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Abstract

This thesis centers on the effects of lattice dynamics and structural distortions
on the excited-state properties of quasi two-dimensional (2D) semiconductors
from a theoretical point of view: a new avenue of research which only recently
is becoming amenable to predictive computational approaches. We analyse
the coupling between excitonic resonances and vibrations, and show its im-
portance for the accurate spectroscopic characterization of prototype systems.
The fundamental understanding of the microscopic physical mechanisms gov-
erning light-matter interaction, including the effects of strain, is expected to
be of key relevance for the design of innovative optoelectronic devices based
on such materials.
To gain deep insight in these mechanisms, we combine accurate first-principles
calculations –based on Density Functional Theory and Many Body Perturba-
tion Theory– with judicious quantitative models. We then develop simple
computational schemes to obtain accurate predictions, while greatly increas-
ing the efficiency with respect to state-of-the-art ab initio methods. In this
way, we are able to study complex systems that would otherwise be out of
reach. We focus on the effects of strain, stacking geometries, lattice vibrations
and pressure in selected relevant systems, and analyse and understand recent
cathodoluminescence (CL) and inelastic X-ray scattering (IXS) experiments.
First, we investigate graphene-like 2D polyaniline (also known as C3N), fo-
cusing on how uniaxial strain can tune its optical properties. We compute
excitonic resonances by solving the Bethe-Salpeter equation in a tight-binding
model for the electronic bands including a simplified description of the elec-
tronic screening. This model retains the accuracy of our fully ab initio cal-
culations at greatly decreased computational cost. We also classify excitons
according to the symmetries of the systems, explain the optical anisotropy
of the perturbed monolayer and the non-analytic behaviour of the excitonic
bands. Our analysis on C3N progresses with the ab-initio characterisation of
bilayers in different stacking motifs (namely AB, AB′ and AA′), where we ex-
plain the anomalous quenching of the optical absorption spectrum as induced
by the interlayer coupling.
Second, we implement a scheme to predict luminescence spectra, based on
calculated exciton-phonon coupling terms. We analyse CL experiments on
bulk Boron Nitride (BN) in two stacking motifs: AA′ (hBN) and ABC (rhom-
bohedral BN). Our calculations accurately reproduce the fine structure of the
observed CL signal and explain the differences in the spectra by revealing the
role of out-of-plane phonon branches involved in the photon emission process.
Finally, we develop a tool to simulate the dynamical structure factor of IXS,
starting from phonon dispersions DFT Density Functional Perturbation The-
ory. We employ this tool to provide guidance and a sound interpretation
of ultra-high pressure IXS experiments and related structural transitions in
MoS2.
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Introduction

The experimental synthesis of high-quality graphene monolayers by Novoselov
et al.[1] in 2004 has paved the way to a new research line in the field of con-
densed matter, i.e. the physics of 2D materials. Despite many exceptional
properties (both mechanical and electronic), graphene is characterized by a
gapless electronic ground state, making it hardly ideal for applications in the
context of opto-electronic devices, which necessarily require finite-gap semi-
conductors. This has stimulated a huge experimental and theoretical effort in
the design of new systems satisfying this requirement.
The optical properties of 2D semiconducting materials are characterised by
strong excitonic effects as a consequence of the much stronger electron-hole
interaction with respect to their bulk counterparts – a consequence of reduced
electronic screening and increased spatial confinement of charge carriers in
atomic-size structures. These excitations can be nowadays characterised using
state-of-the-art ab initio methods, which can be employed both to interpret
experimental results and to predict the properties of novel materials, guiding
the design of innovative devices.
In this Thesis, we have combined many-body perturbation theory methods
with density functional theory approaches to analyze 2D materials and wide-
gap bulk layered systems where excitonic effects play a central role in the
optical response. First principles results are also combined with simpler the-
oretical models to better clarify the results obtained numerically. This Thesis
is about modelling the effects of lattice dynamics and structural distortions
on the excited-state properties of quasi-2D semiconductors. This represents
a promising new avenue of research which only recently became amenable to
first-principles computational and theoretical techniques.

In the first part of this work, we have focused our attention on monolayer
C3N, a recently synthesized 2D system with a graphene-like honeycomb struc-
ture and a semiconducting ground state.
In its pristine single-layer form, C3N is expected to show intense optical
absorption in a narrow spectral range around 2 eV, due to strongly bound
electron-hole pairs. Furthermore, because of the strong covalent bonding be-
tween carbon and nitrogen atoms, this system is also expected to sustain large
mechanical stresses without structural failure. Therefore, it is a good candi-
date for the coexistence of the remarkable mechanical properties of graphene
with a finite electronic band gap. For this reason, in Chapter 2, we theo-
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retically explore the effect of uniaxial strain on the excitonic properties of
single-layer C3N, strain being a possible handle to externally tune its optical
response. Our results indicate that the symmetry-breaking effect of uniax-
ial strain induces a strongly anisotropic behaviour in the optical absorption
spectrum (even for small applied strain), which is totally absent in the unper-
turbed monolayer.

From a computational point of view, this analysis has been carried out
developing a model solution of the Bethe-Salpeter Equation – which describes
bound electron-hole pairs – starting from an ab initio description of the elec-
tronic screening and combining it with a tight-binding representation of single-
particle properties. This methodology, which is easily generalizable to other
2D systems, strongly reduces the computational complexity with respect to
fully ab initio calculations, while crucially keeping the same degree of ac-
curacy. Furthermore, it also allows us to explore small-momentum excitonic
dispersion, which is hardly accessible using fully first-principles methods. Our
analysis emphasizes that uniaxial strain is responsible for anisotropy also in
the exciton dispersions curves, suggesting the possibility of controlling exciton
propagation via external light polarization.

In addition to its interesting properties as a single layer, C3N can also be
considered as a fundamental building block for the fabrication of multilayer
structures, where several C3N-sheets are kept together via Van der Waals in-
teractions.
In a recent experimental work, Wei and collaborators[2] have succeeded in
synthesising bilayer C3N samples with the individual layers arranged in differ-
ent geometrical motifs (called AA′ and AB′). Exploiting scanning tunnelling
spectroscopy, they also demonstrate that the interlayer coupling among the
layers induces a strong modulation of the electronic properties compared to
the constituent building blocks. In particular, the electronic gaps exhibit im-
portant variations with the stacking pattern.
These experimental advances motivated us to investigate the optical proper-
ties of bilayer (BL) C3N from a fully first principles perspective. Interestingly,
the ab initio analysis proposed in Chapter 3 reveals a strong quenching of the
low-energy optical absorption in bilayer C3N for all the considered stacking
patterns (i.e. AB, AB′ and AA′). This is a consequence of the negligible
oscillator strengths associated to the lowest-energy bound excitons. We have
explained this peculiar behaviour (not observed in other well-studied homo-
bilayers such as BL-hBN, BL-MoS2 and BL-phosphorene) in terms of the
small interband dipole associated to the valence-conduction electronic tran-
sitions making up these low-energy excitons. Furthermore, by developing a
tight binding model for the electronic states of interest, we have demonstrated
that the observed low interband dipole is caused by destructive interference
between the contributions of single-layer components.

In the second part of this work, we applied fully ab initio approaches to
interpret recent cathodoluminescence experiments on boron nitride polytypes
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and Inelastic X-ray scattering in compressed MoS2.
Layered boron nitride (BN) is a wide-gap insulator which exhibits intense lu-
minescence in the ultraviolet (UV) regime due to strongly bound excitons.
This material has many practical applications, from UV lasers to its use in
the encapsulation of other 2D materials to protect them from external envi-
ronmental influence while leaving unaltered their electronic properties.
Among the possible layered bulk BN crystals obtained by stacking together
different hexagonal BN monolayers, the most stable polytypes are those with
AA′ (hBN) and ABC (rBN) motifs. These polymorphs can coexist in the
experimentally synthesized sample, and since they differ only in the stackings
of monolayer building blocks, their distinction via conventional diffraction ap-
proaches is difficult, as these systems only differ by the way in which analogous
monolayer building blocks are stacked together.
As both these materials are characterized by an indirect band gap, their low-
energy emission in the UV range can be only explained in terms of phonon-
assisted processes, made possible by the coupling between finite-momentum
excitons and lattice vibrations leading to a second-order process of radiative
recombination. Cathodoluminescence (CL) experiments performed by our
experimental collaborators at University Paris-Saclay and ONERA suggest
that different phonon modes are involved in the CL signals of hBN and rBN,
making this spectroscopic technique an ideal probe to identify these two poly-
types. To better clarify the observed experimental differences, we implement
a computational scheme combining a many-body description of electronic ex-
citations with density functional perturbation theory calculations for lattice
vibrations, yielding fully ab initio CL spectra. Our approach (discussed in
Chapter 4) works in general for indirect-gap materials and overcomes the
difficulties present in the currently available schemes for exciton-phonon cou-
pling, which suffer from a phase mismatch between excitonic wavefunctions
and electron-phonon matrix elements.
The resulting theoretical emission spectra enabled us to unambiguously iden-
tify the different phonon modes responsible for the indirect exciton emission.
In particular, we find that out-of-plane lattice vibrations take part in the
phonon-assisted emission of rBN but not in hBN, giving rise to characteristic
differences in the observed CL spectra.

Finally, Chapter 5 has been devoted to the interpretation of preliminary
inelastic X-ray scattering (IXS) experiments on bulk MoS2 under high pres-
sure at room temperature. These measurements (done by the group of Prof.
Luigi Paolasini at ESRF) aimed at characterising the phonon dispersion of
single MoS2 crystals as a function of pressure and testing its behaviour under
ultra-high pressure (above 30 GPa). These measurements will be followed
by future experimental investigations (beamtime already approved) at low
temperature, aimed at spotting experimental fingerprints of the recently the-
oretically proposed excitonic-insulator phase, which should be induced in this
material via external pressure.
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To this end, we have developed a computational tool for the contribution of
vibrational modes to low-energy inelastic X-ray spectra, starting from a fully
ab initio description of phonon properties within density functional pertur-
bation theory. Direct comparison between theoretical and experimental spec-
tra allows for the characterization of phonon modes under pressure and the
definition of proper experimental configurations for future low-temperature
experiments. Most importantly, our ab initio results permit to identify IXS-
spectral signatures of the structural phase transition 2Hc →2Ha occurring in
bulk MoS2 at intermediate pressure (around 20 GPa).
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Chapter 1

Computational Methods

Interacting electrons in a condensed matter system can be described by the
Hamiltonian operator

Ĥ = T̂e + V̂e−I + V̂e−e (1.1)

where

T̂e = −ℏ2

2

Ne∑
i

∇2
i (1.2)

is the electron kinetic energy operator,

V̂e−I = −
Nat∑
I

Ne∑
i

ZI

|ri −RI |
(1.3)

represents the coupling between electrons and nuclei and

V̂e−e =
1

2

Ne∑
i,j

1

|ri − rj|
(1.4)

stands for the electron-electron Coulomb interaction1.
In Equation (1.1) we are implicitly assuming Born-Oppenheimer (BO) ap-
proximation, by which is possible to decouple electrons and lattice dynamics:
in other words, as the mass of the nuclei is larger than the one of the electrons,
the nuclear dynamics is slower than the electronic one, so that atoms can be
assumed fixed in space w.r.t. the electrons.
Starting from the Hamiltonian defined by Eq.(1.1), the electronic state is
therefore determined by a wavefunction Ψλ(r1, r2, ..., rNe) obtained as

ĤΨλ(r1, r2, ..., rNe) = EλΨλ(r1, r2, ..., rNe) (1.5)

being Eλ the energy of the accessible many-body electronic states λ, repre-
sented by wavefunctions Ψλ(r1, r2, ..., rNe).

1In the following we will always assume me = e = 4πε0 = 1 and we will neglect the
spinorial degrees of freedom.
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Computing the electronic states of a realistic system using Eq.(1.5) is, unfor-
tunately, practically impossible: the reason is that the functions Ψλ depend
on the positions of the Ne electron in the system: as in condensed matter sys-
tems, Ne is approximately equal to the Avogadro number, a straightforward
solution of Eq.(1.5) cannot be afforded.
In this Chapter we will summarize the state-of-the-art methods adopted in this
Thesis to compute electronic ground and excited states in realistic condensed
matter systems: in practice, we will discuss Density Functional Theory (DFT)
(Section 1.1) to compute ground state properties, and Many Body Perturba-
tion Theory (MBPT) approaches (Sections 1.2 and 1.3) to obtain realistic
electronic bandstructures and optical properties. Finally, we briefly discuss
simulation of lattice vibrations in solids via Density Functional Perturbation
Theory (DFPT) in Section 1.4.

1.1 Density Functional Theory

Density Functional Theory (DFT)[3] is a theoretical approach, which provides
a formally exact description of the ground state properties of an electronic
system.
Such theory is grounded on two fundamental theorems by Hohenberg and
Kohn[4]. The first theorem states that, given a system of Ne interacting
electrons under the action of an external potential V , the potential giving a
certain electronic density n(r) is unique (except for a constant).
A straightforward consequence of this theorem is that the total energy of the
system is a functional of the charge density: formally

E[n(r)] = ⟨Ψ0|T̂e|Ψ0⟩+ ⟨Ψ0|V̂e−e|Ψ0⟩+
∫

dr n(r)V (r) (1.6)

where V is the ’external’ potential which corresponds to the electron-ion in-
teraction while Ψ0 is the (unknown) many-body electronic state. In general,
the expectation values of T̂e and V̂e−e are written as

F [n(r)] = ⟨Ψ0|T̂e|Ψ0⟩+ ⟨Ψ0|V̂e−e|Ψ0⟩ (1.7)

F being a universal functional of the sole electronic charge density.
Starting from Eqs.(1.6)-(1.7), we can directly state the second Hohenberg-
Kohn theorem: the ground state electronic charge density is the function
n0(r) which minimizes the total energy functional E[n(r)] defined in Eq.(1.6).
Such second theorem gives an important conceptual advantage: to fully de-
scribe the electronic ground state, the explicit knowledge of the intractable
many body wavefunction Ψ0(r1, r2, ..., rNe) is unnecessary, as we only need the
ground state charge density n0(r) which is a much simpler function of only
three spatial coordinates r = [x, y, z].
Despite their fundamental importance, Hohenberg-Kohn theorems do not pro-
vide a practical recipe to compute such ground state charge density: this gap
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was closed by the work of Kohn and Sham[5]. Kohn-Sham (KS) approach
maps the fully interacting system with ground state density n0(r) onto a fic-
titious system of non-interacting electrons having the same charge density of
the real interacting system: the fictitious particles are subject to the action
of an unknown external potential, called the KS potential VKS(r).
Defining as

ES[n(r)] = TS[n(r)] +

∫
dr n(r)VKS(r) (1.8)

the total energy functional of the KS auxiliary system, where TS[n(r)] is the
kinetic energy contribution, we can use Hohenberg-Kohn theorems to state
that the external KS potential is unique and defined by

VKS(r) +
δTs
δn

∣∣∣∣∣
n0

= Λ. (1.9)

Equation (1.9) is found by minimizing ES[n(r)] w.r.t. the charge density n,
while including the constraint Ne =

∫
drn(r) to guarantee charge conservation

(here Λ is a Lagrange multiplier).
Now, within KS approach, the total-energy functional E[n] of the interacting
system is written as

E[n(r)] = TS[n(r)] + EH [n(r)] +

∫
dr n(r)V (r) + Exc[n(r)] (1.10)

being EH [n(r)] the (classic) electrostatic Hartree energy, TS[n] the kinetic
energy of the auxiliary system and Exc the exchange-correlation energy, whose
expression is unknown. Minimizing this new expression of E[n(r)] with the
same charge-conservation constraint applied before, we can obtain

δTs
δn

∣∣∣∣∣
n0

+ VH(r) + V (r) + Vxc(r) = Λ (1.11)

where

VH(r) =

∫
dr′ vc(r− r′)n(r′) (1.12)

is the Hartree potential (being vc(r− r′) the Coulomb electron-electron inter-
action), V is the ’external’ electron-ion interaction and

Vxc(r) =
δExc

δn

∣∣∣∣∣
n0

(1.13)

is the exchange-correlation potential.
Comparing Eq.(1.9) with Eq.(1.11), we can immediately find the effective KS
potential, i.e.

VKS(r) = V (r) + VH(r) + Vxc(r) (1.14)
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In practice, KS scheme allows to compute the ground state charge density
n0(r) of the interacting system starting from an auxiliary set of independent
electrons, subject to a single-particle potential VKS defined by Eq.(1.14).
The electronic states accessible to these auxiliary electrons can be obtained
by solving KS equations[

− ℏ2

2
∇2 + VKS(r)

]
ϕj(r) = ϵKS

j ϕj(r) (1.15)

where the index j runs over the auxiliary-single particle KS states ϕj(r), with
energy ϵKS

j . In practice, these equations have to be solved self-consistently,
and this is what is generally done in a conventional ground state DFT cal-
culation. More precisely, one starts from an initial ansatz for the electronic
charge density in the system, i.e. n(i)(r), and computes V

(i)
KS using Eq.(1.14),

after choosing an approximate expression for the KS potential, as we will dis-
cuss below. Then, the obtained KS potential is used to construct and solve
Eq.(1.15), from which a first set of KS state ϕi

j(r) are obtained. Finally, a
refined approximation for the charge density is computed starting from the
occupied KS states, i.e.

n(i+1)(r) =
occ∑
j

|ϕi
j(r)|2 (1.16)

The obtained charge density n(i+1)(r) is then used to re-evaluate the KS po-
tential and, subsequently to obtain new KS states: such iterative procedure
is repeated up to when self-consistency is reached.
As anticipated, this self-consistent scheme requires the knowledge of the exchange-
correlation potential. We underline that this is the step at which approxi-
mations has to be included to proceed further: in fact, provided the exact
expression of Vxc, the self-consistent solution of KS equation would give the
exact electronic charge density.
We now briefly discuss the two main approximations used in this Thesis for
Exc, i.e. Local Density Approximation (LDA) and Generalized-Gradient-
approximation (GGA).
The core idea behind LDA is to assume that a small volume dr centered at
r in an in-homogeneous system of electrons, in which the electron density is
n = n(r), contributes to the total exchange-correlation energy as the same
volume of a homogeneous electron gas with a uniform density n. This can be
written in mathematical terms as

ELDA
xc [n(r)] =

∫
dr n(r)ϵhomxc (n) (1.17)

with ϵhomxc being the exchange-correlation energy per electron in an homoge-
neous electron gas, which a function (instead of a functional) of the charge
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density: this is a known quantity, accessible via parametrization of Monte
Carlo results on the interacting homogeneous electron gas[6].
Despite its simplicity, LDA works reasonably well for solids, where the used
approximation of slowly varying charge density turns out to be generally (even
if not always) reasonable. However LDA still exhibits practical problems: for
example it tends to overestimate the strength of chemical bonding between
atoms, giving underestimated lattice parameters in crystals, once compared
to the experimental ones.
A different approximation (which generally solves the lattice parameter prob-
lem just discussed) is given by Generalized Gradient Approximation (GGA)[7,
8, 9, 10]. The central idea for these functionals is to go beyond LDA by con-
sidering the role of local charge density gradient, i.e.

EGGA
xc [n(r)] =

∫
dr n(r)ϵGGA

xc (n(r),∇n(r)) (1.18)

A detailed discussion of the possible expressions used for ϵGGA
xc is beyond the

scope of this short introduction: here we only point out that, in the follow-
ing, we will adopt the Perdew-Burke-Ernzerhof (PBE) treatment of GGA as
presented in the fundamental Reference [10].
All DFT calculations presented in this Thesis have been performed using
Quantum Espresso package[11, 12]. This code is based on a plane-wave basis
set description of KS states and exploits norm-conserving Pseudopotentials[13]
to model core electrons not involved in the chemical bonding.
In periodic crystals, the KS potential is a periodic function and consequently
KS states are Bloch states characterized by quantum numbers (n,k), given
by

ϕj(r) → ϕnk(r) = eik·runk(r) (1.19)

being n the band index, k the crystal momentum (in the Brillouin Zone) and
unk the lattice periodic part of KS states. In Quantum Epsresso such periodic

functions are written on a plane wave basis set
{

1√
V
eiG·r

}
, where G are

reciprocal lattice vectors: each function unk is represented by the coefficients

cnk(G) =

∫
u.c.

dr e−iG·runk(r) (1.20)

which can be efficiently computed using Fast Fourier Transform algorithm (in
Eq. (1.20) ’u.c.’ indicates integration over the crystal unit cell).
In practical terms, a relevant parameter, which needs to be checked in con-
ventional DFT calculations, is the so called cutoff energy Ecut: it basically
determines the shortest wavelenght used to describe KS states for each k
point, i.e.

cnk(G) = 0 if
ℏ2

2
|k+G|2 > Ecut (1.21)

Together with Ecut, another important quantity that has to be set in general
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DFT calculations is the k-grid sampling the Brillouin Zone (BZ): to better
understand this point, we remind that the electronic charge density is written
in terms of KS states as

n(r) =
occ∑
n

BZ∑
k

|unk(r)|2 (1.22)

therefore, properly converged results require a accurate sampling of the BZ: in
the following presented results we will always use Monkhorst-Pack[14] grids
as regular meshes to sample the BZ and we choose the grid size by check-
ing convergence of physical properties (e.g. relative total energies or lattice
parameters) w.r.t. the k-points sampling.

1.2 GWApproximation and Quasi-Particle ef-

fects

In the precedent section we have discussed DFT as the approach by which
a robust description of ground state properties is accessible. We now turn
our attention to the evaluation of the excited states of an interacting-electron
system.
We start here focusing on the case of single-particle excitations, which cor-
respond to the addition or removal of an electron to the system: these ex-
citations are, for example, probed experimentally via electronic transport
measurements (such as Scannning Tunnelling Spectroscopy) or by photoe-
mission techniques (e.g. ARPES). In the following we will discuss how to
compute the energies of these excitations within Many Body Perturbation
Theory (MBPT)[15, 16, 17], in order to derive the so-called Quasi-Particle
(QP) electronic bandstructures.
In this context, a central role is played by single particle Green Function[18]
G(r, t; r′, t′) which is defined as

G(r, t; r′, t′) = −i⟨ΨN
0 |T̂

[
ψ̂(r, t)ψ̂†(r′, t′)]|ΨN

0 ⟩ (1.23)

where we take ℏ = 1 in the following, to simplify the notation. |ΨN
0 ⟩ is

the many-body ground state for a system of N interacting electrons, ψ̂(r, t)
(ψ̂†(r, t)) is the annihilation (creation) operator for an electron at r at time t
in Heisenberg representation and T̂ is the time ordering operator for fermionic
operators. In practice, if t > t′, G describes the probability amplitude to find
at time t and at position r an electron once a charge e− has been added to
the system at time t′ and at position r′; if t < t′, a similar definition can be
provided for holes.
If the system is isolated and not subject to external perturbations, it can be
shown[18] that G depends on the difference t−t′ and not on t and t′ separately.
Therefore, by taking the Fourier transform of G(r, r′, t − t′) with respect to
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t− t′ we can define the Lehmann representation for the single particle Green
function, i.e.

G(r, r′, ω) =
∑
λ

fλ(r)f
∗
λ(r

′)

ω − ϵλ + iηsgn(ελ − µ)
(1.24)

λ being an index running over all excited states |ΨN±1
λ ⟩ of the system with

N ± 1 electrons (N is the number of electrons in the ground state), while

fλ(r) =

{
⟨ΨN

0 |ψ̂(r)|ΨN+1
λ ⟩ if ϵλ > µ

⟨ΨN−1
λ |ψ̂(r)|ΨN

0 ⟩ if ϵλ < µ
(1.25)

are the Lehmann amplitudes and

ϵλ =

{
EN+1

λ − EN
0 if ϵλ − µ > 0

EN
0 − EN−1

λ if ϵλ − µ < 0
(1.26)

are the excitation energies for adding (ϵλ − µ > 0) or removing (ϵλ − µ < 0)
an electron from the system, with chemical potential µ. Furthermore, η is an
infinitesimal number, i.e. η → 0+.
This representation of G is extremely useful to clarify one of the most im-
portant information provided by the single-particle Green function: in fact,
looking at the denominator of Eq.(1.24) it is immediate to realize that the
time-Fourier transform of G has its poles at the single particle excitation en-
ergies of the system.
Suppose now to consider the case of adding an electron to a material: while
propagating in the system, this particle will be surrounded by a positively
polarized region due to the repulsion among the electrons: the combination of
the electron and this induced polarization cloud can be thought as a Quasi-
Particle (in this case a quasi-electron). A similar reasoning can be carried out
in the case of electron removal, where the created quasiparticle is referred to
as a quasi-hole. The energies ϵλ and the corresponding Lehmann amplitudes
fλ can be respectively thought as the excitation energies and wavefunctions
of these quasiparticles, at least approximately. Such interpretation is fully
consistent to the simpler case of a system of independent particles, as the KS
auxiliary system. In this case using the definitions (1.25)-(1.26), it is straight-
forward to demonstrate that ϵλ ≡ ϵnk, i.e. they correspond to the energies of
the single particle levels (n,k) accessible in the system, while the Lehmann
amplitudes fλ(r) will coincide with the corresponding single particle wave-
functions ϕnk(r).
We now discuss the procedure by which we can compute these single particle
excitation energies from a fully ab initio perspective in realistic materials.
To this purpose, it is useful to consider the equation of motion of G: start-
ing from the Heisenberg equations for ψ̂(r, t) and ψ̂†(r′, t′) it is possible to
derive[19] [

i
∂

∂τ
− ĥ(1)

]
G(1, 2)−

∫
d3 Σ(1, 3)G(3, 2) = δ(1, 2) (1.27)
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where ’1’ is a compact notation for (r1, t1), τ = t− t′ and

ĥ =
1

2
∇2 + V̂ + V̂H (1.28)

is the single particle Hamiltonian which contains the kinetic energy operator,
the electron-ion coupling potential V̂ and the Hartree interaction. Eq.(1.27)
depends on the electron-self energy Σ, which accounts for the electron-electron
interaction, beyond the classical Hartree term.
Taking the time Fourier transform w.r.t. τ of Eq.(1.27), using the Lehmann
representation (1.24) for the Green function and considering the limit ω → ϵλ,
we obtain

ĥfλ(r) +

∫
dr′ Σ(r, r′; ϵλ)fλ(r

′) = ϵλfλ(r) (1.29)

Adding and subtracting the quantity∫
dr′ Vxc(r

′)fλ(r
′)δ(r− r′) (1.30)

to the l.h.s. of Eq.(1.29) we finally obtain

ĥKSfλ(r) +

∫
dr′
[
Σ(r, r′; ϵλ)− Vxc(r

′)δ(r− r′)

]
fλ(r

′) = ϵλfλ(r) (1.31)

where ĥKS is the Kohn-Sham hamiltonian operator appearing in Eq.(1.15),
whose eigenstates (eigenvalues) correspond to the KS wavefunction (energies).
Following Hybertsen and Louie[20], we can interpret the non local and energy
dependent operator Σ̂− V̂xc as a perturbation of the KS hamiltonian. As a re-
sult, we can express the quasi-particle energies ελ with first order perturbation
theory, i.e.

ϵQP
λ = ϵKS

λ + ⟨ϕKS
λ |Σ̂(ϵQP

λ )− V̂xc|ϕKS
λ ⟩ (1.32)

We emphasise that this approach is reasonable if KS states, obtained within
DFT, can be considered good approximations of the quasiparticle wavefunc-
tions fλ; in these cases many body effects encoded in the self energy operator,
can be properly included by simply adding to the DFT energies ϵKS

λ the ex-
pectation value of Σ̂− V̂xc on the corresponding KS states.
As the electron self-energy depends on the QP energies, Eq.(1.32) would in
principle require a self-consistent solution. In practical calculations, such en-
ergy dependence is simplified by considering the linearized self energy in prox-
imity of the KS eigenvalue, i.e.

Σ̂(ϵQP
λ ) ≈ Σ̂(ϵKS

λ ) +
∂Σ

∂ϵ

∣∣∣∣∣
ϵKS
λ

(ϵQP
λ − ϵKS

λ ) (1.33)

In this way the self energy and its first derivative need to be computed only
once, in correspondence of the KS energy.
Collecting Eqs.(1.32)-(1.33) we can easily obtain

ϵQP
nk = ϵKS

nk + Znk⟨ϕKS
nk |Σ̂(ϵKS

nk )− V̂xc|ϕKS
nk ⟩ (1.34)
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where we have done the substitution λ→ (nk), as we generally work with pe-
riodic systems where KS states are labeled according to band and momentum
indexes, and we have defined

Znk =
1

1− ∂Σ
∂ε

∣∣
ϵKS
nk

(1.35)

usually referred to as renormalization factors. Equation (1.34) is the expres-
sion used in this Thesis to evaluate Quasi-Particle corrected electronic bands
starting from DFT eigenenergies.
To evaluate Eq.(1.34), we need a method to compute the matrix element of the
electron self energy on KS states. We now outline the main approximations
adopted in this work, together with the practical steps needed to effectively
evaluate quasi-particle corrections.
In his fundamental work[21], Lars Hedin derived a set of self-consistent equa-
tions by which it is in principle possible to obtain the self energy Σ, i.e.

