth simulations
is faster than the rate at which the concentration increases for the
crystal dissolution simulation, which is expected being given by the
substantial supersaturation in the case of the former. The deposited
layers had the same structure in terms of the molecular orientations
as the crystal slab.

The simulations were carried out to apparent convergence
not equilibrium, hence, the differences in simulation lengths. Con-
vergence here does not necessarily imply equilibrium. A com-
plete crystal layer with no terraces or kink sites has a significant
(2-D nucleation) barrier to having molecules added to or removed
from it.43 At a sufficiently low solute chemical potential difference
between the crystal surface and solution, the simulation converges to
a stage when the crystal surface comprises a complete layer. As there
is a barrier to further dissolution or growth, the kinetics of either
of these processes become really slow, and the simulation appears
to show convergence. True equilibration can require simulations
on the microsecond timescale, which is a known limitation of the
direct coexistence approach. The objective here was not to determine
the solubility using direct coexistence but rather to identify solubil-
ity bounds resulting from the simulation of two inverse processes,
dissolution and crystal growth.

The solubility bounds estimated from Fig. 1 were 0.03–0.06
(2–3M) mole fraction for the Özpınar model and 0.03–0.11 mole
fraction (2–5M) for the Hölzl model. It is important to note that
these bounds are likely to be dependent on the chosen exposed crys-
tal surface, here (001), given that the chemical potential difference
driving the dissolution (and crystal growth) is not just determined
by the bulk crystal potential but also the interfacial free energy of
the exposed surface. The reported experimental aqueous solubil-
ity values of urea at 298K vary between 5.87–9.07M,44 which is

FIG. 1. Evolution of the mole fraction of urea in aqueous solution for the dissolution
of a crystal slab of urea in an initially pure system of water and the growth of
the crystal slab from a 0.2 mole fraction of urea in aqueous solution for both the
Özpınar/TIP3P and Hölzl/(TIP4P/2005) urea model combinations. The horizontal,
green band is the estimated solubility range from free energy calculations.

2–6 fold higher, suggesting an issue with the urea force field para-
meters, including its interaction with the employed water model.
An earlier simulation study using the urea model of Duffy et al.45,46

exploring the dissolution and crystal growth of urea in aqueous solu-
tion, recorded final solution concentrations in a range of 7–11.6M
from a simulation trajectory of up to 70 ns.24 The Duffy urea
model, however, showed marked deviations in the crystal structure,
necessitating isotropic pressure coupling to maintain the crystal
structure.

C. Chemical potential of the crystal phase
The free energy change for the transformation of the Einstein

crystal to a real crystal was determined using both the multi-
state Bennett acceptance ratio (MBAR) and thermodynamic inte-
gration (TI). The pathway involved including additional harmonic
restraints to enforce the correct molecular orientation, switch-
ing on the van der Waals, followed by Coulombic interactions,
and finally removal of the restraints. The key ensemble average
for thermodynamic integration, ⟨∂H/∂λ⟩, as a function of λ is
shown for each of these stages for the Özpınar model in Fig. 2.
The respective curves for the Hölzl model are similar. It is clear
from these curves that the integration involving van der Waals
and Coulombic interactions is well behaved, whilst the onset of
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the orientational restraints and the end-points of the restraint
removal stage show marked variation in the ⟨∂H/∂λ⟩ value with
the possibility of divergence. To minimize integration errors, these
regions were sampled more intensively with 51 cubic spaced lambda
states (λo−res : 0.00, 0.023, 0.043, . . . , 0.963, 0.983, 1.0; λrm−res : 0.0, 1
− 0.983, 1 − 0.963, . . . , 1 − 0.043, 1 − 0.023, 1.0).

The various component free energy values [corresponding to
Eq. (6)] are given in Table III calculated using MBAR and TI. Both
approaches essentially give the same results with similar estimated
errors, which gives us confidence in the convergence of the simu-
lations and the choice of λ states. All further numerical free energy
calculations employed thermodynamic integration.