Σ(1, 2) = i

∫
d34 G(1, 4)W (1+, 3)Γ̃(4, 2; 3) (1.36)

W (1, 2) = v(1, 2) +

∫
d34 v(1, 3)P (3, 4)W (4, 2) (1.37)

P (1, 2) = −i
∫

d34 G(1, 3)G(4, 1)Γ̃(3, 4; 2) (1.38)

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
d4567

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ̃(6, 7; 3) (1.39)

G(1, 2) = G0(1, 2) +

∫
d34 G0(1, 3)Σ(3, 4)G(4, 2) (1.40)

A formal proof of these Equations is beyond the scope of this introduction,
and we refer to relevant literature for their derivation[21, 15, 17]. We point out
here that P and Γ̃ are respectively referred to as the irreducible polarizability
and vertex function. Furthermore, W is the electron-electron screened inter-
action, describing the bare Coulomb coupling v between electrons, screened
by the other carriers in the material. Finally, G0 is the single particle Green
function, associated to the single particle Hamiltonian defined in Eq.(1.28).
In this Thesis we adopt the GW approximation for the self-energy. It corre-
sponds to approximate the irreducible vertex as

Γ̃(1, 2; 3) ≈ δ(1, 2)δ(1, 3) (1.41)

to obtain, for the self-energy,

Σ(1, 2) ≈ iG(1, 2)W (1+, 2) (1.42)

Apart from its mathematical definition, provided by Eqs.(1.41) and (1.42),
GW approximation is based on the assumption that the terms proportional
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to W n, with n > 1, appearing in the vertex function of Eq.(1.36) are negli-
gible w.r.t. the contribution linear in W , as a consequence of the electronic
screening of the bare Coulomb interaction.
Using Eq.(1.41), we also obtain a simplified expression for the irreducible
polarizability,

P (1, 2) ≈ −iG(2, 1+)G(1, 2+) (1.43)

which becomes the product of two interacting-single-particle Green functions
describing an electron-hole pair, not coupled with each other.
Even within GW approximation, Hedin’s equations still require a self-consistent
solution, where G, W and Σ need to be iteratively evaluated up to conver-
gence.
In this Thesis we adopt a simplified approach called G0W0-single-shot method
to compute the self energy operator, which consists on performing a first it-
eration of Hedin’s equations, starting from Green function constructed from
KS wavefunctions and energies. To clarify this methodology, we summarize
below the steps followed in a G0W0 calculation.
Firstly, we exploit the KS wavefunctions and energies obtained at the DFT
level to construct a non-interacting single particle Green function GKS, which
is then used to compute the irreducible polarizability P0 ≈ −iGKS(2, 1+)GKS(1, 2+).
Notice that this is an approximation for Eq.(1.43), as we are substituting the
interacting Green function with a non-interacting one.
The screened electron-electron interaction W is evaluated as

W (1, 2) =

∫
d3 ε−1(1, 3)v(2, 3) (1.44)

where the inverse dielectric function ε−1 satisfies the equation

ε−1(1, 2) = δ(1, 2) +

∫
d3χ(1, 3)v(3, 2) (1.45)

χ(1, 3) being the reducible polarizability related to the irreducible polarizabil-
ity by the Dyson equation

χ(1, 2) = P (1, 2) +

∫
d34 P (1, 3)v(3, 4)χ(4, 2) (1.46)

To proceed further, we introduce the Random Phase Approximation (RPA),
i.e. we approximate P in Eq.(1.46) with P0, obtained from the non interacting
Green functions GKS.
From Eqs.(1.44)-(1.46) we obtain the screened electron-electron interaction,
which is then combined with KS Green-function to obtain the electron self
energy as

Σ(1, 2) ≈ iGKS(1, 2)W (1+, 2) (1.47)

After taking the time Fourier transform, this self energy ΣGW is then used
in Eq.(1.34) to compute quasi-particle energies using first order perturbation
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theory.
In the following, we provide few more details about the implementation of this
procedure within Yambo code[22, 23], to make clearer the parameters which
has to be carefully converged to obtain meaningful QP energies.
Our aim is compute the matrix element

Σnk(ω) = ⟨ϕKS
nk |Σ̂(ω)|ϕKS

nk ⟩ (1.48)

where ω is fixed to the KS energy ϵKS
nk . Such matrix element can be written

as the sum of two terms,

Σx
nk = −

∑
v

∑
G

∫
dq

(2π)3
v(q+G)|ρnvk(q,G)|2 (1.49)

Σc
nk(ω) = i

∑
m

∑
GG′

∫
dq

(2π)3
v(q+G)ρnmk(q,G)ρ∗nmk(q,G

′)·∫
dω′GKS

m,k−q(ω − ω′)ε−1
GG′(q, ω

′) (1.50)

G and G′ being reciprocal lattice vectors.
Equation (1.49) gives the exchange contribution to the electron self-energy.
This term is frequency-independent and comes from the Hartree-Fock contri-
bution to the self-energy, i.e. ΣHF = iGv. We note that in Eq.(1.49) the sum
over bands is performed only on occupied states v, while the functions ρ are
defined as

ρnmk(q,G) = ⟨ϕKS
nk |ei(q+G)·r|ϕKS

mk−q⟩ (1.51)

which are computed using Fast Fourier Transform algorithms, starting from
KS states.
The second contribution to the electron self energy is given by the correlation
term provided by Eq.(1.50), which is frequency dependent, differently from
Σx

nk. Also in this case, we notice the presence of a summation over bands,
denoted by the index m in Eq.(1.50). In this case, the states to be included
are both occupied and unoccupied and their number must be carefully chosen
to properly converge the QP corrections. We recall that numerical approaches
which reduce the needed number of bands to be included in this summation
are available in the literature[24].
In Eq. (1.50), GKS

m,k−q is the time-Fourier transform of the KS Green function,
written in the KS basis, i.e.

GKS
m,k(ω) =

fmk

ω − ϵKS
mk − iη

+
1− fmk

ω − ϵKS
mk + iη

(1.52)

where fmk is the Fermi-Dirac distribution computed at the KS energy ϵKS
mk .

Finally, ϵ−1
GG′(q, ω) is the frequency-dependent inverse dielectric function, i.e.
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the space and time Fourier transform of ε−1(1, 2) defined by Eq.(1.45), with
χ evaluated within RPA approximation. In a conventional G0W0 calculation
in Yambo, the first step is the evaluation (in Fourier space) of the irreducible
polarizability P0, using KS Green functions. This provides

P0,GG′(q, ω) = 2

∫
dk

(2π)3

∑
nm

ρnmk(q,G)ρ∗nmk(q,G
′)

·

[
fmk(1− fn,k−q)

ω − (ϵKS
mk − ϵKS

nk−q)− iη
− fmk(1− fn,k−q)

ω − (ϵKS
nk−q − ϵKS

mk) + iη

]
(1.53)

The calculation of P0 requires a summation over both occupied and unoccu-
pied states (m and n respectively in Eq.(1.53)); the number of empty bands
included in the construction of P0 is a relevant convergence parameter in prac-
tical calculations. Once the independent particle polarizability is known, the
reducible χ is evaluated by numerical inversion of Eq.(1.46), once written in
Fourier space, i.e.

χRPA
GG′ (q, ω) = P0,GG′(q, ω) +

∑
G1

P0,GG1(q, ω)v(q+G1)χ
RPA
G1G′(q, ω) (1.54)

for each q scattering wave-vector in the Brillouin zone and, in principle, for
each frequency ω. Finally, the dielectric screening matrix is obtained as

ε−1
GG′(q, ω) = δGG′ + χRPA

GG′ (q, ω)v(q+G) (1.55)

We remind here that a cut-off is applied on the (G,G′) reciprocal lattice
vectors appearing in Eq.(1.54): similarly to the number of bands included in
the polarizability P0, such cut-off needs to be chosen with care, as it strongly
affects the obtained description of the electronic screening.
Equation (1.50) requires a frequency-space integration, over the variable ω′,
which would make in principle necessary the evaluation of the inverse dielec-
tric function at different frequencies. The calculation of Eq.(1.53) on a fine
frequency grid is extremely demanding, therefore a frequency-interpolation of
the dielectric screening is needed. The simple approach used in this Thesis
is the so called Plasmon-Pole-Approximation (PPA), following Godby-Needs
scheme[25]. In this model, the dielectric function is written as[15]

Re[ε−1
GG′(q, ω)] = δGG′ +

2

π

AGG′(q)ω̃GG′(q)

ω2 − ω̃2
GG′(q)

(1.56)

Im[ε−1
GG′(q, ω)] = −AGG′(q)

[
δ(ω − ω̃GG′(q)) + δ(ω + ω̃GG′(q))

]
(1.57)

In practice, the dielectric function ε−1
GG′(q, ω) is explicitly evaluated for all q,

G and G′) at two frequencies, i.e. ω = 0 and ω = iωp: then the model param-
eters AGG′(q) and ω̃GG′(q) are chosen so that the model function expressed
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by Eqs.(1.56)-(1.57) reproduce the ab initio results at these two frequencies.
In all the calculation presented in the following we have kept fixed the fre-
quency ωp to its default value chosen in Yambo code, i.e. ωp = 1Ry.
Substitution of Eqs.(1.56)-(1.57) in the correlation part of the electron self-
energy, Eq.(1.50), provides an analytical solution of the integral on frequen-
cies.
We point out that relevant variations of QP corrections under small changes
of the value of ωp reflect the inadequacy of PPA for the system under study.
In that cases one should adopt a more refined treatment of the frequency de-
pendence of the dielectric screening either using a full-frequency approach, or
adopting more advanced frequency interpolation techniques as the one pro-
posed in Ref.[26].
All the integrals over the scattering vectors q in the Brillouin Zone are numer-
ically discretized on a uniform q Monkhorst-Pack mesh sampling the BZ. QP
corrections are extremely sensitive to the q-sampling of the BZ and properly
converged results usually require much denser grids than those used to sample
the BZ in self consistent calculations in DFT. There exists methods which en-
able accelerated convergence w.r.t. the BZ sampling, performing more refined
evaluations of the integrals over q: a recent implementation of one of these
approaches has been adopted in Chapter 3 to compute QP corrections to DFT
energies in Bilayer C3N[27, 28].
We complete this introduction to GW approximation for the evaluation of QP
energies considering a fundamental aspect that must be taken into account
in QP-calculation in low dimensional systems. We focus here on the case
of 2D materials, which are the low dimensional systems considered in this
work. Within a plane-wave basis-set framework, they are represented using
a supercell technique, i.e. considering a 3D crystal characterized by a unit
cell having size L along the non-periodic direction sufficiently large to avoid
unphysical interaction between the periodic copies of the 2D system. Within
a DFT description, these spurious interactions can be removed by choosing
relatively small values of L: in general a vacuum region of 15-20 Å between
periodic copies is enough to decouple periodic images of the 2D material, as
a consequence of the short-range nature of the exchange-correlation potential
Vxc, within local (LDA) or semi-local (GGA-PBE) approximations. As bare
Coulomb interaction is long-ranged, in GW calculations one generally needs
to use impractically large supercells along the non-periodic direction, to make
sure that periodic repetitions are not coupled by Coulomb interaction.
The solution to this problem is to adopt a real-space cut-off for the Coulomb
potential: as detailed in Refs.[29, 30], this corresponds to define the electron-
electron potential as

v̄(r) =

{
v(r), if |z| < L

2

0 otherwise
(1.58)
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i.e. the Coulomb interaction between points separated, along the non-periodic
direction, more than the supercell size L is manually set to zero. In this
way, properly converged QP corrections can be obtained using supercells with
length L along the non-periodic direction comparable to those needed in DFT
calculations.

1.3 Neutral excitations from Bethe-Salpeter

Equation

In this Section we discuss neutral excitations in interacting electron systems,
corresponding to excited states in which the number of particle is left un-
changed w.r.t. the one of the ground state.
A simple example of this type of excitations is the electron-hole pair created
by absorption of an optical photon. These two quasi-particles (i.e. the cre-
ated quasi-electron and the quasi-hole) interact among each other and there-
fore constitute a correlated pair, generally referred to as an exciton. As the
electron-hole interaction is mainly attractive, the energy of this composite
quasi-particle can be lower than the one of the free pair, so that exciton is
considered as bound. This interaction is not captured by GW approximation,
therefore an ab initio investigation of this type of excitation requires a dif-
ferent treatment, which we now summarize in the following. Such treatment
enables an accurate description of many experimental observables, like optical
absorption and electron energy loss spectroscopy.
Neutral excitations can be obtained from the two-particle correlation function
L(12, 1′2′), which satisfies the Dyson-like Bethe Salpeter Equation (BSE)[31,
32, 16, 15]

L(12, 1′2′) = L0(12, 1
′2′) +

∫
d3456 L0(14, 1

′3)Ξ(35, 46)L(62, 52′) (1.59)

where L0 describes the propagation of a pair of non-interacting particles, i.e.

L0(12, 1
′2′) = −iG(12′)G(21′) (1.60)

while Ξ is the BSE kernel, which accounts for the interaction among these two
particles

Ξ(35, 46) = −iδ(34)δ(56)v(35) + δΣ(34)

δG(65)
(1.61)

where Σ is the electron self-energy discussed in Sec.1.2. Following Ref.[33],
we know that L depends on three time differences, i.e.

τ1 =
1

2
[t1 − t1′ − t2 − t2′ ]

τ2 = t1 − t1′
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τ3 = t2 − t2′

In the following we will restrict our attention to the simultaneous propagation
of an electron-hole pair: in this case τ2 = 0 and τ3 = 0 and only the time
dependence on τ1 is considered, with τ1 representing the propagation time of
the correlated pair.
In frequency space, this means that the energy of the electron-hole pairs can
be obtained as the poles of

L(ω) =

∫
dω′

∫
dω′′ L(ω, ω′, ω′′) (1.62)

where

L(ω, ω′, ω′′) = L0(ω, ω
′, ω′′)+

1

(2π)4

∫
dω3

∫
dω4 L0(ω, ω

′, ω3)Ξ(ω, ω3, ω4)L(ω, ω4, ω
′′)

(1.63)
is obtained by time Fourier transform of Eq.(1.59) (here, we do not make
explicit the dependence on spatial coordinates to simplify the notation).
Starting from Eq.(1.61) and using GW approximation (1.42) for the electron
self-energy, we can find

δΣGW (34)

δG(65)
= iW (34)δ(36)δ(45) + iG(34)

δW (34)

δG(65)
(1.64)

By neglecting the second term in Eq.(1.64) (as it depends onW n, with n > 1),
we can write the BSE kernel as

Ξ(35, 46) ≈ −iδ(34)δ(65)v(35) + iδ(36)δ(45)W (34) (1.65)

and taking the time Fourier transform we obtain

Ξ(ω, ω3, ω4) ≈ −iv + iW (ω3 − ω4) (1.66)

Looking at Eq.(1.66), we can notice the frequency dependence of the electron-
electron screened interaction. In the following we will use the static-screening
approximation, by which we approximate W (ω3 − ω4) with its static (ω = 0)
component, denoted in the following as Ws. This approximation is generally
valid if the excitation energies of electron-hole pairs are smaller than the plas-
mon frequency characterizing the system.
Substitution of Eq.(1.66) (with static approximation) in Eq.(1.63) and com-
puting the integrals over ω and ω′ (see Eq.(1.62)) we finally obtain

L(ω) = L0(ω) + L0(ω)
[
− iv + iWs

]
L(ω) (1.67)

where

L0(ω) = −i
∫

dω′ G(ω′ +
ω

2
)G(ω′ − ω

2
) (1.68)
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To proceed further, we now write L and L0 on the basis of independent par-
ticle states. In practice, we assume that the single particle Green functions
appearing in L0 are given by

G(r1, r2, ω) =
∑
ni

ϕKS
ni

(r1)ϕ
KS∗
ni

(r2)

ω − ϵQP
ni + iηsgn(ϵQP

ni − µ)
(1.69)

where we have made explicit the dependence on spatial coordinates and used
the compact notation ni ≡ (nk). The Green function given by Eq.(1.69)
describes the propagation of quasi-particles (electron and holes) having as
wavefunctions the KS states and energies equal to quasi-particle corrected KS
eigenvalues.
By defining the basis transformation of 4-variables functions F (r1, r2, r3, r4, ω)
as

Fn1n2n3n4(ω) =

∫
dr1dr2dr3dr4 ϕ

KS∗
n1

(r1)ϕ
KS∗
n2

(r2)F (r1, r2, r3, r4, ω)ϕ
KS
n3

(r3)ϕ
KS
n4

(r3)

(1.70)
we can project Eq.(1.67) on the basis of single particle KS states: via algebraic
manipulation we obtain

Ln1n2n3n4(ω) = 2i

[
Hexc − ω

]
n1n2n3n4

(fn2 − fn4) (1.71)

where we have introduced the excitonic Hamiltonian

Hexc(n1n2n3n4) = (ϵQP
n2

− ϵQP
n1

)δn1n4δn2n3 + (fn1 − fn3)Ξ(n1n2n3n4) (1.72)

ni being the indexes running over KS states while fni
is the occupation factor

for state ni.
To make clearer the expression of Hexc, we make explicit the indeces ni by
associating to each of them a conduction c or a valence v band index, according
to the occupation factors f , assuming T = 0 K. In this way, we can express
the excitonic Hamiltonian as a block-matrix

Hexc =

[
Hres(vc, v′c′) Hcoupl(vc, v′c′)

−Hcoupl∗(vc, v′c′) −Hres∗(vc, v′c′)

]
(1.73)

In all the calculations presented in this Thesis we will apply Tamm-Dancoff
approximation[34, 18], which corresponds to neglect the out-of-diagonal blocks
of the excitonic Hamiltonian, therefore approximating Hexc ≈ Hres (the apex
’res’ stands for resonant). It has been demonstrated that this approximation
provides a proper description of the optical properties in solids, therefore we
will not discuss coupling terms Hcoupl in the following.
Hres is an hermitian matrix, whose eigenvalues corresponds to the energies of
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the correlated electron-hole pairs accessible in the system. Using the extended
notation (n,k) for the KS states, we can write

Hres(vck, v′c′k′) = (ϵQP
ck − ϵQP

vk )δcc′δvv′δkk′ +Kd(vck, v′c′k′) +Kx(vck, v′c′k′)
(1.74)

where

Kd(vck, v′c′k′) = −
∫

dr

∫
dr′ ϕKS∗

ck (r)ϕKS
c′k′(r)Ws(rr

′)ϕKS
vk (r′)ϕKS∗

v′k′ (r′)

(1.75)
is called direct BSE kernel, while

Kx(vck, v′c′k′) = 2

∫
dr

∫
dr′ ϕKS∗

ck (r)ϕKS
vk (r)v(r− r′)ϕKS

c′k′(r′)ϕKS∗
v′k′ (r′)

(1.76)
is the exchange component. Notice that the excitonic Hamiltonian given by
Eq.(1.74) is valid for system with negligible spin-orbit-coupling. In these cases,
excitons can have a singlet (triplet) spin structure, where the electron and the
hole have equal (opposite) spin projections. As optically active excitons must
be of singlet type, in the following we will only focus on the this particular spin-
configuration, for which the exchange term is different from zero. We point
out that triplet-exciton energies can be obtained from Eq.(1.74) by neglecting
the exchange kernel contribution[17, 32].
Looking at Eq.(1.74)-(1.76), the physical meaning of Hres is transparent. The
first term in Eq.(1.74) corresponds to the energies of the independent, single-
particle transitions from a valence state (vk) to a conduction state (ck); the
direct kernel Kd accounts for the attractive coupling between the electron and
the hole, governed by the static-screened interaction Ws, while the exchange
kernel Kx represents gives a small repulsive term.
Diagonalization of Eq.(1.74), i.e.∑

v′,c′,k′

Hres(vck, v′c′k′)Aλ(v
′c′k′) = EλAλ(vck) (1.77)

provides the exciton energies Eλ (λ is the index identifying different excitonic
states) together with the envelope functions Aλ(vck): for a given exciton λ,
the square modulus of Aλ defines the weight of the single particle transition
(vk) → (ck) to the chosen excitonic state.
Starting from the spectrum of Hres, it is possible to derive the macroscopic
dielectric function εM(ω), whose imaginary part is proportional to the ab-
sorption spectrum obtained in optical spectroscopy.2 We notice that, when
the macroscopic dielectric function is evaluated, the bare Coulomb interaction
appearing in the exchange kernel (Eq.(1.76)) is substituted by a potential not

2More precisely, the absorption signal is defined by the absorption coefficient α(ω) ∝
ω Im[ϵM (ω)]

Re[n(ω)] , being n the refractive index. Anyhow, in general, its frequency dependence is

generally well captured by the sole Im[ϵM (ω)].
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including the long range contribution[16], i.e. v(q+G) is set to zero for each
q, if G = 0. This accounts for the fact that optical spectroscopy describes
the macroscopic response of the system to an external perturbation.

In practice, this quantity is evaluated as

εjM(ω) = 1− 8π

Ω

∑
λ

|Dj
λ|2

ω − Eλ + iη
(1.78)

where Ω is the unit cell volume, λ runs over the excitonic eigenstates with
energy Eλ and

Dj
λ =

∑
vck

Aλ(vck)

(
ĵ · dvck

)
(1.79)

is the dipole strength for exciton λ, assuming light polarized along direction
ĵ. This quantity determines if a given exciton can be optically excited by elec-
tromagnetic radiation, with a certain polarization. We notice that Eq.(1.79)
is an average of the single-particle transitions interband dipole dvck weighted
by the contribution of each transition (vk) → (ck) to the chosen exciton. The
interband dipoles are directly computed using Kohn Sham states[35], i.e.

dvck =
1

ϵKS
ck − ϵKS

vk

(
⟨ϕKS

vk |p|ϕKS
ck ⟩+ ⟨ϕKS

vk |[r, V̂NL]|ϕKS
ck ⟩

)
(1.80)

where V̂NL is the non-local part of the KS potential, due to the non-locality
of pseudopotentials and p is the linear momentum.
In this Thesis, BSE is solved using Yambo package: in practice, via a DFT cal-
culation KS states and energies are computed and used to construct the static
screened interactionWs, using RPA approximation, as outlined in Section 1.2.
Then, starting from the same set of KS states, the hermitian excitonic Hamil-
tonian is constructed using Eqs.(1.74)-(1.76), where QP energies are obtained
from KS values using Eq.(1.34)3. From a numerical perspective, it is extremely
important to properly choose both the number of valence-conduction states
included in the excitonic Hamiltonian together with the sampling of the BZ
in order to obtain properly converged optical spectra.
In the following chapter we will discuss an alternative simplified implemen-
tation of the excitonic Hamiltonian, obtained considering a Tight-Binding
description of the single particle states. Furthermore, we also generalize
Eq.(1.74) to obtain the energies of finite-momentum excitons, i.e. electron-
hole pairs composed by single particle states having different wave-vectors,
and so carrying a finite center-of-mass momentum. Although such excitons
cannot be probed by optical spectroscopy, because of momentum conservation,

3In general, to obtain properly converged exciton energies, one needs denser k-grid
than those used in G0W0 calculations, where QP corrections are computed. To model QP
corrections on points where they have not been explicitly evaluated, we have made use of
scissor-streching approximation, whenever meaningful.
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they play a fundamental role in determining many observable properties: in
particular, in indirect-gap materials they are responsible for light emission,
due to their phonon-assisted recombination (as discussed in Chapter 4).

1.4 Ab initio simulation of lattice vibrations

After presenting state-of-the-art methods to simulate excited electronic states
in interacting electron systems, we now turn out attention to a fully ab initio
description of lattice vibrations, by which we will evaluate phonon dispersions
and the corresponding atomic displacements in Chapter 4 and 5.
We start considering a periodic crystal with lattice vectors R and with Nat

atoms per unit cell. The atomic equilibrium positions will be denoted as
R+ τs, where s is a progressive index running over the atoms in the unit cell,
while the compact notation l ≡ (R, s) will be also used to refer a specific atom
at τl ≡ R+ τs. Furthermore, ul denotes a small displacement of atom l from
its equilibrium position.
Lattice dynamics is described within Born-Oppenheimer approximation: as
already discussed, this assumption decouples the nuclear and the electronic
dynamics, so that the Hamiltonian describing the nuclear motion can be writ-
ten as

ĤN = T̂N + E({u}) (1.81)

where T̂N is the nuclei-kinetic-energy operator, while E({u}) is the electronic
ground state energy when nuclei are fixed at positions τl + ul summed to
the nuclei-nuclei Coulomb interaction (defined in the following as VII). As
the atomic displacements from equilibrium positions are generally small (i.e.
|ul| << |τl|) we can introduce the harmonic approximation for the function
E, i.e.

E({u}) ≈ E0 +
1

2

∑
l,l′

∑
α,β

∂2E

∂uαl ∂u
β
l′

∣∣∣
eq
uαl u

β
l′ (1.82)

where the indices α and β run over the cartesian directions (x, y, z). The
second derivative of E is evaluated at equilibrium (as pointed out by the ’eq’
suffix), while first order derivatives are null as atomic forces are zero once
atoms are clamped at their equilibrium positions. Substituting Eq.(1.82) in
Eq.(1.81) and expressing the nuclear kinetic energy as

TN =
∑
l

P2
l

2Ml

Ml being the mass of atom l, the Hamilton equations of motion for the atoms
are obtained

Mlü
α
l = −

∑
l′β

∂2E

∂uαl ∂u
β
l′

uβl′ (1.83)
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We now look for the normal modes of oscillations for the lattice, i.e. solutions
of Eq.(1.83) in the form

ξαRs(ν,q; t) =
1√
Ms

ξαs (ν,q)e
i[q·R−ωνqt] (1.84)

These modes (generally called phonons) are identified by the pair of indexes
(ν,q), where ν is the phonon branch while q is the phonon wave-vector char-
acterizing the lattice vibration; substitution of Eq.(1.84) in Eq.(1.83) gives∑

s′β

Dsα,s′β(q)ξ
β
s′(ν,q) = ω2

νqξ
α
s (ν,q) (1.85)

In practice, phonon displacements ξαs (ν,q) (describing how atoms are dis-
placed in the unit cell at R = 0 within phonon (ν,q)) are obtained as the
eigenstates of the Dynamical matrix Dsα,s′β(q) defined, at each q, as

Dsα,s′β(q) =
1

N

1√
MsM ′

s

∑
RR′

∂2E

∂uαRs∂u
β
R′s′

eiq·(R
′−R) =

1√
MsM ′

s

∑
R1

e−iq·R1Cα,β
ss′ (R1)

(1.86)
where Cα,β

ss′ (R1) is the force-constants matrix in real space. Furthermore, the
square of the allowed phonon frequencies ωνq correspond to the eigenvalues of
D.
The Dynamical matrix at a general q is evaluated fully ab initio using Density
Functional Perturbation Theory (DFPT)[36, 37, 38, 39], as implemented in
Quantum Espresso package. We summarize in the following the main steps
needed to evaluate the Dynamical matrices and how we can obtain phonon
energies and displacements over the entire Brillouin zone.
Starting from Eq.(1.10), adding the nuclei-nuclei Coulomb coupling and using
Hellman-Feynman theorem[40], we can write

∂2E

∂uαRs∂u
β
R′s′

=

∫
dr n0(r)

∂2V (r)

∂uαRs∂u
β
R′s′

+

∫
dr

∂V (r)

∂uαRs

∂n(r)

∂uβR′s′

+
∂VII

∂uαRs∂u
β
R′s′

(1.87)
where n0 is the ground state electronic density, V is the electron-ion potential
and all the derivatives are evaluated assuming the nuclei fixed at their equi-
librium positions. By substitution of Eq.(1.87) in Eq.(1.86) the Dynamical
matrix can be written as

Dsα,s′β(q) =
1

N
√
MsM ′

s

∫
dr n0(r)

∑
RR′

∂2V

∂uαRs∂u
β
R′s′

eiq·(R
′−R)

+
1

N
√
MsM ′

s

∫
dr
∑
RR′

∂V

∂uαRs

∂n

∂uβR′s′

eiq·(R
′−R)

+DII
sα,s′β(q) (1.88)
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where DII is the contribution to the Dynamical matrix coming from the
derivative of the nuclei-nuclei interaction. The derivatives of the electron-ion
potential w.r.t. the atomic displacements can be computed directly, starting
from the expression of V , i.e. the sum of the potentials due to all the atoms
in the crystal (see for example [36]). Therefore, in the following our focus will
be on the second term of Eq.(1.88), which we call D̃sα,s′β(q).
Given a general function f(r), crystal-periodic in equilibrium conditions, we
define

∂qsαf(r) = e−iq·r
∑
R

∂f(r)

∂uαRs

eiq·R (1.89)

which is also a crystal-periodic function. With this definition,

D̃sα,s′β(q) =
1

N
√
MsM ′

s

∫
dr ∂q∗sαV (r)∂qs′βn(r) (1.90)

As already pointed out, ∂q∗sαV (r) only depends on the electron-ion interac-
tion, which can be computed directly: the variation of electronic charge den-
sity ∂qs′βn(r) is, instead, unknown, and is computed via DFPT. To evaluate
∂qs′βn(r), we start computing

∂n(r)

∂uβR′s′

= 2
∑
vk

ϕ∗
vk(r)

∂ϕvk(r)

∂uβR′s′

+ 2
∑
vk

ϕvk(r)
∂ϕ∗

vk(r)

∂uβR′s′

(1.91)

It is possible to show[36] that ∂n(r)

∂uβ

R′s′
only depends on the variation of KS

states projected on the manifold of un-occupied states. Therefore, using
this information combined with time-reversal symmetry property for which
ϕ∗
vk(r) = ϕv−k(r) it is possible to obtain

∂n(r)

∂uβR′s′

= 4
∑
vk

ϕ∗
vk(r)

[
P̂c

∂ϕvk

∂uβR′s′

]
(r) (1.92)

where P̂c is the projection operator on the manifold of conduction-unoccupied
states4. By substitution of Eq.(1.92) in Eq.(1.89) for the charge density and
writing KS states as ϕvk(r) = eik·runk(r), it is possible to obtain

∂qs′βn(r) = 4
∑
vk

u∗vk(r)

[
P̂ k+q
c ∂qs′βuvk

]
(r) (1.93)

where P̂ k+q
c is the projector on the manifold of unoccupied states with mo-

mentum k+q, while ∂qs′βuvk is the variation of the periodic-part of KS states,

4The notation

[
P̂c

∂ϕvk

∂uβ

R′s′

]
(r) corresponds to the matrix element ⟨r|P̂c| ∂ϕvk

∂uβ

R′s′
⟩
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according to the definition of Eq.(1.89). This last term is evaluated using
Sternheimer equation, obtained by simple first-order perturbation theory, i.e.{

Ĥk+q
KS − ϵKS

vk

}[
P̂ k+q
c (∂qs′βuvk)

]
(r) = −

[
P̂ k+q
c (∂qs′βVKS)uvk

]
(r) (1.94)

where the variation of the KS potential is given by

∂qs′βVKS(r) = ∂qs′βV (r)+

∫
dr′ eiq·(r−r′)v(r−r′)∂qs′βn(r

′)+
∂Vxc
∂n

∂qs′βn(r) (1.95)

and Ĥk+q
KS = e−i(k+q)·r̂ĤKSe

i(k+q)·r̂.
Equations (1.93)-(1.95) are the core of DFPT: in practice, starting from an
initial guess for the charge-density variation, the quantity ∂qs′βVKS(r) is com-
puted using Eq.(1.95) and then a new approximation for ∂qs′βuvk is obtained by
solving Eq.(1.94) from which the charge variation is refined using Eq.(1.93).
This iterative procedure is repeated up to when a converged charge-density
variation is obtained. Finally, using Eqs.(1.88) and (1.90), the Dynamical
matrix can be then computed.
As Eq.(1.94) involves only crystal periodic functions, it can be directly im-
plemented in a plane-wave-basis-set description, as discussed for DFT in Sec-
tion 1.1; furthermore, the solution of Eqs. (1.93)-(1.95) does not require
the knowledge of the full spectrum of the KS Hamiltonian at equilibrium, as
P̂ k+q
c = 1− P̂ k+q

v , P̂ k+q
v being the projector on the occupied KS manifold at

k+ q.
In order to obtain phonon dispersion and displacements over the entire BZ,
Dynamical matrices are computed on a regular coarse grid of q points. By
inverse Fourier transformation, the interatomic force constants in real space
are evaluated as

Cαβ
ss′ (R) =

√
MsMs′

1

Nq

Nq∑
i=1

Dsα,s′β(qi)e
iqi·R (1.96)

qi being the points of the considered BZ sampling. In general, the Dynamical
matrices at q points not included in the original grid can be evaluated by
Fourier interpolation, i.e.

Dsα,s′β(q) =
1√

MsMs′

∑
R

Cα,β
s,s′ (R)e−iq·R (1.97)

from which phonon frequencies and displacements can be easily computed
via Eq.(1.85). The validity of this procedure is justified by the short-range
nature of force constants in real space: as a consequence, a small number
of R vectors (and therefore of qi points) is needed to properly interpolate
Dsα,s′β(q) at points where DFPT calculations were not explicitly carried out.
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In general, qi grids comparable to the k grid used to sample the BZ in the
ground state calculations are enough to guarantee a correct interpolation of
phonon dispersions. We note that these considerations are generally valid in
non-polar insulators. Special attention must be paid in case of Kohn anomalies
in metals or in polar insulators.
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Chapter 2

Effect of uniaxial strain on the
excitonic properties of
monolayer C3N

Since its experimental realization [41, 42], monolayer C3N (ML-C3N) has been
intensively studied from a theoretical point of view, to fully characterize its
electronic [43], optical [44, 45], mechanical, [46, 47, 48] and electrochemical
properties [49, 50, 51, 52, 53]. As ML-C3N is a 2D material, the combination of
electron confinement and enhanced electron-hole interaction (due to reduced
electronic screening) gives rise to strong excitonic effects, which characterize
its optical response [44, 45]. At the same time, DFT and molecular dynamics
calculations [46] have predicted the capability of ML-C3N to sustain strong
uniaxial strains, up to about 10%, without failure.
Motivated by recent advances in the experimental application of relatively
intense mechanical stresses to 2D materials [54, 55, 56], in this Chapter we
discuss how the excitonic properties of ML-C3N are modified by external uni-
axial strain, when applied along high symmetry directions, such as zig-zag and
armchair, as shown in Figure 2.1. As fully ab initio calculations of excitonic
effects are computationally very demanding, especially for 2D materials, here
we develop a simpler approach to solve the Bethe Salpeter equation[31, 32, 16]
and apply it to the case of ML-C3N subject to different strain conditions. This
model describes the single particle states involved in the lowest lying excitons
through a tight binding (TB) Hamiltonian and approximates the electron-hole
interaction using quantities derived from ab initio calculations [57, 58, 43, 59].
Based on this model, we discuss the appearance of excitons in strained C3N
with strong optical anisotropy, and we have provided a rationale for this be-
haviour through group theory arguments. Furthermore, taking advantage of
the computational simplicity of the model, we have analyzed the small mo-
mentum excitonic dispersion, both in pristine and strained C3N, revealing
the effect of uniaxial strain on the small-momentum linear non-analytic dis-
persion. These calculations demonstrate that the presence of a few percent
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Figure 2.1: Left: crystal structure of C3N, where yellow (light-blue) spheres
represent Carbon (Nitrogen) atoms. High symmetry armchair and zig-zag
directions where strain is applied are also highlighted. Right: hexagonal Bril-
louin zone of pristine C3N, with the high symmetry points considered in this
work.

strain is already able to induce a strong anisotropy in the exciton dispersion
close to Γ regarding the direction of applied strain, and furthermore leading
to anisotropic brightening of some of the low-lying excitons.

The content of this Chapter is reported in part in the publication Effect of uni-
axial strain on the excitonic properties of monolayer C3N: A symmetry-based
analysis [60], and started with our work appeared in the publication Excitonic
effects in graphene-like C3N [45].

2.1 Model solution of BSE

In this Section we present the method used to study the excitonic properties
of pristine and strained ML-C3N. More precisely, in Section 2.1.1 we discuss
the modeling of single particle states via a fully ab initio Tight Binding (TB)
model, while in Section 2.1.2 we will focus on describing the approximations
adopted in the solution of the BSE.

2.1.1 Tight Binding Model

As previous works [43, 44, 45] have shown that the valence and conduction
states involved in the formation of the lowest lying excitons have π character,
we have modelled these bands through a TB Hamiltonian [61] considering one
2pz orbital for each atom in the unit cell:

Hαβ(k) =
∑
R

eik·R⟨α0|Ĥ|βR⟩. (2.1)
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Figure 2.2: Example of Maximally Localized Wannier Functions (MLWF) lo-
calized on carbon (a) and nitrogen atoms (b). The obtained Wannier functions
exhibit a 2pz-like character, with comparable spatial spreads.

In Eq. (2.1), R is a lattice vector, k is a point sampling the 2D Brillouin Zone,
and t(α0; βR) = ⟨α0|Ĥ|βR⟩ corresponds to the hopping between a 2pz orbital
localized on atom α in the unit cell at R = 0 and a 2pz orbital localized on
atom β in the unit cell at R. The hopping parameters have been evaluated
fully ab initio adopting the following procedure.
Firstly, we relax the atomic positions in presence of uniaxial strain along zig-
zag or armchair direction following the approach of Lechifflart et al. [62]. In
practice we have constructed a rectangular unit cell containing 16 atoms, such
that the in-plane unit cell basis vectors were oriented along the armchair (y)
and the zig-zag (x) directions respectively. We then increased the length of
the cell side along the direction in which we wanted to apply the strain, and
we relaxed both the atomic positions and the unit cell while keeping fixed
the length of the strained cell side. This relaxation step was performed us-
ing DFT with PBE approximation[10] for the exchange-correlation potential
and norm-conserving ONCV pseudopotentials [63]. The kinetic energy cutoff
was set to 100 Ry, while the rectangular BZ was sampled with a 12x12x1
Monkhorst-Pack grid, using a supercell with a length of 18 Angstrom along
the z direction. The relaxation step was interrupted once forces acting on
atoms were less that 10−5 a.u.
From these relaxed orthogonal cells, we then obtained pseudo-hexagonal unit
cells, containing only eight atoms, as in the case of pristine C3N. After this pro-
cess we always checked that the forces acting on each atom were still smaller
than 10−5 a.u.
For each strain configuration, we have computed single particle electronic
states and energies at the DFT level on a 24x24x1 k-grid and we extracted
Maximally LocalizedWannier Functions (MLWFs) [61, 64] with the Wannier90
code [65, 66, 67], making use of the band disentanglement method [68]. As ex-
pected, the obtained MLWFs exhibit a 2pz-like character, as shown in Fig. 2.2.
Finally, the hopping parameters appearing in Eq. (2.1) have been obtained as
the Hamiltonian matrix elements on the computed MLWF basis.

31



Figure 2.3: Comparison between electronic bandstructures computed with
DFT-PBE (black dots) and those interpolated using 2pz like MLWFs. a) (b)
refers to a zig-zag strain (armchair strain) of 2.0 %. The bands not captured
by the Wannier interpolation are those characterized by a character which is
not of type π, so that they cannot be reproduced using 2pz-like MLWF only.

The diagonalization of Hαβ(k) gives access to single particle energies and
states: more precisely, we have solved the eigenvalue problem

∑
β

Hαβ(k)cβ(nk) = ϵnk cα(nk) (2.2)

obtaining ϵnk (the energy of the n-th band at point k) and cα(nk), the pro-
jection of Bloch state |nk⟩ on the MLWF α, i.e.

|ψnk⟩ =
1√
Nc

∑
α

cα(nk)
∑
R

eik·R|αR⟩, (2.3)

|αR⟩ being the 2pz-like MLWF localized at τα +R, with τα corresponding to
the atomic site of atom α in the unit cell.
In Figure 2.3 we show the comparison between DFT (black dots) and TB
(solid red lines) energies computed for a applied strain of 2.0 % along zig-zag
and armchair directions. We notice that the quantities ϵnk provide an ac-
curate description of the single particle energies obtained at the DFT level,
as the hopping parameters were computed by Wannierizing DFT bands. In
the following, we include the effect of quasi-particle corrections using a scis-
sor/stretching operator, as in Ref.[45]. To reduce the computational com-
plexity, in the following we use the scissor/stretching parameters computed
in the pristine case for all the considered strain perturbations, assuming a
negligible dependence of the quasi-particle corrections on the applied strain
here considered (always smaller than 5 %).
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2.1.2 Excitonic Hamiltonian at finite momentum

In the following, we will solve BSE within the resonant Tamm-Dancoff ap-
proximation, by computing exciton energies and wave-functions diagonalizing
the Hermitian excitonic Hamiltonian:

HQ(vck; v
′c′k′) = (ϵc,k+Q−ϵvk)δc,c′δv,v′δk,k′+Kd

Q(vck; v
′c′k′)+Kx

Q(vck; v
′c′k′)
(2.4)

Here we generalize the discussion presented in Chapter 1, by considering finite-
momentum excitons. In practice, diagonalization of HQ∑

v′c′k′

HQ(vck; v
′c′k′)AλQ(v

′k, c′k′ +Q) = EλQAλQ(vk, ck+Q) (2.5)

provides the energies EλQ of finite momentum excitons |λQ⟩, composed by
single particle transitions (vk, ck+Q), which involve states with wave-vectors
differing by Q. As in the Q = 0 case, the square modulus of AλQ(vk, ck+Q)
indicate the weight of the single particle transition (vk, ck+Q) to the excitonic
state |λQ⟩.
All the results presented in the following have been obtained including the
last occupied valence and the two lowest unoccupied conduction bands in the
construction of the BSE kernel, as the lowest energy excitons in ML-C3N
are mainly composed by transitions among those states. Furthermore, we
have always used a 121×121×1 Monkhorst-Pack grid to sample the BZ, as it
guarantees exciton energies converged within 1 meV.
We now discuss the evaluation of the directKd

Q and exchangeKx
Q BSE kernels,

starting from the TB description of independent particle states presented in
Section 2.1.1.

Direct part of the BSE kernel

The direct part of the BSE kernel at finite momentum is defined as

Kd
Q(vck; v

′c′k′) = −
∫

dr

∫
dr′ ψ∗

c,k+Q(r)ψc′,k′+Q(r)W (r, r′)ψvk(r
′)ψ∗

v′k′(r′)

(2.6)
whereW (r, r′) represents the electron-electron screened interaction and ψnk(r)
are the Bloch states for valence and conduction bands. Within our TB for-
malism, we write the electronic wavefunctions on the basis of 2pz-like orbitals
w(r−R−τα) localized on the atomic sites τα in the unit cell, i.e. by expressing
in real space Eq.(2.3)

ψnk(r) =
1√
N

∑
R

eik·R
∑
α

cα(nk)w(r−R− τα) (2.7)

Here we are implicitly assuming that the MLWF located on different atoms
in the unit cell are equal, as the spatial spread obtained ab initio for N and C
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localized MLWF are very close, with differences smaller than 10 %. In other
words, their only dependence on the atomic index α comes from the site τα
where they are localized.
By substitution of Eq.(2.7) in Eq.(2.6) we obtain

Kd
Q(vck; v

′c′k′) = − 1

N2
·∑

R1,R2,R3,R4
α,β,γ,ρ

e−i(k+Q)·R1ei(k
′+Q)·R2eik·R3e−ik′·R4c∗α(c,k+Q)cβ(c

′,k′ +Q)cγ(vk)c
∗
ρ(v

′k′)

·
∫

drdr′ w(r−R1 − τα)w(r−R2 − τβ)W (r, r′)w(r′ −R3 − τγ)w(r
′ −R4 − τρ)

(2.8)

where we have used of the property of MLWF w(r−R−τα) = w∗(r−R−τα).
Notice that the indeces [α, β, γ, ρ] runs over the MLWF (or equivalently on
the atoms in the unit cell, as we have one Wannier function for each atom),
while [R1,R2,R3,R4] represent the lattice vectors of the real space lattice.
As the Wannier functions are strongly spatially localized, we neglect the over-
lap between MLWF localized on different atomic sites, i.e. we use the approx-
imations

w(r−R1 − τα)w(r−R2 − τβ) ≈ δα,βδR1,R2w(r−R1 − τα)
2 (2.9)

w(r′ −R3 − τγ)w(r
′ −R4 − τρ) ≈ δγ,ρδR3,R4w(r

′ −R3 − τγ)
2 (2.10)

Using these approximations in Eq.(2.8) we obtain for Kd
Q(vck; v

′c′k′) the ex-
pression

Kd
Q(vck; v

′c′k′) ≈

− 1

N2

∑
R1,R3

∑
α,γ

ei(k
′−k)·R1ei(k−k′)·R3c∗α(c,k+Q)cα(c

′,k′ +Q)cγ(vk)c
∗
γ(v

′k′)

·
∫

dr

∫
dr′ w(r−R1 − τα)

2W (r, r′)w(r′ −R3 − τγ)
2

(2.11)

We now solve the double integral over r and r′. To do this, we start writ-
ing the electron-electron screened interaction in terms of its in-plane Fourier
transform. More precisely we use

W (r, r′) =
1

4π2

∑
q

∑
G

v2D(q+G)ei(q+G)·(r∥−r′∥)

∫
dz1 ε

−1(q+G; z, z1)e
−|q+G|·|z1−z′|

(2.12)
In Eq.(2.12), r∥ and r′∥ are the in-plane components of r and r′, q is a vector

sampling the 2D Brillouin zone, G is a planar reciprocal lattice vector, v2D(q+
G) is the Fourier transform of the bare Coulomb interaction in 2D and ε−1(q+
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G; z, z1) is the planar Fourier transform of the inverse dielectric function in
real space, i.e.

ε−1(r, r′) =
1

4π2

∑
q,G

ε−1(q+G; z, z1)e
i(q+G)·(r∥−r′∥) (2.13)

It is important to notice that in Eq.(2.13) we are neglecting the in-plane local
field effects, i.e. we are assuming that the inverse dielectric function ε−1(r, r′)
written in real space does not depend on r∥ and r′∥ separately, but only through
the difference r∥− r′∥. However, we are fully considering the non-locality with

respect to z of the inverse dielectric function ϵ−1, since it is fundamental to
obtain a proper description of electronic screening in 2D materials [57, 69].
Furthermore, to solve the double integral in Eq.(2.11), we adopt a cylindrical
approximation for the 2pz-like Wannier functions w(r−R− τα), i.e.

w(r−R− τα) ≈ fα(r∥ −R− τα)hα(z) sgn(z), (2.14)

decoupling the in-plane components r∥ of the position vector r from the out-
of-plane component z[70]. The functions fα and hα were obtained using the
definitions:

fα(r∥−R−τα) = Af
α

∫ +∞

−∞
dz
∣∣w(r−R−τα)

∣∣ = Af
α e

−Bα|r∥−R−τα|,

[
1+Bα

∣∣r∥−R−τα
∣∣]

(2.15)
and,

hα(z) = Ah
α

∫
dr∥

∣∣w(r−R− τα)
∣∣ = Ah

α

[
|z|e−Bα|z|

(
1 +Bα|z|

)]
, (2.16)

where Af
α and Ah

α are normalization constants. In practice, fα is the average
of the modulus of a 2pz orbital along z at fixed planar coordinate r∥−R− τα,
while hα is its plane average, for each z. Finally, Bα is a parameter related
to the spread of the MLWF, which depends in principle on the atomic site
τα where the Wannier function is localized. As MLWF on C and N are very
similar, we have taken Bα as the average among the spreads of the Wannier
functions localized on different atoms. With these approximations we can
write the double integral appearing in Eq.(2.11) as∫

dr

∫
dr′ w(r−R1 − τα)

2W (r, r′)w(r′ −R3 − τγ)
2 ≈ 1

4π2

∑
q,G

v2D(q+G)Id(q+G)

·

[∫
dr∥ e

i(q+G)·r∥f 2(r∥ −R1 − τα)

][∫
dr′∥ e

−i(q+G)·r′∥f 2(r′∥ −R3 − τγ)

]
(2.17)

with Id(q+G) defined as

Id(q+G) =

∫
dz dz′ dz1 e

−|q+G|·|z1−z′| |h(z)|2 ε−1(q+G; z, z1) |h(z′)|2 (2.18)
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Performing the variable change∫
dr∥ e

i(q+G)·r∥f 2(r∥ −R1 − τα) = ei(q+G)·(R1+τα)

∫
dr∥ e

i(q+G)·r∥f 2(r∥)

(2.19)
we can write Eq.(2.17) as∫

dr

∫
dr′ w(r−R1 − τα)

2W (r, r′)w(r′ −R3 − τγ)
2 ≈

1

4π2

∑
q,G

v2D(q+G)
∣∣F (q+G)

∣∣2Id(q+G) · ei(q+G)·(R1+τα)e−i(q+G)·(R3+τγ)

(2.20)

with the function F (q + G) being the 2D Fourier transform of the square
modulus of the function f , i.e.

F (q+G) =

∫
dr∥ |f(r∥)|2ei(q+G)·r∥ (2.21)

and v2D(q+G) = 2π
|q+G| .

By substitution of Eq.(2.20) in Eq.(2.11) we obtain

Kd
Q(vck; v

′c′k′) ≈ − 1

(2πN)2

∑
q,G

v2D(q+G)
∣∣F (q+G)

∣∣2Id(q+G)∑
R1,R3

∑
α,γ

ei(k
′−k)·R1ei(k−k′)·R3ei(q+G)·(R1+τα)e−i(q+G)·(R3+τγ)

· c∗α(c,k+Q)cα(c
′,k′ +Q)cγ(vk)c

∗
γ(v

′k′)

(2.22)

To remove the summations over lattice vectors R1 and R3 in Eq.(2.22), we
use the property∑

R1

ei(k
′−k+q+G)·R1 =

∑
R1

ei(k
′−k+q)·R1 = Nδ(k′ − k+ q−Gk,k′

0 )∑
R3

ei(k−k′−q−G)·R3 =
∑
R3

ei(k−k′−q)·R3 = Nδ(k′ − k+ q−Gk,k′

0 )

where we also exploit eiG·R = 1 and Gk,k′

0 is a planar reciprocal lattice vector
such that

q = k− k′ +Gk,k′

0

being q,k and k′ vectors of the BZ. Applying this relations to Eq.(2.22), we
find

Kd
Q(vck; v

′c′k′) = − 1

4π2

∑
G

v2D(q+G)
∣∣F (q+G)

∣∣2Id(q+G)·

ρ∗q+G(c,k+Q; c′,k′ +Q) ρq+G(vk; v
′k′)

(2.23)
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having introduced the auxiliary quantities

ρp+G(nk;mk′) =
∑
α

e−iτα·(p+G)cα(nk) c
∗
α(mk′), (2.24)

where p = k − k′, the index α runs over the MLWF in the unit cell, and τα

identifies the position of the corresponding center.
Equation (2.23) is the expression which has been used in the following to
obtain excitonic properties of strained C3N. We now discuss how functions
Id and F have been evaluated in practice. We point out that the presented
approach can be extended to other 2D systems, by properly adapting the
following procedure to compute Id and F to the MLWF of the system of
interest.
Function Id can be interpreted as an effective inverse dielectric function which
screens the Coulomb interaction in a 2D system. It is a generalization of the
treatment proposed by Latini et al. [57], with two main differences. Firstly, we
assume an exponential decaying function to represent the WF behaviour along
the z direction, instead of a box-like function; secondly, the triple integral over
z,z1 and z′ appearing in the definition of Id is carried out exactly, without
introducing the averaging process used by Latini et al. to obtain an analytical
expressions for the dielectric screening.
We start from the definition of Id(q1) (2.18), defining q1 = q + G to make
the notation more compact. The integrals over z′ and z1 are solved writing

ε−1(q1; z, z1) =
1

L

∑
Gz ,G′

z

eiGz ·ze−iG′
z ·z1ε−1(q1;Gz, G

′
z) (2.25)

where ε−1(q1;Gz, G
′
z) is the ab initio inverse static dielectric function in re-

ciprocal space, while L is the size of the supercell along the z direction used
in first-principles calculations.
Therefore we have∫ L

2

−L
2

dz′
∫ L

2

−L
2

dz1 ε
−1(q1; z, z1)e

−|q1|·|z1−z′||h(z′)|2 =
∑
Gz ,G′

z

ε−1(q1;Gz, G
′
z)T(q1, G

′
z)e

iGz ·z

(2.26)
defining

T(q1, G
′
z) =

1

L

∫ L
2

−L
2

dz′
∫ L

2

−L
2

dz1 e
−iG′

z ·z1e−|q1|·|z1−z′||h(z′)|2 (2.27)

The function T can be expressed in terms of the quantity H given by

H(K) =

∫ L
2

0

dz eKz|h(z)|2 (2.28)

where K is a general complex number. Using as h(z) the expression given
in Eq.(2.16), it is possible to obtain an analytical solution of H(K). As the
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result of this analytical integration is cumbersome (even if the procedure to
obtain it is straightforward), we omit the result of this analytical integration.
Using the values of H we can compute T as

T(q1, G
′
z) =

1

L

{
1

|q1| − iG′
z

[
H(iG′

z)− e−
L
2
(|q1|−iG′

z)H(|q1|)]

]
− 1

|q1|+ iG′
z

[
H(−|q1|)−H(iG′

z)

]

− 1

|q1|+ iG′
z

H(−|q1|)

[
e−

L
2
(|q1|+iG′

z) − 1

]

− 1

|q1| − iG′
z

H(−|q1|)

[
e−

L
2
(|q1|−iG′

z) − 1

]

+
1

|q1 + iG′
z|

[
H(−iG′

z)− e−
L
2
(|q1|+iG′

z)H(|q1|)
]
− 1

|q1| − iG′
z

[
H(−|q1|)−H(−iG′

z)

]}
(2.29)

therefore the function Id(q1) can be written starting from Eq.(2.18) and using
Eq.(2.26) as

Id(q1) =
∑
Gz ,G′

z

ε−1(q1;Gz, G
′
z)T(q1, G

′
z)

∫ L
2

−L
2

dz eiGz ·z|h(z)|2 (2.30)

where the integral over z can be expressed as∫ L
2

−L
2

dz eiGz ·z|h(z)|2 = H(−iGz) +H(iGz)

using Eq.(2.16) for h(z).
To compute in practice, Id we have carried out the following steps:

• we have computed the static dielectric function in RPA approxima-
tion using the Yambo code in the case of pristine C3N. This calculation
has been done starting from Kohn-Sham wavefunctions computed on a
Monkhorst-Pack grid 48x48x1 and including 300 states in the sum over
bands defining ε−1; further, ε−1(q+G,q+G′) has been computed for
[G,G′] with modulus smaller or equal to 22 Ry. We also notice that,
to avoid spurious interactions between periodically repeated layers, we
have used a cutoff for the Coulomb potential(in the calculations we have
considered L = 18.0 Angstrom);

• using Python post-processing scripts, we have extracted from the Yambo
databases the quantity ε−1(q1;Gz, G

′
z), for all the available pairs (Gz, G

′
z)

at fixed in plane vector q1 = q+G;
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Figure 2.4: Function Id(q1) obtained by post-processing of ab initio RPA
calculation of the static dielectric screening in unstrained ML-C3N. The blue
dots are the quantities obtained directly from the ab initio results; the red
line represent the data obtained after averaging the value of Id(q1) which are
close in modulus but have different directions.

• for each q1 = q+G we firstly compute the function T using Eq. (2.29),
then we have combined this quantity with ε−1(q1;Gz, G

′
z) to finally eval-

uate Id(q1) through Eq. (2.30), summing over all the possible pairs
(Gz, G

′
z).

In Fig. 2.4, we present (as blue dots) the function Id(q1) obtained with the
procedure just discussed from the ab initio data: we notice that with the used
q grid of 48x48x1, the behaviour of Id(q1) at small q1 is not accessible. As
this function corresponds to an effective inverse dielectric function for a 2D
material, we have extrapolated its behaviour at small-q using the analytical
expression proposed by Cudazzo et al. [71]

Id(q1 → 0) =
1

1 + α2D|q|

where the value of α2D has been chosen to match the value of Id(q1) computed
ab initio for the smallest non zero q. To make the calculations easier, we have
considered Id(q1) as an average over the direction of the q1 vector: in practice,
as Id(q1) turns out to be mainly dependent on |q1| while it is almost constant
with respect to the direction of q1, we have performed the approximation

Id(q1) ≈ ⟨Id(|q1|)⟩

where we have computed ⟨Id(|q1|)⟩ taking the average of Id(q1) evaluated for
q1 points which are close in modulus but with different directions. The result
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of this averaging procedure is shown as the red continuous line in Fig. 2.4.
With this treatment, Id has become a one-variable function, known on the grid
used in the RPA calculation. As the solution of BSE requires much denser
grids, we have extrapolated Id on the 121x121x1 grid used in the main text
by simple linear spline interpolation of the results shown in Fig. 2.4. This
approach makes sense because of the smoothness of ⟨Id(|q1|)⟩ as a function of
|q1|. In the following we will assume as negligible the effect of small strains
on the electronic screening: therefore we have used the Id function computed
for the unstrained monolayer for all the low-strain configurations considered
in this work.
To complete the calculation of the direct kernel according to Eq.(2.23), we
have evaluated functions F by substitution of Eq.(2.15) in Eq.(2.21). By
simple algebraic manipulation we find

F (q1) = F (|q1|) =
8

9
B2

∫ +∞

0

dr∥ r∥J0(|q1|r∥)
[
e−Br∥(1 +Br∥)

]2
(2.31)

where r∥ = |r∥| and J0 is a Bessel function of the first kind with n = 0. Notice
that F depends on |q1| as a consequence of the cylindrical symmetry of the
function f . This 1D integral has been evaluated numerically for the required
momenta |q1|. Furthermore, B, which is related to the spread of the MLWF,
is chosen equal to an average of the values obtained from the spreads of the
2pz-like orbitals localized on carbon and nitrogen atoms.