The chemical potential μ′cry of the Hölzl model is on aver-
age about 13 kJ mol−1 lower than that for the Özpınar model,
suggesting a stronger affinity of the Hölzl model for the lattice.
With respect to the component free energies, the determined val-
ues differ markedly between the two urea models, including the free
energy for switching-on the orientational restraints. The latter arises
because the models have slightly different C–N and C=O bonds and
N–C–N and N–C–O bond angles (see Table I). As expected from the
⟨∂H/∂λ⟩ as a function of λ plots in Fig. 2, the largest error contribu-
tions come from the switching-on of the orientational restraints and
the last stage of switching-off all restraints.

We also explored the effect of varying the magnitude of the
harmonic restraint force constant γE on μ′cry and the free energy
component values and associated errors for the Özpınar model. The
component free energies and associated errors for the various force
constant values determined using thermodynamic integration are
tabulated in Table IV and plotted in Fig. 3. It is clear from Fig. 3
that the chemical potential values (μ′cry) for all force constants other
than the lowest (γE = 0.01 ×106 kJ mol−1 nm−2) are consistent and
very close, differing only by about 0.1 kJ mol−1. Based on these
considerations, we have selected the data for γE = 0.50 × 106 kJ
mol−1 nm−2, which lies in the middle of the range investigated,
for the solubility calculations. The lowest restraint strength fails to
agree with higher restraint strengths as it no longer stops atoms
from significantly overlapping and leads to badly behaved data col-
lection. Higher restraint strengths have greater errors as the free
energy curves for applying and removing restraints become more
extreme.

D. Chemical potential of aqueous solutions of urea
The thermodynamic ensemble average ⟨∂H/∂λ⟩ for the two

component free energies, ΔGvdw and ΔGqq, of the solvation free
energy as a function of λ is shown plotted for the Özpınar/TIP3P
urea model combination for a urea molecule in pure water in
Fig. 4. The respective plots for other concentrations and for the
Hölzl/(TIP4P/2005) urea model combination were similar. The
⟨∂H/∂λ⟩ ensemble average is well behaved, and there are no integra-
tion issues. Nevertheless, the plots indicate that the estimated errors
on the individual ⟨∂H/∂λ⟩ data points are significant. When prop-
agated to the solution chemical potential, the errors in the latter are
an order of magnitude larger than crystal chemical potential errors
but are still decent at below 0.2 kJ/mol—this is because only a single
molecule is being transformed, so sampling efficiency is lower than
for the crystal calculation.

FIG. 2. The ensemble average ⟨∂H/∂λ⟩ as a function of λ for the various contribu-
tions to the crystal chemical potential for the Özpınar model of urea. The restraint
removal component is plotted as the negative to enable the use of a logarithmic
scale.
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TABLE III. Chemical potential of the urea crystal μ′cry as defined by Eq. (7) for the Özpınar and Hölzl urea models, showing the various component free energy contributions
determined using both thermodynamic integration (TI) and multistate Bennett acceptance ratio (MBAR). μ′cry excludes the intramolecular partition term since we assume it to be
identical to that in solution and hence cancels out. Estimated standard errors are given in brackets.

Component ΔA Özpınar-TI (kJ mol−1) Özpınar-MBAR (kJ mol−1) Hölzl-TI (kJ mol−1) Hölzl-MBAR (kJ mol−1)

AEC/N 12.398 12.398 12.398 12.398
ΔAo−res/N 33.773(2) 33.479(3) 35.005(2) 34.13(1)
ΔAvdw/N −22.415(1) −22.435(1) −15.176(1) −14.701(3)
ΔAqq/N −81.667(5) −81.677(5) −103.345(3) −103.28(3)
ΔArm−res/N −27.809(5) −27.468(6) −27.675(4) −27.578(4)
ΔAsym −1.729 −1.729 −1.729 −1.729
pV/N 0.004 0.004 0.005 0.005
μ′cry −87.445(7) −87.428(8) −100.517(5) −100.76(3)

TABLE IV. Chemical potential of the urea crystal μ′cry as defined by Eq. (7) as a function of restraint force constant γE for the Özpınar urea model, showing the various component
free energy contributions along with associated standard errors given in brackets. Free energies were calculated using thermodynamic integration.