Exchange part of the BSE kernel

We now derive the expression of the exchange kernel Kx
Q, similarly to what

has been done in the precedent section for Kd
Q. We start from the definition

Kx
Q(vck; v

′c′k′) = 2

∫
dr

∫
dr′ ψ∗

c,k+Q(r)ψvk(r)v(r− r′)ψc′,k′+Q(r
′)ψ∗

v′k′(r′)

(2.32)
with the factor 2 in Eq.(2.32) indicating that we are only considering singlet
excitons. As in the case of the direct kernel, we write Bloch states for the
valence and conduction bands using Eq.(2.7) and we again assume valid the
hypothesis of negligible overlap between MLWF localized on different atomic
sites (see Eq.(2.9) and Eq.(2.10)). Using these results in Eq.(2.32) we find

Kx
Q(vck; v

′c′k′) ≈ 2

N2

∑
R1,R3

∑
α,γ

e−iQ·R1eiQ·R3c∗α(c,k+Q)cα(vk)cγ(c
′,k′ +Q)c∗γ(v

′k′)

·
∫

dr

∫
dr′ w(r−R1 − τα)

2v(r− r′)w(r′ −R3 − τγ)
2

(2.33)

To solve the integrals over r and r′, we introduce the cylindrical approximation
for the MLWF as done for the direct kernel and we write the bare Coulomb
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interaction in terms of its 2D Fourier transform v2D, i.e.

v(r− r′) =
1

4π2

∑
q,G

v2D(q+G)e−|q+G|·|z−z′|ei(q+G)·(r∥−r′∥) (2.34)

With these approximations it is possible to write the double integral over r
and r′ as∫

dr

∫
dr′ w(r−R1 − τα)

2v(r− r′)w(r′ −R3 − τγ)
2 ≈

1

4π2

∑
q,G

v2D(q+G)
∣∣F (q+G)|2Xex(q+G)ei(q+G)·(R1+τα)e−i(q+G)·(R3+τγ)

(2.35)

being Xex(q+G) defined as

Xex(Q+G) =

∫
dz dz′ e−|Q+G|·|z−z′||h(z)|2 |h(z′)|2 (2.36)

After inserting Eq.(2.35) in Eq.(2.33) we remove the summations over R1 and
R3 using ∑

R3

eiR1·(−q−G+Q) = Nδq,Q (2.37)

to finally obtain the expression used within our approach for the exchange
kernel, given by

Kx
Q(vck; v

′c′k′) =
2

4π2

∑
G

v2D(q+G)
∣∣F (Q+G)

∣∣2Xex(Q+G)·

ρ∗Q+G(c,k+Q; vk) ρQ+G(c
′,k′ +Q; v′k′),

(2.38)

ρ being defined as in Eq.(2.24). We notice that the G = 0 term in the ex-
change kernel is included in all the calculations shown in the following.
The function Xex(Q+G) has been computed by performing numerically the
double integration over z and z′ appearing in Eq.(2.36) for fixed Q and for all
the G vectors included in the summation appearing in Eq.(2.38). The result
of this integration is shown in Fig. 2.5.
We complete this section noting that the computational advantage of our
method is two-fold: first, the use of a TB model for single particle states
permits an accurate mapping of single particle states and energies on small
matrices, with dimension equal to the number of used Wannier Functions,
from which electronic states and energies can be obtained by simple diagonal-
izations at all k-points in the BZ. Second, modeling the dielectric screening
through the function Id permits to obtain electron-electron interaction on very
fine grids, without explicit calculations for all scattering q-vectors.
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Figure 2.5: Function Xex(|q1|) obtained by numerical integration of Eq.
(2.36), using as h the functions given by Eq.(2.16)

2.2 Model validation

We now test the validity of the approximations discussed in the preceding
Section, by comparing the ab initio results recently obtained [45] for Q = 0
excitons in unstrained ML-C3N ,with those obtained by the TB-BSE approach
here presented. In Fig. 2.6 we show the absorption spectrum computed with
and without the electron-hole interaction in the BSE kernel (continuous blue
line and dashed red line, respectively) together with fully ab initio BSE re-
sults of Ref.[45] shown as a dotted green line. In agreement with previous
results [45, 44], we find an optical spectrum dominated by a single intense
peak which corresponds to a pair of degenerate excitons, e4,5, exhibiting a
large binding energy, of about 0.6 eV. These excitons are mainly due to
valence-conduction transitions located along the ΓM directions, as visualized
by considering the k-resolved contributions to the exciton wavefunctions:

A(k) =
∑
vc

∑
λ

∣∣∣Aλ(vk; ck)
∣∣∣2, (2.39)

where the summation over the exciton index λ is present only for degenerate
excitons and Aλ(vk; ck) is the exciton envelope function discussed in Chapter
1. These functions are shown for the lowest resonances in the insets of Fig. 2.6.
A second structure at an higher energy of 2.219 eV appears in the optical
spectrum, due to a pair of degenerate excitons e14,15. This structure is also
present in the ab initio absorption spectrum, at a slightly smaller energy
(2.18 eV). This exciton pair will not be further discussed in the following. At
energies below the e4,5 intense peak, we also find three dark excitations, i.e. a
pair of degenerate excitons e1,2 and a single resonance e3.
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Figure 2.6: Absorption spectrum of monolayer C3N computed with the model
described in Sec. 2.1. The continuous blue line (dashed red line) represents
the spectrum computed with (without, independent particle IP) the electron-
hole interaction in the BSE kernel.The green dotted line is the fully ab initio
BSE spectrum obtained in Ref.[45], while the vertical dashed black line indi-
cates the position of the quasi-particle direct band gap corresponding to the
onset of independent particle (IP) absorption. These spectra were computed
assuming light polarization along the zig-zag direction, and analogous results
were found for different polarizations. k-resolved contributions to the exciton
wavefunctions are shown for the first five lowest energy excitons, and for the
resonances responsible for the higher energy absorption peak at about 2.2 eV.
All the spectra have been convoluted with a Lorentzian broadening of 10 meV.
The labels ei indicate the excitation energies in ascending order.

To quantify more precisely the comparison between the model and the ab
initio results, in Tab. 2.1 we collect the excitation energies of the first five
excitons in monolayer C3N computed with ab initio methods and with the TB-
BSE approach. We note that the model reproduces with high accuracy first
principles results, with a small blue shift of exciton energies, which is anyhow
smaller than 40 meV. Having validated the TB-BSE model, we now turn
our attention to the effect of mechanical strain on these five lowest excitonic
resonances, dividing them according to their optical activity in the unstrained
monolayer.

43



Method e1,2 e3 e4,5

Ab initio BSE [45] 1.821 1.854 1.957
Model TB-BSE 1.848 1.866 1.967

Table 2.1: Comparison between ab initio BSE and TB-BSE excitation energies
of the first five lowest excitons.

2.3 Effect of strain on bright excitons

We now consider in detail the effect of uniaxial strain on the pair of bright
excitons e4,5, responsible for the intense absorption peak in pristine C3N. In
Figure 2.7 we plot the absorption spectra for zig-zag (panel a) and armchair
(panel b) strains, with strengths in the range 0–3.5 %. We consider the po-
larization along both the zig-zag (continuous red lines) and armchair (dashed
blue lines) directions. We point out that, within our choice of the reference
system, the zig-zag direction X coincides with the cartesian direction x while
the armchair axis Y corresponds to the direction y in the monolayer plane
(see Fig. 2.1).
The effect of strain is two-fold: first, the double degeneracy observed in pris-
tine C3N is removed, with the appearance of two excitations whose splitting
increases linearly with strain, at a rate of about 6.0 meV

%
for both strain di-

rections. Second, these two resonances exhibit a strong optical anisotropy: in
the case of zig-zag strain the lowest energy exciton (here called e4) is bright
for light polarization along x, while it is dark if the incoming electric field
is oriented along the y direction. Differently, the highest energy exciton e5
can only absorb photons with polarization along the armchair direction. This
strain-induced optical anisotropy, also proposed in Ref.[72] within a single
particle description of C3N optical properties, is therefore also present once
excitonic effects are included.
The situation is exactly the opposite in the case of armchair strain, where
e4 (e5) becomes dark for incoming light polarization along the zig-zag (arm-
chair) direction. The observed strain-induced optical anisotropy is further
highlighted by computing the oscillator strengths D4 and D5 as a function of
the polarization angle with respect to the zig-zag direction. This is shown in
Fig. 2.8, where we consider a strain of 2.0 % for both cases. We see that with
zig-zag strain these two excitons have an oscillator strength (OS) character-
ized by a two-lobed angular pattern, with e4 having a nodal line along the y
direction and e5 along the x direction. Analogously, in the case of armchair
strain the OS patterns have similar features, but the profiles for the two split
excitons are exchanged. We remark that the observed optical anisotropy does
not depend on the value of the applied strain, as, also for larger strains, the
nodal lines at which the OS becomes zero are always present. To properly
characterize the excitons e4 and e5 we computed the corresponding transi-
tion distribution functions A(k), as defined in Eq.(2.39). These are shown in
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Figure 2.7: (a) Absorption spectra of ML-C3N under uniaxial strain along
the zig-zag direction: continuous red lines correspond to light polarized along
the zig-zag (X) direction, while dashed blue lines to light polarized along
the armchair (Y) direction. Spectra for different values of applied strain are
rigidly shifted vertically to make the plot more readable. The black dashed
lines highlight the splitting of the two-fold degenerate exciton e4,5 in pristine
C3N into two separate excitons, here called e4 and e5. All the spectra are
convoluted with a Lorentzian broadening of 10 meV. (b) Same as (a), for
externally applied strain along the armchair direction.
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Figure 2.8: Polar plot of the oscillator strenghts Dλ defined in Eq. 1.79 for
excitons e4 and e5, in the case of zig-zag strain (a) and armchair strain (b)
of 2.0 %, as a function of the in-plane light polarization direction, measured
starting from the zig-zag (X) axis. Concentric lines represent isovalues for the
modulus of the exciton oscillator strength |Dλ|.

Fig. 2.9 in the case of a 2.0 % strain along both the zig-zag and armchair di-
rections (we checked that the following considerations are valid independently
of the value of the applied strain within the considered range). In the case of
zig-zag strain, the exciton e4 is mainly due to transitions along the ΓM direc-
tion, while e5 is characterized by a wavefunction A(k) peaked for k along ΓM

′

direction. On the other hand, in the case of armchair strain, the function A(k)
for the lowest energy exciton e4 is non-zero along ΓM

′
, while for e5 is mainly

localized along the ΓM direction. The reason why in zig-zag strained ML-C3N
the lowest exciton is mainly confined along ΓM, while in the case of armchair
strain it becomes localized along ΓM

′
, can be understood by considering the

effect of strain on the electronic band structure. In Fig. 2.10 we present the
electronic bands computed at the DFT-PBE level for zig-zag (a) and arm-
chair (b) strain, both equal to 2.0 %, compared to pristine C3N, represented
by solid black lines. Considering the DFT bands, we see that one of the main
effects of uniaxial strain (in both directions) is to induce different electronic
band dispersions along the ΓM and the ΓM

′
directions, otherwise equivalent

by symmetry in the pristine case. The connection with the excitonic transi-
tion distribution becomes clearer by looking at Fig. 2.10(c-d) where we report
the difference ϵc(k)− ϵv(k) for the last occupied valence band v and the first
unoccupied conduction band c along the path M-Γ-M

′
in the BZ. We see that

in zig-zag strained C3N the lowest transition energies ϵc(k)−ϵv(k) occur along
ΓM. Therefore, the exciton involving transitions along this direction (i.e. e4)
has a smaller excitation energy than the exciton e5, mainly composed by sin-
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Figure 2.9: Functions A(k) defined in Eq.2.39, computed for exciton e4 (a)
and e5 (b) in the case of zig-zag strain of 2.0 %. (c) and (d) correspond to
the same quantities shown in (a) and (b), but evaluated for ML-C3N strained
along the armchair direction.
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Figure 2.10: (a) DFT-PBE band structure of ML-C3N in the pristine case
(solid black lines) and with a zig-zag strain of 2.0 % (dashed red lines); (b)
same as (a), but for a 2.0 % strain along the armchair direction. (c) Energy
difference ϵc(k) − ϵv(k) between the lowest unoccupied conduction c and the
highest occupied valence v for k along the path M-Γ-M’ for the unstrained
case and for a 2.0 % zig-zag strain; (d) same as (c) for an armchair strain.
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gle particle transitions along ΓM
′
. Analogously, by looking at Fig. 2.10(d),

we can see that for armchair strain the minimum of ϵc(k) − ϵv(k) falls along
ΓM

′
so that we effectively expect the lowest energy exciton to be mainly

composed by transitions along this direction. We point out that the relative
energy differences among the directions ΓM and ΓM’ could be affected by the
addition of quasiparticle effects, but the dispersions along the two directions
are expected to remain different as a result of the symmetry breaking effect
of applied uniaxial strain. Furthermore, this strain induced change of the
electronic bands along ΓM and ΓM’ directions can also explain the observed
increasing of the splitting among excitons e4 and e5 as a function of strain.
Considering the case of zig-zag strain, by increasing strain we observe that the
difference between the minima of ϵc(k)− ϵv(k) computed for k along ΓM and
ΓM’ progressively increases: as the exciton e4 is mainly composed by v − c
transitions along ΓM while e5 is localized along ΓM’ their energy splitting will
increase as a consequence of the increased energy-splitting among the single
particle states involved in the two excitons. Similar reasoning can be done in
case of armchair strain.

2.3.1 Symmetry analysis of bright excitons

Having described how the main absorption peak in pristine C3N is modified
by the application of strain, we now classify the two resulting excitons e4 and
e5 in terms of their symmetry properties, starting from the symmetry charac-
terization of excitons in pristine C3N and then focusing our attention on the
strained monolayer. The point group of pristine C3N is D6h, which contains
the in-plane symmetries of a hexagon combined with the mirror symmetry op-
eration σh w.r.t. the monolayer plane. Within our approach, we describe the
electronic properties (and therefore the excitonic ones) of the system with an
effective tight binding model, which is purely planar. Therefore, analogously
to the work of Galvani et al. [73], in the following we classify excitons con-
sidering only the in-plane symmetry operations contained in the point group
D6h, which form the subgroup C6v. Once strain is applied to ML-C3N, the
symmetry of the system is lowered and the full point group becomes D2h.
Following the reasoning just outlined, we will then classify excitons according
to the irreducible representations of the subgroup C2v, only composed by in-
plane symmetries.
We start by discussing the degenerate excitons e4,5 of pristine C3N. In order
to understand which is the irreducible representation of C6v which transforms
as these excitons, for each symmetry operator Ŝ representing a class of C6v

we have computed the character:

χ[Ŝ] =
∑

λ={e4,5}

⟨λ|Ŝ|λ⟩, (2.40)
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where the sum over λ runs on the two degenerate excitons e4,5. This quantity

is the trace of the symmetry operator Ŝ on the 2D space spanned by these
excitons.
We now describe a general approach by which these traces can be computed,
starting from the envelope functions obtained from our TB-BSE model.
Starting from Eq.(2.40), an exciton λ is assigned to the irreducible represen-
tation Γ if, given a symmetry operation Ŝ of each class C of the group, we
have that

χC =
∑
λ

χλ
S =

∑
λ

∫
dredrh Ψ

∗
λ(re, rh)ŜΨλ(re, rh) (2.41)

is equal to the character of class C for the irreducible representation Γ. In
Eq. (2.41) the summation over λ is present only when we consider a manifold
of degenerate excitons.
We now discuss how to compute the quantity χλ

S for a single exciton λ, also as-
suming that Ŝ is a planar symmetry operator, which leaves unchanged the out-
of-plane variable z. We start by writing the exciton wavefunction Ψλ(re, rh)
in real space as

Ψλ(re, rh) =
∑
vck

Aλ(vk; ck)ψ
∗
vk(rh)ψck(re). (2.42)

By defining

ψW
αk(r) =

1√
N

∑
R

eik·Rw(r− τα −R), (2.43)

and writing the conduction and valence states c and v involved in the BSE
in terms of the tight-binding coefficients cα(nk), we can compactly write
Ψλ(re, rh) as

Ψλ(re, rh) =
∑
αβk

Āλ(αk; βk)ψ
W∗
αk (rh)ψ

W
βk(re), (2.44)

where we have defined

Āλ(αk; βk) =
∑
vc

Aλ(vk; ck) c
∗
α(vk)cβ(ck). (2.45)

The action of the symmetry operator Ŝ on a general r-dependent function
g is Ŝg(r) = g(Ŝ−1r), so, by straightforward generalization to two-variable
functions, we have

ŜΨλ(re, rh) = Ψλ(Ŝ
−1re, Ŝ

−1rh)

and then χλ
S becomes

χλ
S =

∫
dredrh Ψ

∗
λ(re, rh)Ψλ(Ŝ

−1re, Ŝ
−1rh). (2.46)
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Using Eq. (2.44) in Eq. (2.46) we obtain

χλ
S =

∑
α1β1k1

∑
αβk

Ā∗
λ(α1k1; β1k1)Āλ(αk; βk)I

e(β1k1; βk) I
h(α1k1;αk), (2.47)

where we have defined

Ie(β1k1; βk) =

∫
dre ψ

W∗
β1,k1

(re)ψ
W
β,k(Ŝ

−1re),

Ih(α1k1;αk) =

∫
drh ψ

W
α1k1

(rh)ψ
W∗
αk (Ŝ−1rh).

(2.48)

We now compute Ie(β1k1; βk) by using the definition of ψW
βk, Eq. (2.43), ob-

taining

Ie(β1k1; βk) =
1

N

∑
RR1

e−ik1·R1eik·R
∫

dre w(re −R1 − τβ1)w(Ŝ
−1re −R− τβ).

(2.49)
As the Wannier functions w used in this system have a 2pz character, they
transform according to

w(Ŝ−1re −R− τβ) = w(re − ŜR− Ŝτβ) (2.50)

if Ŝ leaves unchanged the out-of-plane variable z. Defining the index βS and
the lattice vector RβS

such that Ŝτβ = RβS
+ τβS

, we find∫
dre w(re−R1− τβ1)w(Ŝ

−1re−R− τβ) = δβ1,βS
δ(R1− ŜR−RβS

), (2.51)

where the orthonormality properties of MLWFs have been used. Therefore,
by direct substitution in the definition of Ie(β1k1; βk) and using the identity∑

R e
ik·R = Nδk,0, valid for any k vector in the BZ, we obtain

Ie(β1k1; βk) = δβ1,βS
e−ik1·RβS δk1,Ŝk

. (2.52)

Proceeding in an analogous way we find

Ih(α1k1;αk) = δα1,αS
eik1·RαS δk1,Ŝk

, (2.53)

with αS and RαS
such that Ŝτα = RαS

+ ταS
. Finally, by substitution of

Eqs. (2.52) and (2.53) in Eq. (2.47) we obtain

χλ
S =

∑
αβk

Ā∗
λ(αSŜk; βSŜk)Āλ(αk; βk)e

−i(Ŝk)·RβS ei(Ŝk)·RαS (2.54)

We point out that Eq. (2.54) gives meaningful results only if the coefficients c
used to compute the Ā functions are exactly the same used in the construction
of the BSE kernel from which the envelope function Aλ(vk; ck) is obtained by

51



E 2C6 2C3 C2 3σv 3σd
χ 2 1 -1 -2 0 0

Table 2.2: Characters χ, evaluated for each class of symmetry operations of
the point group C6v, considering the bright degenerate excitons e4,5 of pristine
ML-C3N. Direct comparison with character table of C6v indicates that this
excitonic doublet transforms as the representation E1.

diagonalization. If different coefficients are used, phase-inconsistency prob-
lems can arise.

We start by discussing the degenerate excitons e4,5 of pristine C3N. In order
to understand which is the irreducible representation of C6v which transforms
as these excitons, for each symmetry operator Ŝ representing a class of C6v

we have computed the corresponding characters using Eqs.(2.41) and (2.54).
The obtained characters are summarized in Tab. 2.2. From these results, we
can associate the doublet e4,5 to the irreducible representation E1 of C6v, con-
sistently with their bright nature. In fact, an exciton λ is bright only if the
matrix element ⟨0|D̂|λ⟩ is non-zero, being |0⟩ the excitonic vacuum, D̂ the
exciton dipole operator (here assumed as constrained in the ML plane). The
operator D̂ behaves like an in-plane vector, which, in turns, transforms as the
E1 irreducible representation of C6v, while the excitonic vacuum belongs to
the fully symmetric representation A1. Therefore, the matrix element ⟨0|D̂|λ⟩
will be different from zero only for the excitons transforming according to irre-
ducible representations Γ of C6v such that the direct product E1 ⊗Γ contains
the representation A1. Straightforward application of group theory rules [74]
for direct product between irreducible representations of the same group indi-
cates that the only representation satisfying this constraint is E1, in agreement
with our numerical results summarized in Table 2.2.
Considering the presence of uniaxial strain, the pair of excitons e4,5 trans-
forming as E1 in unstrained C3N will now be split into two excitons as there
are no irreducible representations with dimension larger than one in C2v, in
agreement with our numerical findings. In order to classify these two excitons,
we can apply the ”Great orthogonality theorem” of group theory [74] to de-
compose the E1 representation of C6v into irreducible representations of C2v.
Each representation of C2v contained in E1 then corresponds to each exciton
e4 and e5, as obtained in the presence of strain. Using the character tables
of the C2v group, we obtain E1(C6v) = B1(C2v)⊕ B2(C2v). We now associate
exciton e4 and e5 to the irreducible representations B1 and B2. In order to do
this, we could compute the characters for each exciton as discussed before for
the degenerate pair e4,5 in pristine C3N. Instead, in this case we use a simpler
approach, which consists in studying the wavefunction of these excitons in
real space. Therefore, we compute the quantity Ψα,β

λ (R) defined as

Ψα,β
λ (R) = ⟨rh = τα; re = τβ +R|λ⟩ (2.55)
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i.e. the probability amplitude to find, for the exciton λ, the electron localized
in the 2pz state on atom β in the unit cell R and the hole on the orbital 2pz

on atom α in the cell at R = 0. Writing the real-space exciton wavefunction
as in Eq.(2.44), it is possible to find

Ψα,β
λ (R) =

1

N

∑
k

eik·RĀ(αk; βk). (2.56)

Ā being defined as in Eq.(2.45). In Fig. 2.11 we show the excitonic wave-

function for the states e4 and e5 in the presence of a uniaxial strain of 2.0 %
applied along the zig-zag (a,b) and armchair (c,d) directions. In all cases, we
assume the position of the hole to be fixed on a Carbon atom denoted by the
black dot and located on the symmetry plane σyz (represented by the dashed
black line). Further, this function is generally complex valued: in this case
we have properly chosen its global phase so that it assumes real values for all
τβ+R (positive values red dots, negative values blue dots, diameter of a circle

proportional to the modulus |Ψα,β
λ (R)|). With zig-zag strain, the lowest exci-

ton e4 turns out to be odd w.r.t. the mirror reflection σyz, while the exciton
e5 is even: as B1(C2v) is odd and B2(C2v) is even under σyz operation, we can
therefore assign e4 to B1 and e5 to B2 in the case of zig-zag strain. This can be
also checked numerically, using the action of symmetry operators on excitonic
wavefunctions, as given by Eq.(2.54). The situation is exactly the opposite
in the case of armchair strain, where the lowest exciton e4 is even under σyz
while the exciton e5 is odd, so that they can be respectively assigned to B2

and B1 irreducible representations of C2v.
The evaluation of Ψα,β

λ (R) at fixed hole position is useful to properly under-
stand the symmetry properties of e4 and e5, but it also underlines the strong
spatial localization of the bright excitons in ML-C3N under strain: this is
especially apparent in the case of B1 excitons (see Fig. 2.11 a and d), where,
once the hole is fixed along the y axis, the electron is constrained in an effec-
tive one-dimensional stripe of the material, even for relatively small applied
strains.
We complete this analysis on bright excitons in strained C3N by pointing out
the symmetry-breaking origin of the optical anisotropy observed in absorption
spectra obtained by numerical solution of the BSE. We have just seen that
for any applied strain (along the zig-zag or the armchair directions) the E1

exciton of pristine ML-C3N splits into two excitons transforming as the B1

and B2 irreducible representations of C2v. Using group theory rules, we can
verify that

⟨0|Dx|B1⟩ ≠ 0, ⟨0|Dy|B1⟩ = 0,

⟨0|Dx|B2⟩ = 0, ⟨0|Dy|B2⟩ ≠ 0,

where Dx and Dy are the components along the x (zig-zag) and the y (arm-
chair) axes. These selection rules are a direct consequence of the fact that Dx
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Figure 2.11: Excitonic wavefunctions Ψα,β
λ (R), as defined in Eqs. (2.55)-(2.56),

computed respectively for the excitons e4 (left) and e5 (right), assuming a 2.0
% strain along the zig-zag direction (top, a and b) and the armchair direction
(bottom, c and d). In all cases, we assume the hole to be fixed on the carbon
atom marked by the black dot and positioned on the vertical dashed line,
which represents the symmetry y=0 axis.
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(Dy) transforms as the B1 (B2) irreducible representation of C2v. Therefore,
we have strong optical anisotropy in strained C3N monolayer, with one exciton
becoming dark for the light polarization direction at which the other exhibits
its highest OS, simply because of the symmetry lowering effect induced by the
strain. Thus, while the strength of the applied strain does not control this
linear dichroism, it tunes the energy splitting between these two excitons.

2.4 Effect of strain on dark excitons

We now discuss the effect of strain on the lowest lying dark excitons in pris-
tine ML-C3N, denoted as e1,2 and e3 in Fig. 2.6. By a direct inspection of
Fig. 2.7, one can realize that these excitons should remain dark or acquire
a negligible OS in the presence of strain, as the spectra are dominated by
excitons e4 and e5. To better clarify their optical behaviour, in Fig. 2.12 we
present the absorption spectrum at photon energies slightly smaller than the
energy of excitons e4 and e5 for different strains. In particular, Fig. 2.12(a)
corresponds to zig-zag strains, Fig. 2.12(b) to armchair strains, while light
polarization is kept fixed along the zig-zag direction in both cases. We note
that the rapidly increasing signal for higher energies corresponds to the con-
tribution of excitons e4 and e5 already discussed in the previous Section. For
both strain directions, we notice the presence of a weak absorption feature in
the tail of the main peak (not shown in Fig. 2.12), whose intensity progres-
sively increases as a function of the applied strain. However, we point out that
in the range of the considered strains (which are realistic values that can be
efficiently applied to 2D materials experimentally) such an absorption peak
is about two orders of magnitude smaller than the most intense absorption
structure observed in Fig. 2.7. Such a feature comes from the dark exciton
e3 of pristine ML-C3N, which acquires a small OS under the application of
strain. Differently, the pair of degenerate excitons e1,2 splits into two excitons
e1 and e2 which remain dark even in the presence of strain.
We start our analysis of low-lying dark excitons focusing on the states coming
from the degenerate pair e1,2 in pristine ML-C3N. Their k-space A(k) and

real-space Ψα,β
λ (R) representations are given in Fig. 2.13(a-d), in the case of

armchair strain equal to 1.5 %. Similarly to Sec. 2.3, we discuss these ex-
citons starting from the symmetry properties of the degenerate pair e1,2 in
unstrained C3N, from which they derive. Applying Eqs.(2.41)-(2.54), we find
that the pair e1,2 transforms as the irreducible representation E2 of the point
group C6v. Since the only excitons in pristine C3N which have a non-zero OS
for in-plane polarization are those transforming according to E1, excitons e1,2
are dark by symmetry.
Uniaxial strain reduces the crystal point group from C6v to C2v, therefore
E2(C6v) is a now a reducible representation of C2v, which contains only the ir-
reducible representations A1 and A2 of C2v, i.e. E2(C6v) = A1(C2v)⊕ A2(C2v).
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Figure 2.12: (a) Low energy tail of the absorption spectrum in ML-C3N under
uniaxial strain along zig-zag direction. (b) Same as (a), but considering an
externally applied strain along the armchair direction. All the spectra were
convoluted with a Lorentzian broadening of 10 meV. Curves corresponding
to different strain values are rigidly shifted vertically to make the plot more
readable.
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Figure 2.13: Functions A(k) for excitons e1, e2 and e3 are shown in panels (a),
(c) and (e); the applied strain is fixed to 1.5 % (5.0 %) in the case of exciton
e1 and e2 (e3), and it is always assumed along the armchair direction. Real
space representations Ψα,β(R) for the excitons e1, e2 and e3 are displayed in
panels (b), (d) and (f), computed for the same set of strain configurations.

As a consequence, the two split excitons e1 and e2 will transform as A1(C2v)
and A2(C2v). This identification explains why these two excitons remain dark
even in the strained crystal: considering that Dx and Dy respectively trans-
form as the irreducible representations B1 and B2 of C2v, all the possible direct
products Bi ⊗ Aj, with i, j = {1, 2} do not contain the full symmetry rep-
resentation A1 of C2v, so that the exciton dipole matrix element ⟨0|D|λ⟩ is
always zero. As before, we can exploit the real space representation Ψα,β(R),
as shown for example in Fig. 2.13(b,d), to assign e1,2 to the irreducible rep-
resentations A1,2. Looking at Fig. 2.13(b,d), in the case of armchair strain,
the lowest exciton e1 is even under the σyz mirror reflection, while e2 is odd.
Looking at the character table for C2v, we can therefore assign e1 to A1 and
e2 to A2. The same reasoning can be followed in the case of zig-zag strain:
the only difference is that in this case, the exciton e1 (e2) transforms as the
irreducible representation A2 (A1) of the point group C2v.
We now discuss the properties of exciton e3 and justify in terms of group the-
ory arguments the reason why it acquires a finite OS in strained C3N. In the
discussion we focus on the 5.0 % strain case, though we note that the follow-
ing comments remain qualitatively valid also for smaller strains. Looking at
Fig. 2.13(e), we notice that the effect of strain along the armchair direction
is to create an unbalance between the intensity of the k-space wavefunction
A(k) along the ΓM and ΓM

′
directions (as those are no longer equivalent in

the presence of strain, see also Fig. 2.6 for comparison with the pristine case).
The application of the symmetry operators of the C6v point group on the
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Figure 2.14: Oscillator strength Dλ, computed for exciton e3 as a function of
the light polarization direction (measured w.r.t. the zig-zag x axis), in the
case of zig-zag (a) and armchair (b) strain equal to 5.0 %.The circles in both
figures represent isovalues for the modulus of the exciton oscillator strength
|Dλ|.

exciton wavefunction e3 in unstrained C3N enables us to assign it to the ir-
reducible representation B1 of C6v, which is dark for planar polarization of
the incoming light, in good agreement with the absorption spectrum shown in
Fig. 2.6. Interestingly, B1 of C6v corresponds to B1 of C2v: in fact, by looking
at Fig. 2.13(f), we see that the real space exciton wavefunction for e3 is odd
w.r.t. the mirror reflection about the yz plane, which is effectively the same
behaviour of B1(C2v) under σyz. As already discussed in the previous Section,
excitons transforming as B1(C2v) can have a non-zero oscillator strength for
light polarized along the zig-zag direction. This justifies the appearance of a
peak in the zig-zag polarized absorption spectrum of strained ML-C3N due to
the e3 exciton.
To further confirm the agreement between the numerical results and the pro-
posed symmetry analysis, in Fig. 2.14 we display the profile of the oscillator
strength (OS) associated to the exciton e3 as a function of the polarization
direction under a zig-zag (a) and armchair (b) strain of 5.0 %. We notice
that, independently of the direction of the applied strain, the e3 exciton has
an anisotropic OS, showing a nodal line along the armchair direction y. This
is due to the fact that it transforms as B1 of C2v for both the considered uniax-
ial strains, and, since ⟨0|Dy|B1⟩ is zero by symmetry, such an exciton cannot
absorb light polarized along y. This is confirmed by numerical results, which
also indicate that the OS associated to exciton e3 becomes more intense (of
almost a factor 2) when strain is applied along the zig-zag rather than along
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the armchair axis.

2.5 Exciton dispersion at small momenta

Up to now, we have discussed how excitons with null centre of mass momen-
tum Q are modified via the application of tensile uniaxial strain. In this
Section, we focus on the dispersion of exciton energies as a function of finite
momentum Q [75]. A fully ab initio calculation of exciton band structure
along high symmetry directions in the BZ for pristine C3N has been already
presented in Ref. [45]. Here, by taking advantage of the TB-BSE approach, we
deepen that analysis by computing the excitonic dispersion in both pristine
and strained C3N at small momenta Q. The evaluation of small-Q dispersions
is very demanding (though possible [76]) within a fully ab initio approach, be-
cause of the limited Q-points sampling accessible in practice. In this respect,
in the present work we exploit the simplicity of our TB-BSE model to com-
pute such a dispersion, which is known to strongly influence exciton dynamics
and lifetimes [77, 78].
In the following, we evaluate the lowest excitonic bands Eλ(Q), taking Q
along the ΓM and ΓK′ directions along k-segments of length |ΓM|/5 and
|ΓK′|/10, respectively. This dispersion is obtained by diagonalization of the
finite-momentum excitonic Hamiltonian given in Eq.(2.4). In Fig. 2.15, we
show the excitonic dispersion in the case of pristine ML-C3N. Concerning the
low energy excitonic bands, departing from the dark excitons at Γ, we notice
that the bands branching out of the E2 doublet (excitons e1,2) are character-
ized by a negative concavity, while the band starting from the exciton B1 (e3)
presents positive concavity, as also found by ab initio calculations. [45]
The most striking feature of the obtained band structure (not seen in the ab
initio dispersion) is represented by the two bands which originate from the
E1 excitons at Γ (e4,5), highlighted in Fig. 2.15 by red dots. We notice the
presence of an almost flat band with negative concavity and of a V-shaped
dispersion, with the latter well reproduced by a linear dispersion with slope
of about 19.0 eV·Angstrom along both the ΓM and ΓK’ directions (see the
dashed red line in Fig. 2.15).
As discussed in the literature [76, 70, 79], this feature is due to the long range
component (G = 0) of the BSE exchange term, Eq. (2.32), in the excitonic
Hamiltonian of 2D materials. In fact, this V-shaped dispersion combined with
a slowly varying band is analogous to the dispersion discussed by Qiu et al. [76]
for the excitonic bands departing from optically active 2-fold degenerate ex-
citons in monolayer MoS2. A similar analysis is also proposed in the work of
Cudazzo et al. in Ref. [70], and in a recent work by Qiu et al. (Ref. [79]).
We now turn our attention to the effect of uniaxial strain on the excitonic dis-
persion. In order to do this, we compute the excitonic dispersion at small Q
in the case of a strain equal to 1.0 % applied along the zig-zag and armchair
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Figure 2.15: Exciton dispersion in pristine C3N for Q in proximity of Γ and
along the path M-Γ-K’. Red dots denote the excitonic bands departing from
the bright excitons at Γ, transforming as E1: the linear band dispersion of the
highest band is also highlighted by dashed red lines, representing the obtained
linear fits along the two high symmetry directions. For completeness, |ΓM| =
0.746 Å−1 while |ΓK’| = 0.861 Å−1.

directions. Similar considerations can also be done in the case of different
strain values. The resulting dispersions are shown in Fig. 2.16. As previously
discussed, the pair of bright excitons E1 in pristine C3N will split into B1 and
B2 excitons. In the case of zig-zag strain (Fig. 2.16a) the band originating
from the lowest exciton B1 is weakly dispersing along ΓM, while it has a linear
trend along ΓK’ (see blue dots in Fig. 2.16a). The situation is the opposite
for the bands departing from the highest energy exciton B2, which is linear
along ΓM and almost flat (with negative concavity) along the orthogonal di-
rection ΓK’. These bands are highlighted by red dots in the figure. Similar
consideration can be done for the bands originating from B1 and B2 in the
case of armchair strain (see Fig. 2.16b).
The observed behaviour is again due to the long range component of the ex-
change kernel of the excitonic Hamiltonian. Qiu et al. [79] demonstrated that
in 2D materials the excitonic dispersion of a band λ at small Q can be written
as

Eλ(Q) = Eλ(Γ) + Aλ|Q| cos2 θQ +
ℏ2Q2

x

2Mx
λ

+
ℏ2Q2

y

2My
λ

(2.57)

where Eλ(Q = Γ) is the energy of the non-degenerate exciton λ at null mo-
mentum and θQ is the angle between Dλ (the exciton dipole) and the vector
Q. The terms showing a quadratic dependence on Q are determined by the
single particle dispersions, the small-Q behaviour of the direct kernel and the
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Figure 2.16: Exciton dispersion in C3N for Q along the path M-Γ-K’, in the
case of zig-zag (a) and armchair strain (b). In both cases, the strain is fixed
to 1.0 %. The red (blue) dots denote the excitonic band dispersing from the
B2 (B1) exciton at Γ. The insets show the excitonic branches departing from
the bright excitons B1 and B2 at Γ. For completeness, |ΓM| = 0.748 Å−1 and
|ΓK’| = 0.858 Å−1, in the case of zig-zag strain, while |ΓM| = 0.739 Å−1 and
|ΓK’| = 0.863 Å−1 in the case of armchair strain.
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short range part of the exchange kernel. These dependencies are captured by
the exciton effective masses Mx,y

λ which can be obtained by fitting ab initio
results [76, 79]. On the other hand, the linear term is only due to the long
range part of the exchange kernel, where Aλ is a coefficient proportional to
the modulus of the exciton dipole Dλ at Q = 0. Exploiting Eq. (2.57), we
can give a rationale for the dispersions of the bands departing from the B1

and B2 excitons in strained C3N. The exciton at Γ transforming as B1 has
a dipole D with null component along the y direction, as it can only have
OS for light polarization along x. Therefore, the band originating from this
exciton (depicted in blue in Fig. 2.16) will have a linear dispersion along ΓK’,
while it will be almost flat along ΓM. The reason is that if Q ∥ ΓM, the cosine
function cos2 θQ is zero, so that the linear term in Eq. (2.57) does not con-
tribute. Instead, the quadratic dispersion is due to the term proportional to
Q2

x and Q2
y, with the negative concavity determined by the dependence on Q

of the difference ϵc(k+Q)− ϵv(k). Conversely, the excitonic band originating
from the exciton B2 at Γ (highlighted by red dots in Fig. 2.16) will have a
linear dispersion along ΓM and a quadratic one along ΓK’, as the dipole for
B2 excitons is oriented along the y direction parallel to ΓM, so that only if
Q ∥ ΓM the linear term in Eq. (2.57) gives contribution, while if Q ∥ ΓK’
this term is zero as the dipole is perpendicular to the exciton center of mass
momentum.
We further point out that such a linear dispersion is only possible for exciton
branches originating from bright excitons at Γ. The reason why the band
starting from the third exciton (i.e. the one non-degenerate in pristine C3N)
does not show linear dispersion is a direct consequence of the small dipole
strength acquired by this exciton under strain, so that the quadratic term
dominates on the linear one in Eq. (2.57), even if the latter may be non-zero.
As a last comment concerning the excitonic bands shown in Fig. 2.16, we re-
mark that the two low-energy bands departing from the excitons A1 and A2 at
Γ are characterized by dispersions which are swapped passing from armchair
to zig-zag strain. The reason is strictly related to the fact that with zig-zag
strain the lowest exciton at Γ transforms as A2 while the second exciton as A1.
The order is reversed in the case of armchair strain, and, as a consequence,
also the bands are exchanged.
Finally, we can discuss our findings in view of the existing literature. In partic-
ular, our results concerning small-Q exciton dispersion in strained C3N high-
light a peculiar effect related to exciton propagation in mechanically strained
C3N. In fact, Qiu et al. [79] pointed out that in 2D materials where opti-
cally bright excitons with strongly anisotropic dipole strength can exist (like
in single or few layer black phosphorous), it is possible to produce exciton
wavepackets which propagate along a quasi 1D channel, whose direction is
defined by the orientation of the excitonic dipole at null momentum. This has
been proved in the ballistic regime, and it has been demonstrated to be a con-
sequence of the linearity of exciton bands at small momentum, for Q parallel
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to the excitonic dipole. Our results show that two bright excitons with intense
oscillator strengths in orthogonal polarization directions are present in C3N,
at fixed uniaxial strain. As a consequence, in strained C3N it should be possi-
ble to prepare exciton wavepackets which propagate along either the armchair
or the zig-zag directions, according to the polarization of the incoming light
beam which produce the wavepacket itself. This is not possible for example
in black phosphorous, as, in that case, the crystal does not have two excitons
at Γ which are close in energy and characterized by orthogonal dipoles.

2.6 Summary and perspectives

In this Chapter, we have discussed the effect of uniaxial strain on the exci-
tonic properties of monolayer C3N, adopting a model solution of BSE, based
on a Tight Binding description of single particle properties. Such an approach
allows us to investigate the effect of uniaxial strain on low-lying dark excitons
and higher-energy active excitons in pristine C3N, discussing the origin of
strain-induced optical anisotropy, in terms of group theory and symmetry ar-
guments. Furthermore, we have clarified the effect of strain on dark excitons,
by demonstrating the strain-induced brightening of the lowest non-degenerate
dark excitation.
Finally, the developed TB-BSE approach allows us to obtain the excitonic
dispersion in both pristine and strained C3N, in a range of centre-of-mass mo-
menta Q which are hardly accessible using state-of-art fully ab initio calcu-
lations. Our results on excitonic dispersions show that mechanically strained
C3N displays a peculiar selectivity effect in the propagation direction of the
exciton wavepackets along either the armchair or the zig-zag paths. We there-
fore believe that the dynamics of excitons in strained C3N should deserve
future experimental and theoretical investigation, in order to also clarify how
other mechanisms affecting the exciton propagation (like exciton-phonon cou-
pling [80, 81, 82, 83], discussed in Chapter 4) can be tuned by the applied
mechanical strain.
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Chapter 3

Low-energy optical absorption
quenching in bilayer C3N

3.1 Introduction

In Chapter 2, we have discussed the excitonic properties of monolayer C3N
and how they can be tuned by application of mechanical strain. In particular,
we have found that the optical absorption of ML-C3N is characterized by a
single intense peak at about 1.96 eV, due to a pair of degenerate excitons
characterized by a large binding energy (about 0.6 eV [45]).
In this Chapter we focus our attention on how electronic and optical proper-
ties of ML-C3N are modified once two-layer systems are considered.
Vertical stacking of two layers of C3N is a possible approach to tune electronic
and optical properties of the isolated layer, as the coupling among the verti-
cally stacked layers (held together by dispersive Van der Waals interaction)
strongly affects both the optical [69, 84] and the electronic properties of the
monolayers [85]. Few theoretical works have analysed the stability of bilayers
C3N (BL-C3N) as a function of the possible stacking patterns [43, 2]: follow-
ing the notation of Ref. [2], all these calculations obtain negative formation
energies for AA′, AB and AB′ stackings.
Furthermore, BL-C3N with AA′ and AB′ stackings have been also experimen-
tally synthesized in Ref. [2], where a detailed investigation of the electronic
properties using scanning tunnelling spectroscopy (STS) has been also pro-
vided: the obtained results indicate a strong change of the electronic-transport
band gap passing from monolayer to bilayer together with relevant modifica-
tions of the electronic properties as a function of the stacking sequence.

Motivated by these experimental advances, we present a fully ab initio in-
vestigation of the optical properties of BL-C3N, properly including excitonic
effects which are known to play a fundamental role in the description of the
absorption of 2D-materials. Our results indicate that, for all the considered
stackings, the optical response does not exhibit low-energy features associated
to discrete exciton states which instead characterize the absorption spectrum
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of the isolated monolayer. Such behaviour is rather peculiar, as not observed
in other common semiconducting bilayer homo-structures, e.g. BL-hBN[84],
BL-MoS2[86, 77] or BL-phosphorene[87]. The origin of low energy absorption
quenching will be explained, focusing on the properties of the single parti-
cle states involved in the formation of the lowest-energy excitons with null
momenta. Our analysis explains the observed optical quenching in terms
of the negligible interband dipole matrix elements associated to the valence-
conduction transitions involved in these excitations.

The content of this Chapter is reported in the manuscript Quenching of low-
energy optical absorption in bilayer C3N polytypes.

3.2 Computational details

We summarized here the main details about the computational methods used
to describe electronic and optical properties of bilayer C3N, presented in the
following.
Ground state structural and electronic properties have been investigated us-
ing Density Functional Theory: in these calculations, we have used norm-
conserving ONCV Pseudopotentials [63], with GGA-PBE approximation [10]
for the exchange-correlation potential. Van der Waals interactions between
layers have been taken into account, adding the dispersion correction proposed
by Grimme [88] to the exchange-correlation energy computed at the PBE level
(PBE-D2).
Equilibrium structural properties have been obtained, relaxing both the in
plane unit cell and the atomic positions up to when the components of the
forces acting on each atom were smaller than 5·10−4 Ry/Bohr. In these ground
state calculations, we have always used a 12x12x1 Monkhorst-Pack [14] k-grid
to sample the Brillouin Zone (BZ) and a kinetic energy cutoff of 90 Ry for the
plane wave basis set used to represent single particle wavefunctions.
Kohn-Sham wavefunctions, computed from the equilibrium ground state charge
density, have been used to evaluate quasi-particle (QP) corrections to DFT
energies, using single shot G0W0 approach as discussed in Chapter 1. The
electron-electron screened interaction W has been obtained within Random
Phase Approximation (RPA): converged QP gaps within a 10 meV thresh-
old required the inclusion of 700 bands and a G-vector cutoff of 16 Ry in
the construction of the screening matrix at the RPA level. The frequency
dependence of W has been approximated using Godby-Needs plasmon-pole
model [25], while 1000 bands have been included in the sum over states ap-
pearing in the correlation part of the electron self energy. In Figure 3.1a we
show the value of the minimum indirect gap in AB-C3N computed varying the
G-cutoff of the inverse dielectric matrix and the number of bands included in
the RPA polarizability. To reduce spurious interactions among different cells
along the stacking direction, we have used a supercell length along z of 23.5
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Figure 3.1: Convergence of parameters used in GW calculations. a) Indirect
band gap in AB-C3N as a function of the number of bands and the energy
cutoff used in the RPA polarizability. Each color corresponds to a fixed num-
ber of bands. b) Indirect gap in AB-C3N as a function of the k-grid used to
sample the BZ, adopting the accelerated method of Ref. [27].

Å, together with a 2D cutoff for the Coulomb potential. Finally, to speed-up
the convergence of QP gaps w.r.t. the k-point mesh, we have adopted the
approach recently proposed by Guandalini et al. [27], verifying that, with this
method, a 18x18x1 Monkhorst-Pack k-grid already provides converged gaps
within the chosen threshold of 10 meV (see Fig.3.1b). Even if not shown,
analogous convergence trends can be obtained in the case of AB′-C3N bilayer.

Starting from QP corrected electronic energies, excitonic properties have been
evaluated solving Bethe-Salpeter Equation in resonant approximation as dis-
cussed in Section 1.3. Converged exciton energies have been obtained includ-
ing the two highest-occupied valence bands and the four lowest unoccupied
conduction states in the construction of the excitonic Hamiltonian, while us-
ing a 48x48x1 Monkhorst-Pack k-grid to sample the BZ. We point out that, in
the solution of the BSE, electron-electron screened interaction has been com-
puted at the RPA level, in static approximation, using the same converged
parameters adopted for the calculation of QP corrections. Furthermore, QP
corrections have been approximated via a scissor-stretching operator, obtained
via linear fitting of explicitly computed Quasi-Particle corrections at the G0W0

level. In Figure 3.2 we show the result of this linear fitting procedure in AB
(Fig.3.2a) and AB′ (Fig.3.2b) stackings. The blue dashed lines represent the
scissor-stretching fits, i.e. Ev

QP = svE
v
DFT and Ec

QP = s0 + scE
c
DFT , with

s0 the scissor term and sv (sc) the stretching coefficient for valence (conduc-
tion) states. For both stackings, QP energies of the last two occupied valence
bands have been considered to evaluate sv; on the other hand, the fitting of s0
and sc parameters has been done including only conduction states with energy
smaller than 2 eV: in this way we have neglected the high energy σ∗-like states
(not involved in the low-energy optical properties) in the fitting procedure,
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Figure 3.2: Fit of QP corrections using a scissor-stretching operator for both
valence and conduction states in AB (a) and AB′ (b) C3N. Notice that the
higher-energy conduction states denoted as σ∗ have not been included in the
fitting procedure.

while considering only π-states.

3.3 Structural and electronic properties in bi-

layer C3N with AB and AB′ stackings

We now discuss the structural and the electronic properties of Bilayer C3N
with AB and AB′ stackings. A similar discussion for the AA′ motif is pre-
sented in Section 3.7.
In Figure 3.3 we present the crystal structures of BL-C3N with AB (upper
panel) and AB′ (lower panel) stackings: yellow (light blue) spheres denote
Carbon (Nitrogen) atoms and small (large) atoms are located on the upper
(lower) layer, denoted from now on as L1 (L2).
For both stacking motifs, we have obtained an in-plane lattice parameter of
4.849 Å, slightly smaller than the one of the isolated monolayer (4.857 Å): the
interlayer distance among the layers (evaluated as the separation along z be-
tween Carbon atoms with the same in-plane coordinates) has been found equal
to 3.22 Å for the AB stacking and 3.21 Å in the AB′ structure. These values
are in agreement with those obtained with PBE-D2 calculations in Ref. [2],
while they are slightly smaller than the interlayer distances computed with
VdW-functionals in Ref. [43].
We now briefly discuss the crystal symmetries of the two stackings. The
point group of AB-C3N is D3d, and also includes non-symmorphic symme-
tries. Among the possible symmetries, this stacking possesses a spatial inver-
sion center (red dot in the upper panel of Fig.3.3) together with two three-fold
rotation axes parallel to z direction, whose in-plane position is denoted by a
green dot in Fig.3.3. Furthermore, this stacking motif is invariant under mir-
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Figure 3.3: Crystal structures for bilayer C3N with AB (upper panel) and
AB′ (lower panel) stackings. Yellow (light blue) spheres indicate Carbon (Ni-
trogen) atoms, while small (large) radius spheres denote atoms located on
the upper (lower) layer. The red dot indicates the in-plane position of the
inversion symmetry center, while dashed red lines represent mirror symmetry
planes parallel to the stacking direction. Finally, the green dot in the AB
bilayer denotes the in-plane position of the two three-fold rotation axes par-
allel to the stacking direction, while the dashed green line in the AB′ bilayer
corresponds to an in-plane C2 rotation axis.

ror reflections w.r.t. planes parallel to the stacking direction and represented
by dashed red lines in Fig.3.3: these planes are respectively denoted as σ̂ΓM,
σ̂ΓM′ and σ̂ΓM′′ as they are aligned to these high symmetry directions in the
BZ.
AB′-C3N has lower symmetry than the AB stacking pattern: its point group
is C2h and contains, apart from the trivial identity, the inversion symmetry,
a two-fold in-plane rotation axis (represented by the green dashed line in the
lower panel of Fig.3.3 and denoted as ĈΓK

2 ) and a mirror symmetry plane
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Figure 3.4: Electronic band structure computed at the DFT-PBE (green-
dashed lines) and with G0W0 approximation (continuous black lines), for AB-
C3N (a) and AB′-C3N (b). The insets represent the hexagonal Brillouin zone,
together with the high symmetry points defining the paths where bands are
computed. The parity of the topmost valence and the lowest conduction bands
along ΓM′′ direction w.r.t. mirror symmetry σ̂ΓM′′ are indicated: the notation
np
i indicates that band ni has parity p, being p = +(−) for even (odd) states

and n = {v, c}. In both images, the top valence band energy is shifted to 0
eV.

σ̂ΓM′′ , parallel to the ΓM′′ direction in the BZ.
In Figure 3.4 we present the electronic band structure for AB-C3N (Fig. 3.4a)
and for AB′-C3N (Fig. 3.4b), computed both within DFT-PBE (dashed green
lines) and including QP corrections at the G0W0 level (solid black lines). We
note that both stackings are characterized by an indirect band gap, both at
the DFT and GW level. In the case of AB stacking, the electronic band disper-
sions along ΓM and ΓM′′ coincide, as a consequence of the three-fold rotational
symmetry of this stacking; therefore, the highest-energy valence band has six
equivalent maxima, obtained by symmetry from the M = [0, 1

2
, 0] point, while

the bottom of the conduction band is located at the Γ point. We also note that
the presence of doubly degenerate bands at Γ is consistent with irreducible
representations of dimension 2 in the D3d point group: we have obtained an
indirect gap of 0.108 eV at the PBE level, which is increased to 0.72 eV once
QP corrections are taken into account. Finally, the direct band gap is found
along the ΓM-equivalent directions, at a wavevector k located approximately
in the middle of ΓM: the obtained G0W0 gap is approximately equal to 1.85
eV, as expected larger than the value obtained at the PBE level (1.12 eV).
In the case of AB′ stacking, the maximum of the valence band is found at
the M′′ point, while the lowest unoccupied conduction state is at Γ, as in the
case of AB stacking motif. Our calculations gave an indirect gap of 0.136 eV
at the DFT-PBE level, while we obtain a 0.73 eV indirect gap with inclusion
of QP corrections. The obtained indirect gap for AB′-C3N is slightly smaller
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than the one measured experimentally with STS in Ref. [2] (0.85±0.03 eV),
but it seems to be in better agreement with respect to the value obtained by
other GW calculations [43], where the Hybertsen-Louie plasmon-pole approx-
imation was used.
Because of the lack of three-fold rotational symmetry around z axis, the direc-
tions ΓM and ΓM′′ are no more equivalent: as a result, the minimum direct gap
is found approximately in the middle of ΓM′′ direction, with a value around
1.79 eV (1.09 eV within DFT) while the indirect gap between the conduction
at Γ and the top-valence at M is slightly larger than the one between Γ and
M′′: we obtain a Γc −Mv gap of 0.87 eV (0.249 eV) with G0W0 (DFT-PBE)
approximation.
Comparing band dispersions for AB and AB′ stackings, we notice that, for k
along the ΓM direction, the lowest pair of unoccupied conduction bands are
almost degenerate (splitting of about 1 meV) in the AB′ stacking, while they
are well separated in the case of AB motif (splitting larger than 0.2 eV): a
similar behaviour is also observed for the two topmost valence states, where
the splitting is, however, not negligible also in the AB′ stacking (splitting of
about 50 meV). In Section 3.6, we provide a qualitative explanation of this
peculiar lack of splitting among the two lowest conductions, in AB′-C3N, an-
alyzing the quasi-symmetries of the sublattice where conduction states are
localized once k is taken along ΓM direction.
The obtained results indicate that, despite keeping the same qualitative fea-
tures (i.e. the minimum gap remains indirect), the electronic bandstructures
of monolayer C3N and bilayer C3N are quantitatively different, as we observe
a strong change of the electronic gaps. As an example, the minimum indirect
gap in the studied bilayers is almost half the one obtained for the isolated
monolayer, while the direct gap is about 0.8 eV smaller. Furthermore, we
notice that the obtained gaps are only slightly different one from the other,
once considering AB and AB′ stacking (in agreement with the hybrid-DFT
results of Ref. [2]), but the electronic dispersions have differences because of
the different symmetry properties of the two stackings.
We complete the analysis of the electronic properties of BL-C3N with AB
and AB′ stackings by reminding that both bilayers are invariant under mir-
ror reflection σ̂ΓM′′ , therefore electronic states for k along this direction can
be classified in terms of their parity w.r.t. such symmetry. We have found
that, in both stackings, the two highest occupied valence bands are even w.r.t.
σ̂ΓM′′ , so that we have denoted them as v+i in Fig.3.4, with i = 1, 2; on the

other hand, if k has modulus in the range [ |ΓM|
3
, |ΓM|] the two lowest unoc-

cupied conduction bands are σ̂ΓM′′-odd, so we have indicated them as c−i . We
also notice that for k close to Γ, the second and the third unoccupied conduc-
tion bands are instead even w.r.t σ̂ΓM′′ and they exhibit a stronger dispersion
with k, if compared with odd conduction states. We point out that a similar
analysis can be carried out also for electronic states along this direction in
monolayer C3N: in that case, the last occupied valence (lowest unoccupied
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conduction) is even (odd) w.r.t. the mirror symmetry along ΓM′′ direction,
while the second unoccupied conduction is even.
In the case of AB stacking, the same parity analysis can be presented for the
bands along the direction ΓM, as the crystal is invariant w.r.t. σ̂ΓM mirror
symmetry.
Such symmetry classification will be exploited to understand bilayers’ optical
properties in the following.