Component ΔA (kJ mol−1) γE (106 kJ mol−1 nm−2)

0.01 0.05 0.10 0.25 0.50 0.75 1.00 2.00 4.00

AEC/N −2.239 3.783 6.376 9.804 12.398 13.915 14.991 17.584 20.178
ΔAo−res/N 17.566(1) 23.748(1) 26.566(2) 30.548(2) 33.773(2) 35.723(2) 37.129(2) 40.563(2) 44.038(2)
ΔAvdw/N −20.217(4) −21.198(2) −21.583(2) −22.118(1) −22.415(1) −22.539(1) −22.608(1) −22.724(1) −22.789(1)
ΔAqq/N −74.108(8) −79.254(5) −80.394(5) −81.264(5) −81.667(5) −81.824(4) −81.918(4) −82.068(4) −82.150(4)
ΔArm−res/N −6.071(2) −12.909(3) −16.773(3) −22.740(4) −27.809(5) −31.002(5) −33.328(6) −39.177(7) −45.124(9)
ΔAsym −1.729 −1.729 −1.729 −1.729 −1.729 −1.729 −1.729 −1.729 −1.729
pV/N 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
μ′cry −86.798(9) −87.559(7) −87.537(6) −87.500(7) −87.449(7) −87.456(7) −87.463(8) −87.551(9) −87.58(1)

The chemical potential μ′sol [as defined by Eq. (16)] of the
various urea solutions determined using thermodynamic integra-
tion along with the various free energy components is tabu-
lated in Tables V and VI as a function of concentration for the
Ozpınar/TIP3P and Hölzl/(TIP4P/2005) urea model combinations.

The chemical potential μ′sol values at any given concentration
are markedly different for the two models, with the value for the
Hölzl model being about 10–12 kJ mol−1 lower suggesting greater
affinity for the employed water model. The chemical potential of
urea in water has previously been studied by Kokuba et al. (2007)47

for two urea models, OPLS45 and KBFF,38 with a focus on calculating
activity coefficients of aqueous urea solutions. The shift that defines
μ′sol relative to μsol in Eq. (16) is equivalent to Kokuba et al. disregard-
ing the unknown contribution from the internal degrees of freedom
of the molecule and assuming qA = 1 as defined in their Eq. (61).
Comparison of the chemical potentials on this basis with Kokuba
et al.’s study reveals that our μ′sol values for the Ozpınar/TIP3P
model practically superimpose on their values for the OPLS model.
For instance, at x = 0.251 μsol = −83.8 kJ mol−1, whilst the OPLS
value at x = 0.27 in Kokuba et al.’s study is −85.29 kJ mol−1. The
largest deviation comes in at the “infinite dilution” as a conse-
quence of the different sizes of the system (hence different non-zero
concentrations), which result in different values of the ideal term.
Unfortunately, it is not possible to directly compare the activity
coefficients as calculated by Kokuba et al. as the reference infinite
dilution states are different between the two studies.

Considering the two free energy components, the component
ΔGvdw is very small (<4% contribution) but interestingly takes a neg-
ative value for the Ozpınar model at high urea concentrations. This
we believe reflects the relatively high value of the Lennard-Jones
individual homo ε parameter for both the N and the O atom in
the Ozpınar model: ε(N) = 0.711 30 kJ mol−1 and ε(O) = 0.878 60
kJ mol−1 compared with ε(N) = 0.511 14 kJ mol−1 and ε(O) = 0.594
32 kJ mol−1 for the Hölzl model. The ideal component Gideal con-
tributes about 25% to μ′sol and differs a little between the models due
to the slightly different solution densities. The Coulombic compo-
nent ΔGqq is the most dominant, contributing between 70% and 80%
to the chemical potential.

E. Prediction of solubility
The chemical potential of the crystal μ′cry and that of the series

of urea solutions μ′sol is plotted in Fig. 5 for the two urea models. Both
of these chemical potentials, μ′cry and μ′sol, by definition [see Eqs. (7)
and (16)] exclude the intramolecular term, which we assume to be
identical in both the crystal and in solution. This is a fair assump-
tion, as the urea molecule has only limited flexibility. The solubility
is given by the intersection of the crystal and solution curves.

Using a second-order rational function to fit the data, 1σ con-
fidence bands gave a solubility interval of 0.013–0.018 M fraction
for the Özpınar model and 0.008–0.012 for the Hölzl model. The
experimental aqueous solubility of urea at 298 K is reported to

J. Chem. Phys. 159, 044114 (2023); doi: 10.1063/5.0159402 159, 044114-9

© Author(s) 2023

 07 N
ovem

ber 2023 14:29:35

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 3. Chemical potential μ′cry of the urea crystal as a function of the force constant
γE of the harmonic restraints for the Özpınar urea model, showing the various
component free energy contributions along with estimated standard errors.

FIG. 4. The ensemble average ⟨∂H/∂λ⟩ for the two free energy contributions,
ΔGvdw and ΔGqq, as a function of λ for the insertion of a urea molecule into pure
water for the Özpınar urea model.

be in a range of 5.874–9.058M,44 which equates to a 0.125–0.216
mole fraction.48 The predicted solubilities are, therefore, an order
of magnitude lower than the experimental solubility. The solubil-
ity of urea in water (and in ethanol) was previously investigated by
Boothroyd and Anwar12 but by the density of states methodology
rather than alchemical free energy methods as done here. However,
they employed the Amber GAFF force field with TIP3P water cou-
pled with two distinct sets of partial charges and treated the urea
molecule as rigid, making a direct comparison with our results dif-
ficult. Having said that, their predicted solubility of urea in water
was in a range of 0.008–0.009 mole fraction, which is within the
confidence band of the Hölzl model.

We note that whilst the chemical potential of the crystal phase
of the Hölzl model (−100.517 kJ mol−1) is markedly lower than that
of the Özpınar model (−87.445 kJ mol−1), their predicted solubilities
are not too different. It appears that for the Hölzl model, the solution
chemical potential as a function of urea concentration is also lower,
causing the chemical potential curves to intersect at a concentration
similar to that for the Özpınar model. So, for the Hölzl model, whilst
the cohesive interaction in the crystal is stronger (the lattice energy
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TABLE V. Chemical potential of urea in solution determined using thermodynamic integration as a function of urea concentration (mole fraction), showing the various free energy
components for the Özpınar/TIP3P urea model combination. The chemical potential μ′sol is the sum of the ideal component Gideal , calculated with the effective solute density ρs,
and the two component terms comprising the free energy of solvation, ΔGvdw and ΔGqq, and excludes the intramolecular term (which is assumed to be identical to that in the
crystal and, hence, cancels out in the solubility calculation) as defined by Eq. (16). Estimated standard errors are given in brackets.

Urea concentration Component free energies (kJ mol−1)

X ρs (nm−3) Gideal ΔGvdw ΔGqq μ′sol

0.0005 0.02 −36.714 2.43(6) −61.37(8) −95.7(1)
0.001 0.03 −34.986 2.26(6) −61.30(8) −94.0(1)
0.011 0.36 −29.040 2.26(6) −61.42(8) −88.2(1)
0.031 0.98 −26.508 1.72(7) −61.34(8) −86.1(1)
0.051 1.58 −25.324 1.33(7) −61.43(8) −85.4(1)
0.101 2.97 −23.759 0.53(7) −61.35(8) −84.6(1)
0.151 4.21 −22.888 0.12(7) −61.44(8) −84.2(1)
0.201 5.33 −22.302 −0.30(7) −61.48(8) −84.1(1)
0.251 6.33 −21.869 −0.29(7) −61.63(8) −83.8(1)
0.301 7.25 −21.527 −0.63(7) −61.61(9) −83.8(1)