3.4 Optical absorption

In Figure 3.5 we show the absorption spectra computed for AB (Fig. 3.5a) and
AB′ bilayer C3N (Fig. 3.5b), both at the independent particle level (dotted
black lines) and with inclusion of electron-hole interaction, by solving BSE
as detailed in Section 3.2: green dashed (solid red) lines have been obtained
assuming light polarization along Γ̂K ( ˆΓM′′) direction (light polarization ver-
sors ϵ̂ are shown for clarity on top of the crystal structures in the insets).
The AB spectrum is dominated by an intense peak (denoted as C) at energy
E≈1.70 eV, whose spectral position and intensity are not dependent on the po-
larization direction. Such peak is due to a close set of degenerate eigenstates
of Hexc, characterized by relevant contributions from single particle transi-
tions between the valence band v+1 and the conduction state c−1 along ΓM
and equivalent directions: among these, transitions with the highest weights
are denoted by arrows on the band structure shown in Fig. 3.5c. We also
point out that transitions between v+2 and c−2 for k along the same direction
also contribute to this absorption peak, even if with a smaller weight than
v+1 → c−1 transitions, therefore they are omitted for clarity in Fig. 3.5c.
The situation is slightly different in the case of AB′ C3N: also for this stacking
motif the absorption spectrum is dominated by a single intense peak, but its
position in energy and its strength depend on the in-plane light polarization
direction. In Fig. 3.5b, we have labelled as C1 the main peak at 1.71 eV
obtained for light polarization along Γ̂K and as C2 the absorption maximum
at 1.73 eV found for ˆΓM′′-polarized light.
The C1 peak is mainly due to v+1 → c−1 for k along ΓM′′ direction, as depicted
schematically by green arrows in Fig. 3.5d, with a smaller contribution com-
ing from v+2 to c−2 transitions for the same k points (not shown in Fig. 3.5d).
On the other hand, the C2 absorption peak derives from transitions between
the two highest occupied valence states and the two lowest (quasi-degenerate)
conduction bands along ΓM and ΓM′ directions (see red arrows in Fig. 3.5d).
The striking feature of bilayer C3N optical spectra is the apparent absence
of intense absorption peaks due to discrete bound excitonic states formed by
single particle transitions close to the electronic direct gap. As shown in the
insets of Fig. 3.5a and b, within the energy range between 1.25 and 1.5 eV,
we actually observe two absorption structures (labelled in both cases as P1
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Figure 3.5: Optical absorption spectra for AB-C3N (a) and AB′-C3N (b). Solid
red (dashed green) lines correspond to spectra computed with light polariza-
tion along the ˆΓM′′ (Γ̂K) direction, while dotted lines are the independent
particle spectra evaluated for polarization along ˆΓM′′. The insets represent
low energy and quasi-dark peaks labelled as P1 and P2, while the vertical
black dashed lines indicate the position of the direct QP band gap obtained
within G0W0. The electronic structure of AB-C3N is shown in c), with red ar-
rows indicating the transitions mainly responsible for the C absorption peak
in (a). Similarly, the single particle bands of AB′-C3N are displayed in d):
green (red) arrows underline the transitions mostly involved in C1 (C2) peaks
labelled in b.
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Figure 3.6: Contributions of single particle transitions between the last oc-
cupied valence and the lowest unoccupied conduction in the BZ to excitons
P1 and P2 in AB-C3N (a and c) and in AB

′
-C3N (b and d), as defined by

Eq.(3.1).

and P2), but they exhibit optical strengths which are almost two orders of
magnitude smaller than the most intense peaks. We now discuss in more de-
tail such excitations for both stacking motifs.
In AB-C3N, both P1 and P2 peaks are due to a pair of degenerate excitons,
respectively at energies EP1 = 1.35 eV and EP2 = 1.47 eV, with oscillator
strengths not dependent on the polarization direction. For completeness, we
point out that diagonalization of the excitonic Hamiltonian also provides other
excitonic resonances (the lowest with energy of 1.34 eV) which are character-
ized by null oscillator strength within numerical accuracy: such excitons, dark
by strict symmetry reasons, will not be considered further in the following.
P1 and P2 excitons are almost totally composed by electron-hole transitions
between the last occupied valence v+2 and the lowest unoccupied conduction
c−1 , with wave-vectors k along ΓM and equivalent directions in the BZ; this is
better clarified in Figure 3.6a and c, where we show for P1 and P2 excitons
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respectively the quantity

Avc(k) =
∑
λ

∣∣Aλ(vck)
∣∣2 (3.1)

where v (c) is fixed to the last valence (first conduction) band and the sum
over λ is performed over the pair of degenerate states responsible for P1 and
P2 peaks respectively. We notice that single particle transitions forming the
excitons P1 are mainly localized in the middle of ΓM and equivalent direc-
tions, with Avc(k) having non-negligible values for |k| mainly in the interval
[1
3
, 2
3
]|ΓM|. On the other hand, excitons P2 (Fig. 3.6c) are still localized along

ΓM directions, but the corresponding function Avc(k) has intense contribu-
tions from transitions slightly closer to the M point and exhibits a node for k
points along this direction.
In the case of AB′ stacking, P1 and P2 peaks are related each to a single-
nondegenerate exciton at energies EP1 = 1.30 eV and EP2 = 1.42 eV. Differ-
ently from the AB case, the oscillator strengths of these excitations are polar-
ization dependent: this is apparent looking at the inset of Fig.3.6b, where we
notice that both resonances are dark for light polarization along ˆΓM′′ direction
while they exhibit a small but non-zero optical activity for incoming light po-
larized along Γ̂K versor. As in AB stacking, such excitons are mainly formed
by transitions between the last occupied valence and the lowest conduction
band: in Fig. 3.6b and d we show the functions Avc(k) computed respectively
for exciton P1 and P2. We see that in both cases, the transitions involved in
these excitations are strongly localized along the single ΓM′′ direction of the
BZ, with P1 exciton having the main contributions coming from the middle
of ΓM′′, where the minimum direct electronic band gap is found and P2 reso-
nance characterized by a node along this direction.
The observed polarization dependence in the optical absorption of AB′-C3N
can be rationalized via symmetry arguments, similarly to Ref.[84] for Bilayer
hBN. The point group of AB′-C3N is C2h, so the in-plane exciton dipole op-
erator projected along ˆΓM′′ (D̂ΓM′′) will transform as Bu irreducible represen-
tation of C2h, while D̂ΓK will behave as Au under symmetry. Therefore, the
eigenstates |λ⟩ of Hexc such that ⟨0|D|λ⟩ ≠ 0 (being |0⟩ the excitonic vacuum
transforming as the fully symmetric representation Ag) will transform as Au

or Bu if D̂ is projected along Γ̂K or Γ̂M
′′
direction respectively: considering

for example Au states, these will have null optical activity by symmetry, once
incoming light is polarized along ˆΓM′′. Therefore, we can justify the presence
of absorption peaks in AB′-C3N which turn on and off according to the chosen
polarization direction. Furthermore, following the presented analysis, we can
assign P1 and P2 excitons to Au representation, exactly as the eigenstates of
Hexc responsible for the C1 absorption peak, while C2 is expected to be due
to excitations transforming as Bu.
The situation is different for AB stacked C3N: for simplicity, we discuss the
brightness of excitonic eigenstates using the subgroup C3v of D3d, formed by
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Figure 3.7: Wavefunctions for exciton P1 computed in real space for AB (left)
and AB′ (right) stackings. In each panel, the upper (lower) wavefunction has
been computed assuming the hole localized on a Nitrogen atom on layer L1

(L2). The hole position along the stacking direction is indicated by the red
circle.

the mirror planes σ along ΓM directions together with the two 3-fold rotations
depicted in the upper panel of Fig.3.3. The in-plane exciton dipole operator
D transforms as the two-dimensional irreducible representation E of C3v: as
a consequence, all bright excitons will behave as E of C3v, so that they are
expected to be twice degenerate and characterized by an isotropic oscillator
strength, in agreement with the numerical results obtained ab initio.
We now turn our attention to the quasi-dark nature of the low-lying bound
excitons P1 and P2 in both the considered stackings. We point out that such
small optical activity cannot be related to an interlayer nature of these exci-
tons, i.e. it is not due to a negligible spatial overlap between electron and hole
wavefunctions. As an example, in Figure 3.7 we show the real space wave-
functions of exciton P1 in AB (left panel) and AB′(right panel) stacked C3N:
for each stacking, the upper (lower) wavefunction has been obtained assum-
ing the hole (represented by the red dot) fixed on layer L1 (L2) and located
in the plane close to a Nitrogen atom. For both stacking motifs, the shown
wavefunctions indicate the intralayer nature of such exciton: in fact, looking
at the excitonic wavefunction isosurfaces, we notice that the electron has a
high probability to be found on the same layer on which the hole is localized.
The negligible dipole strength of these low-lying excitons is a consequence
of the small interband dipole associated to the electron-hole single particle
transitions involved in these excitations. This can be understood from the
independent particle (IP) absorption spectrum shown in Fig.3.4a and 3.4b as
dotted lines: we notice that in both cases, the optical signal is negligible for
energies close to the direct QP gap, with the IP absorption onset located at
higher photon energies.
In the following section we discuss more in detail the single particle states
involved in these low-lying excitons and we propose a possible rationale for
the observed IP absorption quenching.
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3.5 Rationale for quenching of low energy ab-

sorption in AB and AB′ BL-C3N

In this section we develop a model for the electronic bands in proximity of
the direct gap to rationalize the small oscillator strength of the single particle
transitions close to the direct electronic gap: as the following analysis is valid
for both stackings, here we focus on the case of AB′-C3N: at the end of this
section analogous results will be presented for AB-C3N. We will restrict our
analysis to k along ΓM′′, in the region where valence to conduction transitions
giving the highest contribution to the low-energy quasi-dark excitons are lo-
cated.
As already discussed in the literature [2, 43], the lowest lying conduction bands
and the highest valence states have a π character: therefore, we can analyse
them using a Tight-Binding (TB) Hamiltonian, obtained considering one 2pz

orbital for each atom; in the following we will denote as τα the position of
both the atom α and the 2pz orbital localized on that atom. In practice, we
construct a TB hamiltonian

H2L
α,β(k) =

∑
R

eik·Rt(α0, βR) (3.2)

where R is a lattice vector while t(α0, βR) = ⟨α0|Ĥ|βR⟩ are the hopping
matrix elements between two 2pz orbitals, respectively localized at sites τα
and τβ + R, which have been computed fully ab initio by Wannierization
of DFT bands using Wannier90 code. Starting from ground state charge
density, we have computed Kohn-Sham states on a 18x18x1 k-grid and we
have used this set of wavefunctions to compute Maximally Localized Wannier
Functions. MLWFs have been obtained considering as initial guesses one 2pz

orbital for each atom in the unit cell: the obtained functions exhibit a pz
character as expected, and they have a spatial spread of about 1 Å2 (0.72 Å2)
if they are localized on a Carbon (Nitrogen) atom. In Figure 3.8 we present
the comparison between DFT results (black dots) and Wannier-interpolated
bands (red lines) for both AB (a) and AB′ (b) stackings. Green (blue) dashed
lines represent the inner (outer) energy windows used in the disentanglement
process.
As there are 16 atoms in the unit cell, at a general k the TB Hamiltonian can
be written as a 16x16 hermitian matrix, in a block-like form, i.e.

H2L(k) =

[
HL1(k) HIL(k)
HIL(k)† HL2(k)

]
(3.3)

where HL1 , HL2 and HIL are 8x8 hermitian matrices. To obtain this sep-
aration, we have grouped together the orbitals localized on L1 and on L2,
associating to each orbital α1 localized at τα1 on layer L1 an orbital α2 at τα2

on layer L2, such that τα2 = Îτα2 , being Î the inversion symmetry operator.
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Figure 3.8: Comparison between DFT bands (black dots) and Wannier-
interpolated bands (red lines) computed for AB-C3N(a) and AB′-C3N(b).
Green (blue) dashed lines indicate the inner (outer) windows used in the
disentanglement procedure.

Then HL1 (HL2) is the block of H2L which contains the intralayer hopping
within layer L1 (L2), while H

IL depends on the hopping integrals between or-
bitals on different layers. We can now write H2L(k) = hIN(k)+hIL(k), where
hIN(k) is block-diagonal while hIL(k) is purely off-diagonal. We note that the
subscripts ’IN’ and ’IL’ respectively stand for intralayer and interlayer.
We now consider the block diagonal hamiltonian hIN. For each 2pz orbital on
layer L1 at position τα1 there is an analogous state localized at τα2 = Îτα1 on
layer L2, because of the inversion symmetry of the Bilayer (with both AB and
AB′ stacking). Therefore, it is possible to relate the diagonal blocks one to
the other, i.e.

HL1
α1,β1

(k) =
∑
R

eik·Rt(α10, β1R)

=
∑
R

e−ik·Rt(α20, β2R)

= HL2
α2,β2

(k)∗

(3.4)

where we have used, the invariance of the hamiltonian under spatial inversion
symmetry, the real character of the hopping integrals because of time reversal
and Î|β1R⟩ = −|β2ÎR⟩. Equation (3.4) indicates that the matrix HL1 is the
complex conjugate of HL2 , therefore these matrices have the same eigenvalues.
As the spectrum of hIN is the union of the spectra of HL1 and HL2 , each
eigenvalue ε0nk of hIN will be two fold degenerate, for each k.
Furthermore, as HL1 = HL2∗, we can associate to each eigenvalue ε0nk the pair
of eigenstates

|ϕL1
nk⟩ =

∑
α1

cα1(nk)|ψW
α1k

⟩

|ϕL2
nk⟩ =

∑
α2

cα2(nk)|ψW
α2k

⟩
(3.5)
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where |ψW
αk⟩ = 1√

N

∑
R e

ik·R|αR⟩ and cα2(nk) = cα1(nk)
∗, being∑

β1

HL1
α1β1

(k)cβ1(nk) = ε0nkcα1(nk) (3.6)

We notice that |ϕL1
nk⟩ (|ϕ

L2
nk⟩) is a Bloch function localized on layer L1 (L2) as

it only involves 2pz orbitals localized on that layer. Further, defining the time
inversion operator T̂ = K̂, i.e. equal to the complex conjugate operator, we
can realize that |ϕL2

nk⟩ = −Î · T̂|ϕL1
nk⟩. In fact,

−Î · T̂ |ϕL1
nk⟩ = −

∑
α1

cα1(nk)
∗Î · T̂ |ψW

α1R
⟩

Using the reality of 2pz orbitals together with Î|α1R⟩ = −|α2ÎR⟩ we find

Î · T̂ |ψW
α1R

⟩ = − 1√
N

∑
R

eik·R|α2R⟩.

and reminding cα2(nk) = cα1(nk)
∗ we effectively obtain |ϕL2

nk⟩ = −Î · T̂|ϕL1
nk⟩.

Before proceeding, we clarify the physical meaning of the splitting of H2L

into hIN and hIL. hIN can be thought as an intralayer Hamiltonian, where its
diagonal blocks describe the two layers as separate, i.e. not interacting with
each other; notice that the presence of the other layer is implicitly considered
as the intralayer hopping integrals defining HL1 (HL2) are affected by the
presence of layer L2 (L1). On the other hand, hIL describes the interlayer
interaction between the layers and acts as a perturbation of hIN as interlayer
hopping have smaller values than intralayer ones. With this interpretation,
the states |ϕL1

nk⟩ and |ϕL2
nk⟩ can be thought as Bloch states with the same

energy ε0n,k localized each on one of the two monolayers, once the interlayer
coupling is assumed to be zero: we now define as ε0v,k (ε0c,k) the energy of the
highest occupied valence (lowest unoccupied conduction) band on these two
non-interacting layers. The effect of the interlayer coupling will be to mix
these layer-localized wavefunctions, to give the electronic states of the bilayer.
The discussion presented so far is general and valid for each k point of the BZ:
we now specialize to k vectors along ΓM′′ direction. For these wave-vectors,
H2L commutes with σ̂ΓM′′ and the same is therefore valid for hIN and hIL

separately. Therefore,

σ̂ΓM′′ |ϕLi
vk⟩ = |ϕLi

vk⟩
σ̂ΓM′′ |ϕLi

ck⟩ = −|ϕLi
ck⟩

(3.7)

with i = [1, 2]: notice that these relations have been numerically verified,
using the eigenstates of hIN.
We now include the effect of hIL using first order degenerate perturbation
theory, separately diagonalizing the matrix representation of ĥIL on the two
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subspaces {|ϕL1
vk⟩, |ϕ

L2
vk⟩} and {|ϕL1

ck⟩, |ϕ
L2
ck⟩}. With this procedure, we obtain

the two highest-energy σ̂ΓM′′-even valence bands {|φv1k⟩, |φv2k⟩} and the two
lowest-energy σ̂ΓM′′-odd conduction states {|φc1k⟩, |φc2k⟩} in the bilayer; such
states have been respectively labelled as (v+1 ,v

+
2 ) and (c−1 ,c

−
2 ) in Figure 3.5b.

They can be compactly written as

|φnjk⟩ ≈
1√
2

[
|ϕ̃L1

nk⟩+ sj|ϕ̃L2
nk⟩
]

(3.8)

with energy
Enjk = ε0n,k + sj|∆nk| (3.9)

In Eqs.(3.8)-(3.9), n = {v, c}, j = {1, 2}, sj = −1 (+1) for j = 1 (j = 2),

∆nk = ⟨ϕL1
nk|ĥIL|ϕ

L2
nk⟩ and

|ϕ̃L1
nk⟩ = ei

γnk
2 |ϕL1

nk⟩

|ϕ̃L2
nk⟩ = e−i

γnk
2 |ϕL2

nk⟩
(3.10)

where γnk = Arg[∆nk]. Notice that γnk guarantees that the relative phase
between the projections of a Bloch state |φnjk⟩ on 2pz orbitals localized on
different layers is gauge invariant, i.e. it does not change under the transfor-
mation cα1(nk) → eiηcα1(nk), η being an arbitrary phase.
We point out that the zero-order expression given by Eq.(3.8) is a good approx-
imation for the two lowest σ̂ΓM′′-odd conduction bands and the two highest-
energy σ̂ΓM′′-even valence bands, for the considered k vectors along ΓM′′ di-
rection. In principle one should also consider other terms in the expression
of the eigenstates, coming from higher orders of the perturbative series, de-
scribing the coupling between |ϕLi

nk⟩ and the eigenstates of hIN with different
eigenvalues. For k points around the middle of ΓM′′ direction, these terms can
be neglected in first approximation, as the other eigenstates of hIN with the
same σ̂ΓM′′-parity of |ϕLi

nk⟩ have energies far from ε0n,k (w.r.t. to the interlayer
coupling strength), so that the hybridization is negligible. Our numerical re-
sults indicate that these neglected terms become more relevant for k along
this direction, but close to Γ point.
Therefore, looking at Eq.(3.8), we can understand that the lowest odd-conduction
band and the highest even-valence can be seen, respectively, as antibonding
and bonding combinations of the conduction and the valence states localized
on the two monolayers; we remind that the states defined in Eq.(3.10) are still
eigenstates of the intralayer hamiltonian ĥIN, with |ϕ̃L2

nk⟩ = −Î · T̂|ϕ̃L1
nk⟩.

Starting from Eq.(3.8), we can evaluate the interband matrix element between
the last occupied valence |φv2k⟩ and the lowest unoccupied conduction |φc1k⟩,
dϵ
v2c1k

, as

dϵ
v2c1k

=
1

2

[
⟨ϕ̃L1

vk|ϵ̂ · r|ϕ̃
L1
ck⟩ − ⟨ϕ̃L2

vk|ϵ̂ · r|ϕ̃
L2
ck⟩

+ ⟨ϕ̃L2
vk|ϵ̂ · r|ϕ̃

L1
ck⟩ − ⟨ϕ̃L1

vk|ϵ̂ · r|ϕ̃
L2
ck⟩
] (3.11)
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being ϵ̂ the light polarization direction. To make the treatment simpler, we
neglect the last two terms in Eq.(3.11) in the following, as they involve states
localized on different layers, so that their value is generally small as a result
of the reduced overlap among these wavefunctions.
In this way we obtain that the interband dipole is the difference between
intralayer-interband dipoles

dϵ
Li
(k) = ⟨ϕ̃Li

v,k|ϵ̂ · r|ϕ̃
Li
c,k⟩ (3.12)

Intralayer-interband dipoles defined in Eq.(3.12) have been directly evaluated
as

dϵL1
= e

i
2
(γck−γvk)⟨ϕL1

vk|ϵ̂ · r|ϕ
L1
ck ⟩

dϵL2
= e−

i
2
(γck−γvk)⟨ϕL2

vk|ϵ̂ · r|ϕ
L2
ck ⟩

(3.13)

making use of Eq.(3.10) to express layer localized single particle states and
evaluating γnk as the phase of

∆nk =
∑
α1,β2

c∗α1
(nk)cβ2(nk)h

α1,β2

IL (k)

where index α1 (β2) runs over the 2pz states localized on Layer L1 (L2), while
hα1,β2

IL (k) is the interlayer coupling matrix element, written in the basis of the
Bloch states |ψW

αk⟩ = 1√
N

∑
R e

ik·R|αR⟩.
The matrix elements appearing in Eq.(3.13) have been evaluated following
Refs.[89, 73],

⟨ϕLi
vk|ϵ̂ · r|ϕ

Li
ck⟩ =

ϵ̂ · ⟨ϕLi
vk|[r, Ĥ]|ϕLi

ck⟩
ε0ck − ε0vk

=

∑
αiβi

c∗αi
(vk)cβi

(ck)ϵ̂ · pαiβi
(k)

ε0ck − ε0vk
(3.14)

where, the index i runs over the two layers, ε0nk are the eigenvalues of the
intralayer hamiltonian hIN and pαiβi

(k) is defined as

pαiβi
(k) =

∑
R

eik·Rt(αi0, βiR)

(
ταi

− τβi
−R

)
(3.15)

t(αi0, βiR) representing the intralayer hopping matrix elements, within layer
Li.

If ϵ̂ is chosen along ΓM′′ direction, we immediately find that dϵ
L1
(k) = dϵ

L2
(k) =

0, because of the parity of layer resolved states, given by Eq. 3.7. However, if
ϵ̂ is taken along the direction ΓK, orthogonal to ΓM′′, we cannot justify the
quenching by straightforward symmetry arguments. To clarify this point, in
Figure 3.9a we show the modulus (upper panel) of the intralayer-interband
dipoles dΓK

L1
(k) and dΓK

L2
(k), together with their relative phase (lower panel)
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Figure 3.9: Interband dipole matrix elements for k along ΓM′′ direction, in
the interval [ |ΓM

′′|
3
, |ΓM′′|]. In the upper panel of (a) we show the moduli of

dϵ
Li

for light polarization along ΓK for the two layers i = 1, 2, while in the
lower panel the phase difference among dϵ

L1
and dϵ

L2
is presented. In (b) the

red continuous (blue dashed) line corresponds to the interband dipole between
|φv2,k⟩ (|φv1,k⟩) and |φc1,k⟩ computed using the TB model. Dots and triangles
represent the same quantities computed fully ab initio using Yambo code. Light
polarization versor is assumed aligned along ΓK direction.

∆φd = Arg[dΓK
L1

(k)]−Arg[dΓK
L2

(k)]. We notice that the moduli are equal while
their relative phase is close to zero in the range of k points here considered, i.e.
|k| in [ |ΓM

′′|
3
, |ΓM′′|]. This means that the total interband dipole will be almost

zero, as a consequence of the destructive interference of the two layer-resolved
components. In other words, the transition probability from |φv2,k⟩ to |φc1,k⟩
due to ΓK polarized light can be interpreted as the quantum superposition
of the interband scattering processes occurring on the two layers separately,
whose probability amplitudes are out-of-phase, giving an overall negligible
interband oscillator strength. In Figure 3.9b, the red line indicates the in-
terband dipole between |φv2,k⟩ and |φc1,k⟩, computed using the perturbative
solution of the TB model, while the red dots are the same quantities obtained
ab initio with Yambo, to check the validity of our approximate treatment. We
notice that, as this cancellation is not symmetry-constrained, the interband
dipole is small, but not exactly zero. Such cancellation is exact only at M′′

point, because of symmetry reasons. In fact, as M′′ is invariant under spatial
inversion Î, we can assign inversion-parity labels to the states at this point.
Ab initio results indicate that both |φv2,k⟩ and |φc1,k⟩ are odd under Î exactly
as dΓK, therefore the overall matrix element is zero.
We point out that the interband dipole is non-zero, once the transition be-
tween a pair of bonding or antibonding combinations is considered: for ex-
ample, taking into account the scattering |φv1,k⟩ → |φc1,k⟩, the intralayer-
interband transition amplitudes sum constructively giving an intense overall
interband dipole. This is confirmed in Fig.3.9b, where this quantity is shown
as computed using the model (dashed blue line) and fully ab initio using
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Figure 3.10: Interband dipole matrix elements computed for bilayer C3N with
AB stacking. This Figure in analogous to Figure 3.9, where the same quanti-
ties for AB′ stacking are shown.

Yambo(blue triangles). We further notice that the reasonable agreement be-
tween the model and the ab initio results is an a posteriori confirmation of
the validity of Eq. (3.8) to describe single particle states along ΓM′′.
To complete this analysis, in Figure 3.10 we present the interband dipoles
in AB-C3N, for k along the ΓM′′ direction, in the interval [ |ΓM

′′|
3
, |ΓM′′|], as-

suming light polarization versor ϵ̂ along the ΓK direction, orthogonal to ΓM′′.
As in Figure 3.9a, the upper panel shows the modulus of both dΓK

L1
and dΓK

L2
,

while their phase difference is shown in the lower panel. In Fig. 3.10b we
present as a red continuous (blue dashed) line the interband dipole matrix
elements computed between |φv2k⟩ (|φv1k⟩) and |φc1k⟩, again assuming light
polarization along ΓK direction: dots and triangles correspond to the same
quantities as computed with Yambo code.
We notice that these results are qualitatively analogous to those discussed for
AB′ stacking motif. In other words, the intralayer-interband dipoles dΓK

L1
and

dΓK
L2

have the same moduli, and a phase difference which is close to zero, in
the interval of considered k points. Therefore, once we compute the interband
dipole between |φv2k⟩ and |φc1k⟩, they are subtracted one from the other, giv-
ing an overall negligible interband dipole for the bilayer; on the other hand,
if the interband dipole between |φv1k⟩ and |φc1k⟩ is computed, their contribu-
tions sum in phase, giving an intense optical strength.
Even if not shown, we underline that once ϵ̂ is chosen parallel to the ΓM′′ di-
rection, the dipole matrix elements are exactly zero: the reason is that, while
the dipole operator is invariant under σ̂ΓM′′ mirror symmetry, conduction and
valence states have opposite parity, so that the resulting matrix element is
constrained to be null for symmetry.
Finally, we point out that, because of the three-fold rotational symmetry of
AB-C3N, similar results can be obtained for interband dipoles computed con-
sidering k along ΓM and ΓM′ directions: in all these cases, if the polarization
versor is parallel to k, the interband dipole among the topmost valence and the
lowest conduction is null by symmetry; instead, if light polarization is orthog-
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onal to k, these interband dipoles are not constrained to zero by symmetry,
but they assume small values because of the cancellation of the intralayer
contributions.

3.6 Conduction states quasi-degeneracy along

ΓM direction in AB′ stacking

Before discussing the case of bilayer C3N with AA′ stacking, in this Section
we do a step backward and we provide a qualitative rationale for the neg-
ligible splitting among the two lowest unoccupied conduction bands along
ΓM direction in bilayer C3N with AB′ stacking. This quasi-degeneracy is
rather peculiar and counterintuitive: in fact, taking multiple equivalent layers
and letting them interact, one generally expects to observe energy separation
between the resulting single particle states, as a direct consequence of the
coupling among the layers themselves. This concept is usually referred to
as Davydov splitting, and has been also observed in the case of vibrational
modes in multilayer Transition Metal Dichalcogenides [90, 91]. Such splitting
between the two lowest unoccupied conduction states is effectively observed
AB′-C3N once k is chosen along the ΓM′′ direction.
Following the approach of Section 3.5, we consider the interlayer coupling as
a perturbation of the intralayer terms in the Tight Binding Hamiltonian: as a
consequence, we can express the splitting among the conduction states within
first order degenerate perturbation theory as ⟨ϕL1

ck |ĥIL|ϕ
L2
ck⟩, being |ϕL1

ck⟩ and

|ϕL2
ck⟩ the conduction eigenstates of ĥIL, localized on the two layers.

If we assume that the diagonal blocks of the intralayer Hamiltonian ĥIN can be
approximated with the Tight-Binding Hamiltonians of the two isolated lay-
ers, we can realize that they are both (approximately) invariant under mirror
reflection w.r.t. planes parallel to σ̂ΓM direction. This is clarified in Figure
3.11b, where we split the unit cell of AB′-C3N (shown in Figure 3.11a) into
two portions corresponding to the atoms on the two layers. We can see that
each layer has its own mirror vertical symmetry plane (represented by black
dashed lines in Fig. 3.11b) and that such planes are shifted one respect to
the other as the two monolayers have a relative shift within the AB′ bilayer.
As the lowest conduction band with k parallel to ΓM is odd under mirror
symmetry in the isolated monolayer, we can understand that |ϕL1

ck⟩ and |ϕL2
ck⟩

will have non-zero projection only on the 2pz states localized on the atoms
marked by red squares in Fig. 3.11b: this happens because such functions
must have a nodal line along the vertical direction, as a consequence of their
odd-character w.r.t. to the vertical mirror plane (no contribution is observed
from Nitrogen atoms as they are transferred into themselves under these in-
layer mirror symmetry, apart from a lattice vector a1).
Therefore, the atoms where the conduction-eigenstates of ĥIN are localized
form a sublattice invariant under σ̂ΓM mirror symmetry: this is clarified in
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Figure 3.11: Unit cell of BL-C3N with AB′ stacking is shown in a), with the
black dot denoting the center of spatial inversion symmetry. The notation is
analogous to the one used in Figure 3.3. b) represents the split unit cell, where
the atoms on layer L1 are separated from those on layer L2. The dashed black
lines represent mirror symmetry planes parallel to σ̂ΓM, within the separate
layers, while the black dots indicate the in plane position of the inversion center
of the whole bilayer. Notice that these mirror planes are shifted one w.r.t.
the other. Atoms denoted by red squares are those where the states |ϕL1

ck⟩ and
|ϕL2

ck⟩ are localized. c) Crystal structure of BL-C3N with AB′ stacking, where
the red spheres indicate the Carbon atoms forming the sublattice invariant
w.r.t. σ̂ΓM; this symmetry is represented by the black dashed vertical line.
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Figure 3.11c where the atoms forming the sublattice are shown in red, while
the mirror plane is represented by the vertical dashed line. As this sublattice
is σ̂ΓM invariant, we can assume that the interlayer Hamiltonian which pairs
the atoms within this sublattice on different layers is invariant w.r.t. σ̂ΓM:
this is clearly not strictly exact, as the interlayer hoppings are affected by the
fact that the overall bilayer lattice does not possess such symmetry, but it can
be assumed as a reasonable working assumption.
Then, the state |ϕL1

ck⟩ is odd under σ̂ΓM (as such plane coincide with the in-
layer mirror plane, shown in 3.11b), while |ϕL2

ck⟩ is even, as each site on L2 are
transformed into themselves (apart from a lattice vector a1) by this symmetry
operation. As a consequence, ⟨ϕL1

ck |ĥIL|ϕ
L2
ck⟩ ≈ 0 as the states have different

parity w.r.t. σ̂ΓM, while ĥIL is (approximately) invariant. Once we consider k
close to Γ, the splitting increases, despite remaining less that 50 meV: this is
beyond the presented reasoning, and can be justified, for example, via higher
order terms of the perturbative expansion.
We also notice that this splitting appears for k along ΓM′′ as |ϕL1

ck⟩ and |ϕL2
ck⟩

have the same parity under mirror symmetry σ̂ΓM′′ .