TABLE VI. Chemical potential of urea in solution determined using thermodynamic
integration as a function of urea concentration (mole fraction) showing the various free
energy components for the Hölzl/(TIP4P/2005) urea model combination. The chemi-
cal potential μ′sol is the sum of the ideal component Gideal , calculated with the effective
solute density ρs, and the two component terms comprising the free energy of solva-
tion ΔGvdw and ΔGqq, and excludes the intramolecular term (which is assumed to be
identical to that in the crystal and, hence, cancels out in the solubility calculation) as
defined by Eq. (16). Estimated standard errors are given in brackets.

Urea concentration Component free energies (kJ mol−1)

X ρs (nm−3) Gideal ΔGvdw ΔGqq μ′sol

0.0005 0.02 −36.677 5.15(7) −76.6(1) −108.1(1)
0.001 0.03 −34.929 5.17(7) −76.5(1) −106.2(1)
0.011 0.37 −28.980 5.09(7) −76.6(1) −100.5(1)
0.031 1.00 −26.473 5.04(7) −76.7(1) −98.1(1)
0.051 1.61 −25.289 4.95(7) −76.9(1) −97.2(1)
0.101 2.98 −23.750 4.85(7) −77.1(1) −96.0(1)
0.151 4.18 −22.903 4.66(7) −76.88(9) −95.1(1)
0.201 5.23 −22.343 4.95(7) −76.85(9) −94.2(1)
0.251 6.19 −21.925 4.77(7) −76.95(9) −94.1(1)
0.301 7.03 −21.607 5.00(8) −77.17(9) −93.8(1)

is about 11% higher than the experimental value—see Table II), its
interaction with the water model is also stronger.

The chemical potential-based solubilities along with the solu-
bility bounds predicted by direct coexistence are shown in Figs. 1
and 5. The data reveal that for both urea models, the direct
coexistence solubility bounds are quite broad and (against our
expectations) do not encompass the chemical potential-based sol-
ubility, although the lower bound is close to it. The breadth of
the solubility bounds from coexistence simulations is substantially
larger than that observed in previous studies, which are all restricted
to either NaCl or the Lennard-Jones system. Unlike NaCl, urea
is a molecule. Its deposition on its crystal surfaces involves not
just translational but also orientational alignment, along with the

decoupling of the solvent from both the attaching molecule and the
crystal surface. We should, therefore, expect slow kinetics, partic-
ularly for the deposition process, and hence extremely long equili-
bration times and broad solubility bounds. Furthermore, when the
crystal surface is perfectly flat, that is, without kinks or terraces,
both surface deposition and dissolution will require a 2-D nucleation
event to initiate a new crystal layer or the dissolution of the surface.
(In the case of dissolution, the 2-D nucleus takes the form of a circu-
lar trough in the surface layer characterized by missing molecules.)
The critical size of the 2-D nucleus is given by the classical nucleation
theory49 (in 2-D)43 and depends on the extent of supersaturation or
degree of under-saturation in the case of dissolution. This critical
nucleus size approaches infinity at the solubility limit (saturation),
the implication being that the dissolution or growth of a new crys-
tal layer becomes increasingly more challenging as we approach
saturation from either direction—dissolution in an under-saturated
solution or crystal growth from a super-saturated solution. The issue
is considered to be particularly acute for molecular crystals, where
the entropic component of the nucleation free energy barrier is sub-
stantive due to the need for orientational alignment of the molecules
at the crystal surface. We believe this to be the cause of the broad
solubility bounds observed in the direct coexistence simulation for
urea. These considerations suggest that the simulations should tran-
siently converge at solubility values that correspond to a perfect flat
surface, which is indeed what we observe.

With respect to the lower solubility bound being slightly above
the chemical potential-based solubility, the disparity possibly arises
from the choice of using the faster dissolving (001) crystal face with
its higher interfacial free energy (surface chemical potential) for the
coexistence simulations. There is a possibility that this high, surface
chemical potential causes the amount of solute that dissolves from
the crystal face to overshoot the solution saturation limit. Whilst
this should be countered by the inverse process of solute deposition,
the over-saturation may be insufficient to initiate the 2-D nucleation
required to initiate the deposition of a new crystal layer once a com-
plete surface without kinks or terraces has developed. This would
result in a slightly over-saturated solution at convergence, yielding a
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FIG. 5. Solubility prediction for urea in aqueous solution for the two urea model
combinations, Özpınar/TIP3P and Hölzl/(TIP4P/2005). The horizontal, gray line is
the chemical potential of the crystal phase, whilst the blue data points are the
chemical potential of urea as a function of the urea mole fraction x of the solution
(excluding the inserted solute molecule). The solubility is given by the intersection
of the crystal chemical potential line and the solution chemical potential curve.
The vertical, orange band is the region defined by the upper and lower solubility
bounds determined from direct coexistence simulations. The predicted solubility
from the chemical potentials for both models lies just below the lower solubility
bound determined from direct coexistence. The estimated solubilities are 0.015
and 0.010 mole fractions for the Özpınar and the Hölzl models, respectively.

higher apparent solubility. Clearly, in-depth direct coexistence stud-
ies are required for molecular crystals, which we have now initiated
for urea.

On the basis of confidence in our chemical potential-based
solubility calculations, urea is yet another example for which the
predicted solubility from molecular simulation is markedly under-
estimated relative to experiment, suggesting significant issues with
the force fields. Whilst it is hard to generalize as we have only a
few examples (caffeine,20 aspirin,21 and urea12), we note that these
molecules are either sparingly soluble or soluble molecules, and
the medium is water. The gross disparity in the predicted solubil-
ity should not be surprising. Phase equilibria continue to challenge
our current force fields, with an illustrative example being the pre-
dicted freezing points of the commonly employed simple models of
water (TIP3P, TIP4P, and SPC/E) being 40–60 K below the exper-
imental value.50–52 Whilst the simple water models have now been
optimized to reproduce the liquid and solid phase properties, we
expect the optimization of force fields to reproduce phase equilib-
ria (such as solubility) for heterogeneous systems to be a significant
challenge because of the subtle interplay of the affinity of a molecule
for its solid phase and for the solvent, which may require revis-

iting some commonly employed assumptions like the use of the
Lorentz-Berthelot rules.53,54

Summarizing, the aqueous solubility of urea has been esti-
mated at 300 K using two distinct urea models, Özpınar/TIP3P and
Hölzl/(TIP4P/2005) model combinations, using chemical potential
calculations employing both thermodynamic integration and per-
turbation methodology. Although the simulated urea molecule was
flexible (but with the bonds being constrained), the methodology
assumes that the intramolecular contribution to the chemical poten-
tial is identical for both the crystal and for the solution and, hence,
cancels out. We believe this to be a fair assumption, as the flexibility
of the urea molecule is limited. The predicted solubilities for the two
models are about 10 fold lower than the experimental solubility.44,48

The chemical potential calculations have been supplemented by
direct coexistence dissolution and crystal growth simulations to
yield upper and lower bounds of the solubility for the two models.
The predicted solubility bounds are broad, with the upper estimate
being 2–4 times the lower estimate, and do not encompass the chem-
ical potential-based solubility, although the lower bound is close
to it. Whilst we have rationalized these results on the basis of sig-
nificant entropic energy barriers associated with the need to align
molecules at the interface for the case molecular crystals, more in-
depth direct coexistence is needed. Assuming confidence in our
chemical potential-based calculation, we attribute the disparity in
the predicted and experimental solubility to the inadequacy of the
force field models.
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