3.7 The case of AA′ stacking

As discussed in the Introduction, together with AB and AB′ stackings, another
stable bilayer C3N motif is AA′. The crystal structure of AA′-C3N is shown in
Figure 3.12a. This stacking has an inversion symmetry center (shown by the
red dot in Fig. 3.12a), two mirror symmetry planes represented by red dashed
lines and a two-fold rotation axis parallel to the stacking direction (indicated
by the green dot). Interestingly, this stacking-motif is also invariant w.r.t.
the nonsymmorphic symmetry operation {σxy|τ⃗}, corresponding to z → −z
mirror symmetry followed by fractional traslation of vector τ⃗ , represented by
the red arrow.
Structural optimization within PBE-D2 provides an in-plane lattice parameter
a = 4.849 Å, while the interlayer distance is equal to 3.22 Å, similarly to
the other two stackings. The electronic bandstructure (shown in Fig.3.12b)
exhibits a metallic character: the highest valence state (found at M′ point)
has an higher energy than the lowest conduction state, occurring at the Γ
point, with a corresponding negative ”gap” of Γc - M′

v = -0.31 eV. Such
metallicity (also found in Ref.[43]) is a problem related to PBE functional,
as experimentally AA′-C3N has been shown to have a finite gap of about 0.4
eV [2].
The use of such metallic ground state to compute both QP corrections and
optical properties is problematic, as it would induce a fictitious over-screening
effect once the electron-electron screened interaction is evaluated using RPA
approximation, providing unaccurate values for electronic gaps and exciton
binding energies.
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Figure 3.12: Crystal structure for bilayer C3N with AA′ stacking is shown
in a). The red dot indicates the in-plane position of the inversion symmetry
center, the dashed red lines represent mirror symmetry planes parallel to the
stacking direction and the green dot denotes the in-plane position of the two-
fold rotation axis parallel to the stacking direction. Finally the red arrow
represents the fractional translation τ⃗ discussed in the main test. The DFT-
PBE electronic structure is shown in b): along the direction ΓM′ the highest
valence and the lowest conduction bands are labeled according to their parity
w.r.t. {σxy|τ⃗} symmetry operation.

87



We now assume that the Kohn-Sham states computed at the PBE level are
anyhow a good approximation for electronic wavefunctions, despite the values
of the associated Kohn-Sham energies give a metallic ground state. With this
assumption, we speculate about the fact that, also for this stacking, the low
energy absorption will be quenched, in this case because of symmetry reasons
and we will confirm our analysis via an approximate solution of the BSE.
Figure 3.12b indicates that the lowest direct band gap occurs almost in the
middle of the ΓM′ direction: as a consequence, it is reasonable to expect
that the low energy transitions which will contribute to the lowest energy
excitons will come from this portion of the BZ. k points along this direction
are invariant both under σ̂ΓM′ mirror symmetry and {σxy|τ⃗}, therefore the
electronic states can be properly labeled according to how they transform
under these symmetries. Our DFT results indicate that the highest valence
band is even under {σxy|τ⃗}, while the lowest conduction is odd: these two
states are respectively indicated as v+2 and c−1 in Fig.3.12b. As the dipole
operator dϵ is invariant under {σxy|τ⃗} (assuming, as usual, incoming light with
polarization direction ϵ̂ orthogonal to the stacking direction z), the matrix
element ⟨φv2k|ϵ̂ · r|φc1k⟩ will be zero, independently from the direction of the
polarization versor ϵ̂. Therefore, we expect light-induced scattering between
these bands to be forbidden by symmetry and consequently the low-energy
excitons composed by these transitions to be optically dark.
To confirm these considerations, we solve BSE with a set of assumptions aimed
at avoiding the spurious, DFT-induced metallicity. In practice:

• the static RPA electron-electron interaction in the direct part of the BSE
kernel has been computed using Kohn Sham wavefunctions obtained
from DFT-PBE, but applying a rigid shift sW0 to all the empty states.
Such parameter has been chosen so that the minimum gap Γc - M′

v of
the resulting band-structure was positive but smaller than the one found
experimentally, to avoid under-screening effects;

• in the independent-particle part of the excitonic hamiltonian we mimic
quasi-particle corrections via a scissor operator applied to the DFT
bands, manually chosen to obtain a minimum indirect band gap Γc -
M′

v equal to the experimental one (0.4 eV). We underline that such
scissor is therefore larger than the one introduced in the calculation of
electronic screening.

The results of these calculations (performed on a 48x48x1 k-grid as for the
other stackings) are shown in Figure 3.13: in Fig.3.13a (Fig.3.13b) we display
the results obtained for sW0 = 0.35 eV (sW0 = 0.45 eV). These absorption
spectra (which exhibit small variations changing sW0 ) confirm the symmetry-
based discussion just presented. In fact, in both cases, low energy excitons
(whose positions are indicated by black vertical bars in the insets) are optically
dark independently from the polarization direction, as no absorption structure
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Figure 3.13: Absorption spectra for AA′-C3N, computed using rigid shift pa-
rameters sW0 equal to 0.35 eV (a) and 0.45 (b). In both graphs, polarization
directions are shown on top of the crystal structure, while the vertical dashed
line indicates the energy of the minimum direct gap. Finally, the black dotted
line represents the independent particle absorption spectra.

is observed in the low energy region between 0.75 eV and 1.25 eV, where
exciton-bound states are found. Such bound excitons are due to single particle
transitions between bands v+2 and c−1 along the Γ-M′ direction, as clarified in
Figure 3.14, where we show the weights of single particle transitions between
these bands for k in the full hexagonal BZ.

3.8 Summary and perspectives

In this Chapter, we have discussed electronic and optical properties of Bilayer
C3N with different stackigs motifs, using state-of-art fully ab initio calcula-
tions. Our results indicate a peculiar behaviour of BL-C3N, i.e. a strong
quenching of low-energy optical absorption due to the negligible oscillator
strength of the discrete bound excitons composed by electron-hole transitions
with energies close to the minimum electronic direct gap. These findings have
been justified in terms of independent particle effects, i.e. as due to the negli-
gible interband dipole between the lowest conduction and the topmost valence
bands involved in the formation of these excitons. In AB and AB′ stackings we
have demonstrated that the overall interband dipole assumes negligible values
because of the destructive interference of the contributions coming from the
two layers, while, in the case of AA′ stacking, the optical quenching is pro-
tected by the symmetries of the system.
This work could pave the way to future theoretical and experimental inves-
tigations on multilayer C3N. On the one hand, it could be fascinating to
investigate how optical properties of C3N can be tuned varying the number
of stacked monolayers or changing the twist angle between them. On the
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Figure 3.14: Exciton k-space distribution as defined in Eq.(3.1) (with v and c
corresponding to the last occupied valence and the lowest unoccupied conduc-
tion respectively), for the eight lowest-energy excitations obtained fixing sW0
= 0.35 eV. These states are labeled according to their increasing excitation
energy.

90



other hand, the abundant presence of dark or quasi-dark low-energy excitons
in BL-C3N could have important effects on exciton lifetimes and dynamics.

91



92



Chapter 4

Phonon-assisted luminescence
in rhombohedral Boron Nitride

In this Chapter we present an ab initio investigation of phonon-assisted light
emission by finite-momentum excitons in rhombohedral boron nitride (rBN).
In collaboration with the experimental group of Prof. Annick Louiseau and
Prof. Julien Barjon, we have exploited our results to interpret the emission
spectra experimentally measured via Cathodoluminescence in high quality
rBN samples. Furthermore, by comparing experimental and theoretical re-
sults obtained for rBN and hexagonal boron nitride (hBN), we have demon-
strated that phonon-assisted radiative emission from indirect excitons allows
identifying different BN stackings.

The content of this Chapter is reported in part in the manuscript Optical
signatures of the rhombohedral polymorph of sp2 boron nitride.

4.1 Introduction

When sp2 hybridized, boron and nitrogen atoms can form 1D nanotubes, 2D
layers with a honeycomb lattice[92], or layered three-dimensional crystals. In
2D monolayers, these atoms form a regular hexagonal lattice, in which each
hexagonal ring is composed by the same number of boron and nitrogen atoms.
Bulk crystals are then formed by stacking these single-layers, which interact
among themselves via weak and long-ranged Van der Waals interaction.
According to the relative orientations of the stacked layers, different sp2-BN
bulk crystals can be obtained. The most common (and also most thermo-
dynamically stable) polytype is hexagonal boron nitride (hBN), firstly syn-
thesized in high-quality and defect-free samples by Watanabe and co-workers
[93, 94]: in this case, two consecutive BN single layers differ by a π rotation,
resulting in the so-called AA′ stacking sequence, where boron and nitrogen
atoms sit on top of each other.
Another possible stacking sequence is Bernal (or AB) boron nitride, recently
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Figure 4.1: Stacking sequences of sp2 BN considered in this Thesis: in a) Boron
Nitride wih AA′ stacking is shown, while in b) the three shifted layers forming
rBN unit cell are presented. Nitrogen and Boron atoms are respectively shown
as green and gray spheres.

synthesized and studied via second harmonic generation and photolumines-
cence in Refs.[95, 96]. Its structure is obtained starting from two aligned BN
monolayers and translating one of them by an in-plane BN interatomic dis-
tance, so that the centres of the hexagons of this layer are aligned with the
atoms of the adjacent layers, along the stacking direction.
Finally, a different bulk BN polymorph is rhombohedral BN (rBN), in which
the unit cell is composed by three BN monolayers, rigidly shifted along the
same direction by the B-N planar interatomic distance, according to the so-
called ABC stacking sequence [97, 98].
In the following, we will focus our attention on hBN and rBN crystals, whose
stacking motifs are shown for completeness in Figure 4.1a and 4.1b, respec-
tively.
Although composed by the same single layer building blocks, these stacking
motifs are characterized by different electronic properties. Concerning this
point, the fully ab initio work by Sponza and coworkers [99] demonstrated
that Bernal BN is a direct gap insulator, while hBN and rBN are charac-
terized by an indirect band gap. At the same time, as these polytypes only
differ in the stacking sequence of the single layers, they can be hardly distin-
guished using crystallographic techniques. In addition, different BN stacking
can coexist in the same crystal and the interaction with the substrate could
also affect the relative abundance of the different phases in a given bulk BN
sample[100, 101].
In this Chapter, we present a spectroscopic investigation of hBN and rBN
using cathodoluminescence (CL) spectroscopy. By comparing CL spectra ob-
tained for rBN with analogous results for hBN, we show that the stacking
sequence affects the emission fine structure of rBN and hBN crystals, making
CL an ideal experimental probe to discriminate between the two BN poly-
types. The obtained experimental results are fully interpreted by ab initio
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calculations of luminescence spectra for the two crystals, explicitly including
exciton-phonon interactions.

4.2 Electronic properties of rBN

In this Section, we summarize the structural and electronic properties of rBN
and we compare the obtained results with previous theoretical calculations
available in the literature.
Rhombohedral boron nitride is modelled using a hexagonal lattice with six
atoms per unit cell. Atomic positions and lattice parameters have been ob-
tained fully ab initio, relaxing the structure up to when forces acting on
atoms were smaller than 10−5 a.u. These ground states properties have been
computed at the DFT level, using LDA approximation for the exchange-
correlation potential, together with Pseudo-Potentials from the Pseudo-Dojo
repository[102]. In all calculations, we have used a 100 Ry cut-off for the
wavefunctions and the charge density has been computed using a 12x12x4
Monkhorst-Pack grid to sample the BZ.
The relaxation procedure gave an in-plane lattice parameter of 2.489 Å, and
an out-of-plane cell dimension c = 9.662 Å. As expected, LDA tends to slightly
underestimate experimental results (a = 2.504 Å, c = 9.99 Å[103]).
LDA electronic band structure has been computed starting from relaxed atomic
positions: in Figure 4.2 we present the electronic bands for hBN (Fig. 4.2a)
and for rBN (Fig. 4.2b), computed along the high symmetry path Γ-K-M-Γ-
A. In agreement with the previous results by Sponza and collaborators, both
stackings exhibit an indirect band gap, with the conduction minimum at the
M point and the highest occupied valence state in proximity of the K point.
As DFT underestimates the band gap, we have computed QP corrections to
KS energies within G0W0 approximation. The obtained QP corrections do
not modify qualitatively the DFT electronic dispersion: their action has been
included in the calculation of excitonic properties using a scissor-stretching
operator, obtained by fitting QP corrections for π bands, which are the states
involved in low energy excitons (see Fig. 4.2c and 4.2d). Inclusion of many
body effects increase the electronic gap, which remain indirect in both stack-
ings. In rBN (hBN) the minimum indirect gap has been found equal to 5.49
eV (5.66 eV), in reasonable agreement with G0W0 calculations of Ref.[99]
(5.27 eV for rBN and 5.80 eV for hBN). The small discrepancies are probably
due to the different structures used in Ref.[99], where experimental lattice
parameters have been adopted.
The indirect gap nature of rBN (and analogously of hBN) strongly influences
the excitonic dispersion in this material. In Figure 4.3 we present the en-
ergy of the lowest excitonic bands in rBN, assuming the exciton momentum
Q aligned along the Γ-K direction of the hexagonal BZ (shown in the inset).
The minimum-energy excitonic state available in the system has a non-zero
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Figure 4.2: Electronic bandstructures for hBN (a) and rBN (b) computed
within LDA-DFT. In panels c) and d) we show the linear scissor-stretching fits
of the QP corrections obtained with G0W0 approach. Notice that σ∗ states
have not been included in the fitting procedure to obtain scissor-stretching
parameters for the conduction bands.
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Figure 4.3: Exciton dispersion in rBN computed for exciton momentum Q
along the in-plane Γ-K direction in the BZ.

momentum Q: more precisely, the minimum energy is found at Q ≈ Ω, being
Ω = [1

6
, 1
6
, 0] in reciprocal lattice units. Clearly, equivalent minima in the ex-

citonic dispersion are found along the directions of the BZ equivalent to Γ-K,
according to the symmetry operations of the C3v point group of rBN.
These low energy excitons close to Ω are mainly composed by a hole located
in proximity of K and an electron close to the M point. The reason why such
electron-hole bound pairs have the lowest possible energy can be intuitively
understood noting that these are the valence-to-conduction transitions with
the lowest energy difference.
The obtained dispersion is in good agreement with the one proposed in the
literature (see Figure 8 of Ref.[99]): furthermore, repeating analogous cal-
culations for hBN, we have obtained an indirect excitonic dispersion, with
minimum in the middle of Γ-K direction, similarly to Refs.[99, 83]
Having discussed the electronic and excitonic dispersions in hBN and rBN,
we now discuss the theoretical approach we adopted to simulate luminescence
spectra in these materials.

4.3 Theoretical model of finite-momentum ex-

citon radiative emission

In cathodoluminescence (CL) experiments, the sample is excited by an exter-
nal electron beam, which transfers energy to the material, with the subsequent
creation of electron-hole bound pairs, i.e. excitons. The external beam is as-
sumed to create a low density of electron-hole pairs, which can be therefore
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treated as non-interacting bosonic particles[104]. By interaction with lattice
phonon modes, these excitons will relax towards the states with the lowest
possible energies: such states correspond to the minimum of the excitonic
dispersion, shown in Figure 4.3 for rBN.
This mechanism of exciton creation and successive relaxation via coupling with
the lattice is a complex and non-equilibrium process, whose fully ab initio de-
scription [105] is beyond the scope of this work. Therefore, in the following
we model the quasi-equilibrium distribution of excitons close to the disper-
sion minima (resulting from the process just discussed) via a Boltzmann-like
function, given by

N(Eλ(Q)) ∝ e
−Eλ(Q)−µ

kBTexc (4.1)

which describes the occupation probability of the excitonic state |λ,Q⟩. In
Eq.(4.1), µ is the excitonic chemical potential corresponding to the energy of
the lowest accessible exciton, while Texc is the excitonic temperature, control-
ling the excitonic distribution. This quantity has been measured by Cassabois
and co-workers [106] as a function of the crystal temperature T (i.e. the tem-
perature at which the experiment is performed). Experimental results indicate
that for T smaller than 20 K, Texc is constant and approximately equal to 50
K, while it increases almost linearly for larger T . In the following, as CL
experiments were carried out at temperatures less than 10 K, we will fix Texc
to 20 K and 50 K, to demonstrate that our results are stable w.r.t. this pa-
rameter. We underline that, at the moment, Texc is a fitting parameter which
can be extracted only from experimental data.
This finite-momentum excitonic distribution cannot emit light via direct cou-
pling with electromagnetic field, i.e. via a first order process, as a consequence
of the mismatch between the nonzero exciton momentum and the photon
wave-vector, which is almost zero for light frequency in the UV range (i.e.
the frequencies emitted by BN samples). Therefore, the mechanism respon-
sible for the emission is a second order process. An exciton |λQ⟩ (close to
the exciton dispersion minima) couples with the lattice and emits a phonon
(νQ), with subsequent scattering toward virtual excitonic states at Γ, from
which photon emission can occur. An analogous process involving phonon
absorption should also be taken into account. In the following, such processes
are neglected as, in the range of considered T below 10 K, phonon emission
processes dominate.
Calling ΓνQ

λ (E) the probability of photon emission with energy E by an in-
direct exciton |λQ⟩ assisted by phonon ν, we can model the CL spectrum
as

I(E) ∝
∑
λ

∑
ν

∑
Q

N(Eλ(Q))ΓνQ
λ (E) (4.2)

where λ is an index running over exciton bands at finite momentum Q and ν
denotes the phonon branches. Finally, the occupation function N weights the
contribution of different excitons, according to their occupation probability.
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4.3.1 Calculation of phonon-assisted light emission prob-
ability by indirect excitons

The photon emission probability ΓνQ
λ (E) is computed using second-order time

dependent perturbation theory, similarly to the framework described in Can-
nuccia and co-workers[107].
In practice, we describe the system via the Hamiltonian

Ĥ = Ĥ0 + Ĥ ′ (4.3)

Ĥ0 being the unperturbed Hamiltonian given by

Ĥ0 =
∑
λQ

Eλ(Q)a†λQaλQ +
∑
νq

ℏωνqb
†
νqbνq +

∑
ε

ℏωd†ωεdωε (4.4)

where a†λQ (aλQ), b
†
νq(bνq) and d†ωε (dωε) are, respectively, bosonic creation

(annihilation) operators for excitons in states |λQ⟩, for (νq) phonons and for
photons with energy ℏω and polarization ε̂.
The operator Ĥ ′ in Eq.(4.3) describes a perturbation to Ĥ0, corresponding to
the sum of exciton-photon and exciton-phonon Hamiltonians, which are now
derived for clarity.
The Hamiltonian describing the interaction between electrons and photons
with frequency ω is given by

Ĥexc−pt =
1

c
Aω ·

[∑
vck

dvckc
†
vkcck + dcvkc

†
ckcvk

]
(4.5)

where cnk (c†nk) is the annihilation (creation) operator for an electron in the
single particle state (nk), c and v indices run over conduction and valence
bands respectively, dvck is the interband dipole and Aω is the electromagnetic
vector potential (here we are neglecting second order terms proportional to
A2

ω).
The vector potential is written in terms of photon creation-annihilation oper-
ators, i.e.

Aω =
C1√
ω

∑
ε

[
dωε + d†ωε

]
(4.6)

C1 being a shorthand notation for a product of fundamental constants.
Defining creation and annihilation operators for excitons at Γ as in Ref. [82]

a†λ20
=
∑
vck

AΓ
λ2
(vck)c†ckcvk (4.7)

aλ20 =
∑
vck

AΓ∗
λ2
(vck)c†vkcck (4.8)
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with AΓ
λ2
(vck) the λ2-exciton envelope functions and using the completeness

property ∑
λ2

AΓ∗
λ20

(vck)AΓ
λ20

(v′c′k′) = δvv′δcc′δkk′ (4.9)

it is possible to write, starting from Eqs.(4.7)-(4.8),

c†ckcvk =
∑
λ2

AΓ∗
λ2
(vck)a†λ20

(4.10)

and

c†vkcck =
∑
λ2

AΓ
λ2
(vck)aλ20 (4.11)

Substituting Eqs.(4.10) and (4.11) in Eq.(4.5) and using the second-quantized
form of the vector potential given in Eq.(4.6), we obtain the exciton-photon
Hamiltonian

Ĥexc−pt =
C√
ω

∑
ε

Γexc∑
λ2

[
d†ωε + dωε

][
Dε

λ2
aλ20 +Dε∗

λ2ε
a†λ20

]
(4.12)

where the exciton dipole matrix elements have been introduced. Note that
the quantity C = C1

c
only depends on fundamental constants and does not

affect the energy dependence of the luminescence spectra.

We now turn our attention to the coupling between excitons and phonons.
The exciton-phonon Hamiltonian is obtained starting from the treatment of
Chen and coworkers in Ref.[83]: part of the derivation is here repeated to make
clearer the notation used in this Thesis to evaluate exciton-phonon interaction.
Following [83], the exciton-phonon hamiltonian can be written as

Ĥexc−ph =
∑
mn

⟨m| ˆ̃H|n⟩a†man (4.13)

where m and n are compact indexes running over excitonic bands and mo-
menta and

⟨m| ˆ̃H|n⟩ =
∑
vcv′c′

A∗
m(vc)An(v

′c′)
[
∆∗

cc′(εc− εc′)δvv′ +∆vv′(εv′ − εv)δcc′
]
. (4.14)

In Equation (4.14), c, c′, v, v′ are composite indexes for electronic states,
denoting both bands and wave-vectors, A are the exciton envelope functions,
εi correspond to single particle energies and

∆ij =
⟨j| ˆ∆VKS|i⟩
εi − εj

(4.15)
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ˆ∆VKS being the variation of the Kohn-Sham potential due to atomic displace-
ments from equilibrium positions, i.e.

ˆ∆VKS =
∑
α,s,R

∂VKS

∂uαRs

∣∣∣∣∣
eq

uαRs (4.16)

where uαRs is the displacement along direction α of atom s in the unit cell
at R. Equation (4.13) is obtained in Ref. [83] by evaluating the variation
of the excitonic Hamiltonian due to the perturbation of single particle states
caused by atomic displacements from equilibrium positions (in this proce-
dure, the electron-electron interaction is assumed unmodified by the atomic
displacements[108]).
Writing uαRs in terms of phonon creation/annihilation operators, we have

ˆ∆VKS =
∑
α,s,R

∑
q1ν1

√
ℏ

2Msων1q1

eiq1·Rξαs (ν1,q1)
∂VKS

∂uαRs

∣∣∣∣∣
eq

[
bν1q1 + b†ν1−q1

]
(4.17)

By using the general definition Eq.(1.89), we can finally write

ˆ∆VKS =
∑
αs

∑
q1ν1

√
ℏ

2Msων1q1

eiq1·r̂∂q1
sαVKS(r̂)ξ

α
s (ν1,q1)

[
bν1q1 + b†ν1−q1

]
(4.18)

We remind that ξαs (ν1,q1) is the normalized displacement of an atom s along
the direction α within phonon (ν1,q1) and ∂q1

sαVKS(r̂) is a crystal periodic
function defined according to Eq.(1.89).
Making explicit the single particle indices in the definitions of ∆ we obtain

∆∗
ckc,c′k′

c
= − 1

εc′k′
c
− εckc

∑
ν1q1

[
bν1q1 +b

†
ν1−q1

]
δ
(
kc−k′

c−q1

)
gν1cc′(k

′
c,q1) (4.19)

and

∆vkv ,v′k′
v
=

1

εvkv − εv′k′
v

∑
ν1q1

[
bν1q1 +b

†
ν1−q1

]
δ
(
k′
v−kv−q1

)
gν1v′v(kv,q1) (4.20)

where we have introduced the electron-phonon coupling matrix elements[109]

gνij(k,q) =
∑
sα

√
ℏ

2Msωνq

ξαs (νq)⟨uik+q|∂qsαVKS(r̂)|ujk⟩u.c. (4.21)

being i and j band indexes, while |uik+q⟩ and |ujk⟩ are the periodic parts of
single particle states |ik+ q⟩ and |jk⟩.

By substitution of Eqs.(4.19) and (4.20) in Eq.(4.14) and making explicit the
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excitonic indexes m→ (λ2Qλ2) and n→ (λ1Qλ1) we obtain

⟨λ2Qλ2 |
ˆ̃H|λ1Qλ1⟩ =

∑
ν1q1

(
bν1q1 + b†ν1−q1

)
·[∑

vcc′

∑
kckv

A∗
λ2Qλ2

(vkv, ckc)Aλ1Qλ1
(vkv, c

′kc − q1)g
ν1
cc′(kc − q1,q1)

−
∑
vv′c

∑
kvkc

A∗
λ2Qλ2

(vkv, ckc)Aλ1Qλ1
(v′kv + q1, ckc)g

ν1
v′v(kv,q1)

]
(4.22)

Momentum conservation has to be now considered: in other words, given an
exciton with momentum Q, the single particle transitions involved in this
excitation must have wave-vectors constrained by the relation Q = kc − kv:
applying this reasoning to Eq.(4.22), it is possible to obtain

kc − kv = Qλ2

kc − kv = Qλ1 + q1

from which we have Qλ2 = Qλ1+q1 and kc = kv+q1+Qλ1 . Calling Q ≡ Qλ1

and k ≡ kv, we obtain

⟨λ2Qλ2|
ˆ̃H|λ1Q⟩ =

∑
ν1q1

δ
(
Qλ2 −Q− q1

)
Gν1

λ2λ1
(Q,q1)

[
bν1q1 + b†ν1−q1

]
(4.23)

Gν1
λ2λ1

(Q,q1) being the exciton-phonon matrix elements, defined as

Gν1
λ2λ1

(Q,q1) =
∑
vcc′

∑
k

A∗
λ2Q+q1

(vk, ck+ q1 +Q)Aλ1Q(vk, c
′k+Q)gν1cc′(k+Q,q1)−∑

vv′c

∑
k

A∗
λ2Q+q1

(vk, ck+ q1 +Q)Aλ1Q(v
′k+ q1, ck+ q1 +Q)gν1v′v(k,q1)

(4.24)

In Equation (4.24), Gν1
λ2λ1

(Q,q1) is the exciton-phonon coupling matrix ele-
ment, which describes the scattering between excitons |λ1Q⟩ and |λ2Q+ q1⟩
mediated by phonon (ν1,q1). Finally, substituting Eq.(4.23) in Eq. (4.13) we
obtain the exciton phonon Hamiltonian

Ĥexc−ph =
∑
λ2λ1

∑
Q

∑
ν1q1

Gν1
λ2λ1

(Q,q1)a
†
λ2Q+q1

aλ1Q

[
bν1q1 + b†ν1−q1

]
(4.25)

Having defined the coupling between excitons, phonons and the electro-magnetic
field, we evaluate the emission probability ΓνQ

λ (E) as

ΓνQ
λ (E) =

d|c|i⟩→|f⟩|2

dt
(4.26)
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i.e. as the scattering rate per unit time from an initial state |i⟩ to a final state
|f⟩, both eigenstates of the unperturbed Hamiltonian Ĥ0.
The initial state |i⟩ is given by

|i⟩ = |1λQ⟩exc ⊗ |nνq⟩ph ⊗ |0⟩pt (4.27)

and corresponds to one exciton in |λQ⟩, n phonons of type (ν,q) and no
photons (|0⟩pt is the photon-vacuum).
Similarly, the |f⟩ is chosen as

|f⟩ = |0⟩exc ⊗ |1 + nνq⟩ph ⊗ |1ωε⟩pt (4.28)

describing the state with one photon with energy ω and polarization ε̂, 1 + n
phonons (ν,q) and no excitons (|0⟩exc is the excitonic-vacuum).
Using second order perturbation theory[110], it is possible to obtain

ΓνQ
λ (E) =

2π

ℏ2

∣∣∣∣∣∑
m

Ĥ ′
fmĤ

′
mi

ωmi

∣∣∣∣∣
2

δ
(
Ef − Ei

)
(4.29)

where m runs over intermediate states (eigenstates of Ĥ0), ωmi =
1
ℏ

(
Em−Ei

)
and Ei (Ef ) is the energy of the initial (final) state. Using the definitions
(4.27)-(4.28) for the initial and final states, we have Ef−Ei = ℏωνq+E−EλQ.

By substitution of Ĥ ′ = Ĥexc−ph + Ĥexc−pt in Eq.(4.29), we find that the
summation over m is restricted to states

|m⟩ = |1λ20⟩exc ⊗ |1 + nνQ⟩ph ⊗ |0⟩pt (4.30)

λ2 being an index running over excitons at Q = Γ.
After some algebra, it is possible to obtain

ΓνQ
λ (E) ∝ δ

(
ℏωνQ + E − EλQ

)1 + nνQ

E

∣∣∣∣∣
Γexc∑
λ2

Gν
λ2λ

(Q,−Q)Dε
λ2

Eλ2 + ℏωνQ − Eλ(Q)

∣∣∣∣∣
2

(4.31)

where we have taken q = Q because of momentum conservation. In Equation
(4.31), nνQ is the Bose-occupation function for phonon mode (ν,Q), while
Gν

λ2λ
(Q,−Q) is the exciton-phonon coupling matrix element, describing the

scattering from an excitonic state |λQ⟩ to a state |λ2Γ⟩. Starting from its
general expression given by Eq. (4.24), we have

Gν
λ2,λ

(Q,−Q) =
∑
vcc′k

A∗
λ2Γ

(vk, ck)AλQ(vk, c
′k+Q)gνcc′(k+Q;−Q)

−
∑
vv′ck

A∗
λ2Γ

(vk, ck)AλQ(v
′k−Q, ck)gνv′v(k;−Q)

(4.32)

with g equal to the electron phonon coupling matrix elements given by Eq.(4.21).

As the available experimental CL signal is not polarization-resolved, in Eq.(4.31),
we have substituted Dε

λ2
with the exciton-dipole Dλ2 averaged along all light-

polarization directions perpendicular to the sample stacking sequence.
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4.4 Computational workflow for computing phonon-

assisted luminescence spectra

In this section, we now focus on the computational workflow we followed to
predict the BN luminescence spectra. following the method described above
to model the phonon-assisted radiative emission by indirect excitons.
Firs, we obtained a properly converged ground state charge density at the
DFT level, using the parameters discussed in Section 4.2. With this charge
density, phonon energies ℏωνq and eigen-displacements ξαs (νQ) are computed
using ph.x code from Quantum Espresso package, on a 24x24x2 Q-grid. As
discussed in Chapter 1, to compute phonon energies at point Q, the variation
of the KS potential ∂QsαVKS is needed: in this step, we store these functions,
as they will be used in the following to evaluate the electron-phonon coupling
matrix elements. Notice that the calculation of vibrational properties is per-
formed exploiting the symmetries of the system, therefore ∂QsαVKS is computed
only for Q points sampling the irreducible BZ.
Kohn Sham states have been then computed via a non-self-consistent cal-
culation on a 24x24x4 Monkhorst-Pack grid without symmetries, i.e. sam-
pling the full BZ. Such grid has been generated using the utility kmesh.pl

of Wannier90 [67]. These wavefunctions are then given as input to both
qe2pert.x code from Perturbo package[111] and to Yambo code.
qe2pert.x makes possible an efficient evaluation of the matrix elements of
the KS potential variation ∂QsαVKS between the KS states , i.e.

g̃νij(k,Q) = ⟨uik+Q|∂QsαVKS(r̂)|ujk⟩u.c.

In practice qe2pert.x reads the local part of ∂QsαVKS computed for Q in the
irreducible BZ and, using the approach of Ref.[112] expands this function over
the full BZ. Then, the non-local part of ∂QsαVKS (due to the non-local term
appearing in the pseudo-potentials) is evaluated for all Q points in the BZ
using the analytical expression by Ref.[113]. Finally, the electronic KS states
are read from disk and the matrix elements of ∂QsαVKS are computed for all k
and Q points sampling the BZ.
The electron-phonon coupling matrix elements are then evaluated according
to Eq.(4.21), i.e.

gνij(k,Q) =
∑
sα

√
ℏ

2MsωνQ

ξαs (ν,Q)g̃νij(k,Q)

by combining the matrix elements evaluated by qe2pert.x with phonon en-
ergies and eigendisplacements obtained using ph.x code. This is done via an
external Python script, which reads the hdf5 file produced by qe2pert.x,
containing g̃ and the dynamical matrices obtained for all Q points in the
full BZ, as given by ph.x; then, after diagonalization of such matrices D, it
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Figure 4.4: Grid of Q-points where finite-momentum excitons have been com-
puted. The contribution to the luminescence spectra of excitons outside the
selected regions is negligible because of the exponentially small occupation
factor for the considered value of the effective excitonic temperature Texc.

computes g as defined above, and stores the result to disk (again in a hdf5

dataset).
Kohn-Sham states computed with the non-self-consistent calculation are then
given as input to Yambo. Firstly, the electron-electron static interaction Ws is
computed within RPA (in the specific case of BN, using 120 bands and a 10 Ry
cut-off in the electronic polarizability). Then, using the obtained Ws, we have
solved the BSE both for Q = Γ and at finite momentum, to obtain the exci-
tonic properties, i.e. energies EλQ and envelope functions AλQ(vk−Q,k)). In
the case of BN, we have included the two (three) topmost valence bands and
the two (three) lowest unoccupied conduction bands in the solution of BSE for
hBN (rBN), while QP corrections have been included using a scissor-stretching
operator, as discussed in Section 4.2. Furthermore, the Q = Γ calculation has
been done setting to zero the long-range component of the exchange kernel,
while such contribution has been included in finite momentum calculations.
The luminescence spectrum, as provided by Eq.(4.2), would require the so-
lution of finite momentum BSE for all Q points in the BZ, where electron-
phonon matrix elements have been computed. We point out that this step
is extremely time-consuming from a computational point of view. Further-
more, this is unnecessary, as the contribution to luminescence from excitons
with momentum Q is weighted by the distribution function given in Eq.(4.1).
This function is exponentially decaying far from the minima of the excitonic
dispersion: therefore, if Texc is small (e.g. below 50 K, as in our case), only
states close to the minima have a non-negligible population. Therefore, in
the calculation presented in the following we have restricted the sum over Q
only to points of the 24x24x2 grid with Qz = 0 and planar positions as shown
in Fig.4.4 These points are chosen because they are located around the Ω
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Figure 4.5: Schematic computational workflow followed in this Chapter to
evaluate exciton-phonon coupling matrix elements, as given by Eq. (4.21).

point, i.e. in proximity of the minimum of the excitonic dispersion. We point
out that exciton wavefunctions have been explicitly computed for all these Q
points.
Exciton envelope functions AλQ(vk − Q,k) and electron-phonon matrix el-
ements g have been then combined using Python post-processing scripts to
evaluate the exciton-phonon matrix elements as defined by Eq.(4.13). We
stress the fact that with this procedure both A and g have been computed
using the same set of single particle KS states: this is extremely important as
both quantities are not gauge invariant (differently from their squared mod-
uli), so that their phase depends on the (arbitrary) phase of the used elec-
tronic wavefunctions. With the approach just discussed, we are treating all
phases consistently, avoiding possible phase-mismatch problems which could
arise once using different KS states. The computational workflow followed to
compute exciton-phonon coupling matrix elements is sketched in Figure 4.5.
Finally, known G, luminescence spectra are computed using Eq.(4.2) and
Eq.(4.12), extracting from Yambo datasets exciton energies and exciton dipoles
Dλ, for Q = Γ.
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As a last remark, the CL spectra shown in the following were obtained by
convolution of the Dirac delta in Eq.(4.12) with a Lorentzian broadening

δ
(
E − EλQ + ℏωνQ

)
≈ η

π

1(
E − EλQ + ℏωνQ

)2
+ η2

where η has been fixed equal to 5 meV, to mimic the experimental resolution.

4.5 Comparison between experimental and the-

oretical luminescence in hBN and rBN

In Figure 4.6 we present the comparison between theoretical (solid green lines)
and experimental (black dots) luminescence spectra for hBN (Fig.4.6a) and
rBN (Fig.4.6c), where ab initio results have been obtained fixing Texc = 20
K. In panels b and d, we show phonon dispersions for Q along Γ-K direc-
tion for hBN and rBN respectively, and we indicate the branches involved in
the phonon-assisted light emission. For both stackings, theoretical spectra
have been normalized to the maximum of the experimental data and they are
rigidly shifted of 1.04 eV to match the position of the highest intensity peak.
This shift (which is the same for both stackings) is a direct consequence of the
band gap underestimation of G0W0 for bulk Boron Nitride. A solution to this
problem could be a partial eigenvalue self-consistency in GW calculations, as
suggested in Refs.[114, 115].
In Figure 4.7 we present the same quantities shown in Fig. 4.6, but with the
ab initio spectra evaluated assuming an excitonic temperature Texc = 50 K.
The obtained spectra have the same qualitative features, once computed for
these two temperatures; this demonstrates the stability of our results w.r.t.
small variations of the Texc parameter.
We find very good agreement between experimental and theoretical data. In
both hBN and rBN, the spectra are dominated by the two peaks in the low-
energy part of the spectrum. These are phonon-assisted satellites due to
longitudinal optical phonons – denoted as LO2-LO3 modes in the phonon dis-
persion – and transverse optical ones (the almost-degenerate pair [116] TO2-
TO3). These assignments for hBN are in good agreement with the results
obtained in Refs. [115, 107], using a finite-difference approach.
Furthermore, the experimental intensity ratio between these peaks is well-
reproduced by ab initio calculations, with the LO peak being less intense than
the TO structure. The additional overtones appearing in this energy region
are due to higher-order scattering processes [117] and are thus not captured
by our theoretical approach, which is restricted to first-order exciton-phonon
interaction.
The phonon branches involved in the emission process are explicitly labelled
in Figs. 4.6b and 4.6d for the Ω point only.
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Figure 4.6: Experimental (black dots) and theoretical (green lines) lumines-
cence spectra for hBN (a) and rBN (c). In both (a) and (c), theoretical spectra
are blue shifted by 1.04 eV to match the position of the highest intensity peak
in the experimental spectrum. Phonon dispersions in hBN (b) and rBN (d)
along the Γ-K direction: phonon branches contributing to the luminescence
spectra are highlighted at the Ω point, in the middle of the Γ-K direction.
See the main text for the phonon mode labelling. Almost-degenerate phonon
branches are paired with a hyphen. Theoretical spectra have been computed
using Texc = 20 K.
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Figure 4.7: Same as Fig.4.6 but theoretical spectra were evaluated using Texc =
50 K.
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Luminescence spectra of hBN and rBN are qualitatively different at higher
energies, as confirmed by ab initio results. In the case of hBN, we observe
two main peaks: the first (at about 5.86 eV) corresponds to a replica of the
LO-LA phonons, while the higher intensity structure at 5.89 eV is mainly
due to TO phonons, with a small contribution from the almost-degenerate
transverse acoustic mode (TA-TO1). Ab initio results reproduce with great
accuracy both the splitting between these peaks and their intensity ratio (the
LO-LA peak being less pronounced than the TO-TA one), while they tend
to overestimate their relative strengths, with respect to the dominant, low-
energy satellites. The agreement may be further improved by increasing the
Q grid used in the calculation of Eq.(4.2). We also note that, in agreement
with the group theory analysis discussed in Ref.[115], no contributions from
the out-of-plane phonon modes appear in the luminescence spectra.
In the case of rBN, the high-energy portion of the luminescence spectrum
is qualitatively different from the hBN result. In this case, the CL spec-
trum shows three peaks, respectively at about 5.847 eV, 5.878 eV and 5.919
eV. They are also recovered in the ab initio results. The first structure is
a combination of phonon-assisted replicas due to the almost-degenerate LA-
LO1 branches, albeit with a relevant contribution from optical out-of-plane
modes (denoted as ZO2). Conversely, the peak at 5.878 eV is associated to
the TA-TO1 phonons in analogy with the hBN case. Interestingly, ab initio
results correctly reproduce the intensity ratio among these peaks. Finally, the
highest-energy structure at 5.919 eV turns out to be due to the out-of-plane
optical mode ZO1, which is forbidden for the hBN luminescence because of
symmetry reasons.
To complete the peak assignments, we also evaluate the functions

Iν(E) =
∑
λ

∑
Q

N(Eλ(Q))ΓνQ
λ (E) (4.33)

which correspond to the contributions of different phonon branches to the total
luminescence spectra. These quantities are shown in Fig. 4.8 in the case of
Texc = 20K, showing as summed the contributions coming from phonon modes
which are very close in energy in proximity of the Ω point. Phonon branches
are labeled according to the same notation adopted in Fig. 4.6 and Fig. 4.7.
Apart from confirming the phonon assignments just discussed, we can notice
the relevant role of the out-of-plane phonon modes, which are instead totally
absent in the case of hBN.

4.6 Summary and perspectives

In this Chapter we have presented an interpretation of experimental CL spec-
tra of bulk boron nitride based on fully first-principle calculations, demon-
strating how radiative emission in these indirect-gap materials is affected
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Figure 4.8: Phonon resolved contributions to luminescence as defined in
Eq.(4.14), for hBN (a) and rBN (b). In both stackings, the luminescence
spectra are blue shifted of 1.04 eV to match the position of the highest inten-
sity experimental peak.

by the interaction between electronic and lattice excitations. We have also
demonstrated how differences in the fine structure of the collected cathodo-
luminescence spectra allows distinguishing these two fundamentally similar
BN polytypes, which are extremely difficult to discriminate using conven-
tional crystallographic approaches. Furthermore, our ab initio results show
the discriminating role of out-of-plane vibrations assisting excitonic radiative
recombination for rBN, while they are totally silent in the case of hBN, due
to symmetry reasons.
The methodology discussed in Sec.4.4 can be directly applied to discuss phonon-
assisted luminescence from other indirect-gap materials, like for example Tran-
sition Metal Dichalcogenides bilayers. Clearly, a few technical improvements
could be introduced, to improve both the accuracy and the efficiency of the
presented methodology.
On the one hand, remarkable computational efficiency improvement would be
obtained by computing the exciton-phonon coupling matrix elements G, by
solving the BSE with the inclusion of symmetry operations, while preserving
the phase-matching among exciton envelope functions and electron-phonon
matrix elements.
On the other hand, the development of methods for interpolating the exciton-
phonon matrix elements on denser Q, similarly to what is done for electron
phonon coupling, could strongly improve the accuracy of Q integration ap-
pearing in the definition of the luminescence spectra[118].
Finally, from a purely theoretical perspective, a great advancement could be
a fully first-principles evaluation of the quasi-equilibrium excitonic distribu-
tion from which light emission occurs, using, for example, out of equilibrium
approaches[105]. This would ’remove’ the dependency of the theoretical re-
sults from the empirical parameter Texc, which is not always available experi-
mentally, increasing the predictive capabilities of this theoretical approach.
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Chapter 5

Simulation of X-ray inelastic
scattering in MoS2 under
ultra-high pressure

In this chapter, we present the results of a joint theoretical and experimental
work aimed at characterising the low energy spectrum of bulk MoS2 under
pressure at room temperature by Inelastic X-Ray scattering (IXS) measure-
ments.
This work is part of an ongoing collaboration with the group of Prof. Luigi
Paolasini at the European Synchrotron Radiation Facility (ESRF).

5.1 Introduction

The search of the elusive excitonic insulator phase predicted by several pio-
neering studies[119, 120, 121] in the early sixties has catalysed many recent
experimental and theoretical works[122, 123, 124].
In this context, fully ab initio calculations [125] have recently demonstrated
that bulk MoS2 should be characterized by an excitonic insulating phase at
ultra-high external pressure and at cryogenic temperatures, below 10 K. Such
electronic phase transition is expected to occur in a small range of pressure
values around 34 GPa, before the appearance of a semimetallic phase at higher
pressures.
External pressure affects MoS2 electronic structure and, as a consequence, the
excitonic dispersion. This is better clarified in Fig. 5.1, where we show the
excitonic dispersion computed for three different pressure values.
Independently of the applied pressure, the exciton dispersion shows a mini-
mum along the Γ-K direction of the hexagonal BZ, whose position in energy
decreases by increasing pressure, becoming approximately zero at P ≈ 34
GPa.
This exciton softening signals the possible spontaneous formation of electron-
hole pairs with finite momentum, which are expected to create an excitonic
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Figure 5.1: Lowest energy excitonic band for Q along Γ-K direction in bulk
MoS2 for different values of applied pressure. MoS2 is assumed in the 2Hc

phase. Figure adapted from Ref.[125].

condensate. Furthermore, as the involved excitons possess non-zero momenta,
the electronic charge density characterizing the condensate should also exhibit
a different periodicity with respect to the one of the underlying lattice. Mean
field BCS-like calculations based on an ab initio modelling of electron-electron
screened interaction indicate that the excitonic-insulating phase should be
characterized by an anti-ferroelectric order, due to the inversion symmetry
breaking effect associated to the excitonic condensate[125].
An intuitive way to probe this electronic phase transition consists on measur-
ing the exciton-softening via IXS spectroscopy. In other words, by increasing
the external pressure it could be possible to evaluate the progressive decrease
of the energy of the lowest accessible excitons at finite momentum, similarly to
what has been done by Kogar and co-workers[122] to probe exciton-softening
in 1T-TiSe2 via momentum-resolved electron energy loss spectroscopy.
These high-pressure IXS experiments clearly require a set of preliminary mea-
surements, aimed both at testing the behaviour of bulk MoS2 single crystals
under high pressure and determining proper crystal orientations.
In the following, we will discuss a set of IXS measurements performed at room
temperature, for different applied pressure values, i.e. 0.42, 11.47, 20.88 and
32.83 GPa.
In order to characterize the sample behaviour as a function of the external
pressure, we have focused on the low energy part of IXS spectra, to probe
the evolution of crystal phonon modes: IXS signals have been collected for
a few high symmetry momenta in the BZ and compared with first-principle
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Figure 5.2: 2Hc (a) and 2Ha structures of bulk MoS2. Upper panels represent
the crystal top view, while lower panels correspond to the side view. Yellow
(violet) spheres represent S (Mo) atoms.

calculations discussed in the following Sections.
Interestingly, first principles calculations by Tosatti et al. [126] and X-ray
diffraction experiments [127] indicate that, at pressure P ≈ 20 GPa, bulk
MoS2 should change its stacking motif, i.e. it presents a structural phase
transition. At low pressure, single-layers MoS2 are stacked together so that
Mo atoms are aligned to S atoms on adjacent layers, while at pressure P larger
than 20 GPa the most stable structure becomes the one in which Mo atoms
on neighbouring layers are on top of each other. These two structures (called
2Hc and 2Ha respectively) are shown in Fig.5.2: both crystals have the same
space group (P63/mmc) and they only differ according to the stacking motif
of the single layers.
This structural phase transition has been studied with Raman spectroscopy
[128, 129], probing changes under pressure of the Γ Raman active phonons.
As the two crystals share the same point group, the Raman active modes are
analogous in the two cases. In Raman experiments, the 2Hc to 2Ha transi-
tion is experimentally detected by frequency discontinuities as a function of
pressure for E1,2

2g modes together with a slope change of the function EA1g(P ),
representing the energy variation of mode A1g w.r.t. pressure.
X-Ray Diffraction (XRD)[128, 127] has also been extensively used to study
this phase transition. In this case, the 2Ha phase is detected, looking at the
behaviour of in-plane a and out-of-plane c lattice parameters as a function of
pressure. More precisely, it is observed that a (c) increases (decreases) in a
discontinuous way for pressure values around 20 GPa, signalling the transition
from 2Hc to 2Ha, in good qualitative agreement with the theoretical results of
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Ref.[126]. Furthermore, we also point out that the pressure values at which
the transition occur are different for single crystals and powders, with a lower
transition pressure detected in the single crystal case (see for example Figure
5 of Ref.[127]).
To the best of our knowledge, the effect of 2Hc to 2Ha phase transition on
finite momentum phonons has not been experimentally demonstrated yet. In
the following, we will show results which show how IXS could close this gap,
probing finite momentum phonons in few selected experimental configurations
at high pressure.

5.2 First principles calculation of vibrational-

IXS

In this joint experimental-theoretical effort, using DFPT calculations (see
Sec.1.4 of Chapter 1) we have evaluated the phonon dispersion of bulk MoS2

at different pressures and developed a computational post-processing tool to
obtain vibrational IXS spectra to be directly compared with the experimental
measurements performed at ESRF synchrotron.
IXS is a powerful technique to probe lattice vibrations at finite momenta
in condensed matter systems: a complete introduction to this experimental
methodology can be found in the review by Baron[130] and references therein.
IXS spectra are related to the dynamical structure function S(Q, E), which is
proportional to the probability that an incoming photon with energy E0 and
momentumQ0 is found with energy Ef = E0−E and momentumQf = Q0+Q
after interacting with the sample. In other words, Q is the photon scattering
momentum, while E is the energy lost by the photon in this process1.
In the case of scattering with lattice vibrations, it is possible to derive the
function S using first order perturbation theory as discussed by Tornatzky[131]
and in Aschroft-Mermin book[132] in the case of neutron scattering.
Formally one obtains

S(Q, E) ∝
∑
ν

Zν(Q)Fν(Q, E) (5.1)

where

Zν(Q) =

∣∣∣∣∣
Nat∑
j

1√
2Mj

fj(Q)e−Wj(Q)eiQ·τ j
(
Q · ξj(ν,q)

)∣∣∣∣∣
2

(5.2)

and

Fν(Q, E) =
(
1 + nν,q)

1

ℏωνq

γ

(E − ℏωνq)2 +
γ2

4

(5.3)

1In the following we only consider processes in which the incoming photon loses energy,
i.e. E > 0.
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In Equations (5.2) and (5.3), ν runs over phonon branches and j over the
atoms in the unit cell, with positions τ j. The scattering vector is given by
Q = q+Ghkl, where Ghkl is a reciprocal lattice vector identifying the [h, k, l]
Bragg diffraction indices selected experimentally, while q is a vector restricted
to the crystal BZ.
The functions fj(Q) are the atomic scattering factors, defined as

fj(Q) =

∫
drnj(r)e

iQ·r (5.4)

nj being the electronic charge density associated to the atom j2.
Debye-Waller scattering factorsWj(Q) are computed fully ab initio using [132]

Wj(Q) =
ℏ

4MjNq

∑
ν1q1

∣∣Q · ξj(ν1,q1)
∣∣2

ων1,q1

coth
(ℏων1q1

2kBT

)
(5.5)

Mj being the mass of atom j and ων1q1 (ξj(ν1,q1)) the frequency (the dis-
placement of atom j) associated to phonon mode (ν1q1). Notice that the
evaluation of the Debye-Waller factors requires an integration over q1 points
sampling the BZ.
Finally, γ

2
represents a Lorentzian broadening which accounts for the finite ex-

perimental resolution: in the following we have chosen γ = 3 meV, i.e. equal
to the resolution in energy of the considered experimental setup.
Looking at Eqs.(5.1)-(5.3), it is simple to realize that, once fixed the scatter-
ing vector Q, the IXS signal will be characterized by peaks at the energies
of the phonon modes (ν,q), with Q = q + Ghkl, if such modes are active.
The phonon IXS activity is determined by the function Zν(Q) which depends
both on the phonon displacements and on the chosen experimental scattering
geometry.
Starting from Eq.(5.2), we see that a phonon mode is IXS-dark if the chosen
Q is perpendicular to ξ, but its IXS strength can be increased by choosing
a scattering vector with non-zero projection along the phonon displacement.
Furthermore, we also point out that choosing the scattering vector almost par-
allel to the atomic displacements does not guarantee to measure signal from
the corresponding vibration in the IXS spectrum: factors eiQ·τ j in Eq.(5.2)
can determine destructive interference between the contributions from differ-
ent atoms, making the phonon mode IXS-dark.
Presently, the implementation of Eq.(5.1) is not available within Quantum

Espresso package. Therefore, to simulate S(Q, E), we have developed a
Python package which works as an automatic interface to Quantum Espresso.
In practice, it allows to automatically evaluate the IXS spectra for a set of dif-
ferent Q points provided in input, starting from the output of a usual phonon

2The derivation of Eqs.(5.1)-(5.3) assumes that the electronic charge density associated
to each atom moves rigidly with the nucleus: even if such approximation is strictly true only
for core electrons, deviations related to this approximations are neglected in the following.
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dispersion calculation.
We now briefly discuss the steps we followed to compute the spectra shown
in the next sections.

For a given pressure, we have relaxed atomic positions and lattice param-
eters of the hexagonal 3D unit cell, to minimize both the forces acting on
atoms (the convergence threshold has been set to 10−5 a.u.) and the total
enthalpy. In all DFT-ground state calculations we have used norm-conserving
GGA-PBE Pseudo-Potentials, from Pseudo-Dojo repository, without includ-
ing spin-orbit effects. A kinetic energy cutoff of 100 Ry and a Monkhorst-Pack
grid 12x12x4 to sample the BZ have been used; in the case of the calculations
at 32.83 GPa, we have increased the k-grid to 18x18x4 while using a Marzari-
Vanderbilt smearing [133] of 0.01 Ry in the ground state calculation, because
of the observed metallic character at the DFT level occurring at this value of
the applied pressure3.
Following Ref. [126], we have explicitly included van der Waals corrections
within Grimme-D2 approach only in the calculations at P = 0.42 GPa: at
higher pressure values, we have neglected these terms as we checked that for
applied pressure higher than 5 GPa structural relaxation within pure PBE
provides lattice parameters in better agreement with experimental data.
Dynamical matrices have been computed using DFPT (as described in Chap-
ter 1) using a 12x12x4 Monkhorst-Pack grid to sample the BZ. Then, using
inverse Fourier transform, the matrix of force constants in real space has been
evaluated using the q2r.x code of the Quantum Espresso distribution.
Our developed package requires as inputs a list of Q points, together with
the text file produced by q2r.x containing the force-constants in real space.
In practice, our post-processing tool automatically calls matdyn.x code from
Quantum Espresso to evaluate dynamical matrices at the chosen Q points4,
by Fourier transforming the real-space force constants; straightforward di-
agonalization of these matrices provides phonon energies and displacements
at the chosen scattering vectors, which are then internally used to compute
the dynamical structure factor via Eqs.(5.1)-(5.3). We note that the evalua-
tion of Debye Waller factors for each Q (see Eq.(5.5)) requires phonon modes
on a dense q-grid sampling the BZ: such excitations are evaluated directly
by matdyn.x and then read by our tool to obtain the Debye-Waller factors
Wj(Q) for each atom j.
Within this procedure, the atomic scattering factors given by Eq.(5.4) are
obtained using the parametrization

fj(Q) =
4∑
α

ajαe
−bjα

|Q|2

16π2 + cj (5.6)

where ajα, b
j
α and cj are 9 atomic-specific parameters taken from the Interna-

3Such metallicity is removed by inclusion of QP corrections, as discussed in Ref. [125].
4We remind here that ωνQ ≡ ωνq and ξj(ν,Q) ≡ ξj(ν,q), if Q = q+Ghkl
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tional Table of Crystallography, and derived by fitting the results of Hartree-
Fock atomic calculations, for each atomic specimen j. For completeness, we
have also tested a different modelling for functions fj (i.e. the one provided
by Kirkland book[134]) and we have checked (at least for MoS2) that IXS
spectra were stable w.r.t. the chosen parametrization.
Finally, we point out that Debye-Waller factors have been computed by inte-
grating Eq.(5.5) on a 33x33x7 q grid, again evaluating the phonon modes via
automatic usage of matdyn.x code within our Python package. We note that
for MoS2, here discussed, Debye-Waller factors are nearly atom-independent,
so that they do not strongly affect the obtained IXS spectra. Anyhow, they
have been included in all the results presented in the following.

5.3 Vibrational IXS at low and intermediate

pressure

In this section, we discuss IXS spectra obtained at low (P = 0.42 GPa) and
intermediate pressure (P = 11.47 GPa). All measurements were performed on
a MoS2 single crystal cut by laser ablation. Pressure were applied using dia-
mond anvil cell setup, adopting Helium as transmitting medium and checking
the pressure value via Ruby fluorescence technique[135, 136, 137]. All the
spectra shown in the following were collected at the ID28 beamline at ESRF.
In Figure 5.3, we show the calculated phonon dispersions in MoS2 at these
two applied pressure values, assuming a 2Hc crystal structure in both cases.

The effect of pressure is two-fold: on the one hand, phonon frequencies
harden by increasing pressure, as hydrodynamic compression reduces bond
lengths between atoms resulting in a higher crystal stiffness. On the other
hand, at P = 11.47 GPa, a larger splitting between Davydov pairs is ob-
served: as the energy separation between them is proportional to the interlayer
coupling, this increased splitting is directly related to the smaller separation
between MoS2 monolayers along the stacking directions, as expected due to
the larger applied pressure.
In Figure 5.4 we present the comparison between theoretical (solid blue lines)
and experimental (red dots) IXS spectra obtained at P = 0.42 GPa (left col-
umn) and at P = 11.47 GPa (right column). As representative results, we
have chosen data collected at the same Bragg peak (i.e. at fixed Ghkl, with
[h, k, l] = [1, 1, 0]) taking q = K (upper panel), q = M′ (central panel) and
q ≈ −A (lower panel). The elastic peak (centred at zero energy) is subtracted
to all the shown experimental spectra.
Theoretical spectra are in good agreement with experimental data, in repro-
ducing both the relative intensities of the IXS peaks and their positions in
energy. In the case of P = 0.42 GPa, ab initio results match the position of
the experimental peaks within less than 1 meV, while for P = 11.47 GPa, the-
oretical spectra systematically provide phonon structures which are slightly
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Figure 5.3: Phonon dispersion in MoS2 with applied pressure values of 0.42
GPa (a) and 11.47 GPa (b). In both cases, we assume 2Hc-MoS2.
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Figure 5.4: Comparison between experimental (red dots) and theoretical (solid
blue lines) IXS spectra obtained for bulk MoS2 under pressure values of 0.42
GPa (left column) and 11.47 GPa (right column). In all cases the reciprocal
lattice vector G has been fixed to the Bragg point [h, k, l] = [1, 1, 0], while
the BZ vector q has been taken in proximity of the high symmetry points K
(upper spectra), M′ (middle spectra) and A (lower spectra). In all cases, we
have subtracted the fit of the elastic peak to the experimental data and we
have normalized the theoretical spectra to the maximum of the experimental
data.
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Figure 5.5: IXS experimental (red dots) and theoretical (red line) spectra
computed at P = 0.42 GPa, fixing Q =

[
5
3
, 2
3
, 0
]
. The calculation permits to

identify unambiguously the spurious peak due to the diamond anvil cell from
the contribution coming from the MoS2 sample.

red-shifted (of about 1.5 meV), w.r.t. the experimental data. Furthermore,
we remark that such agreement is also observed for q wave-vectors not co-
incident with high symmetry points in the BZ. More precisely, we have also
computed IXS spectra for q in a neighbourhood of high symmetry points: a
measure of this type is shown in the lower panel of Fig.5.4, where the signal
is collected close, but not exactly at −A. This is relevant from a practical
point of view, as the IXS signal for q coincident with −A was dominated by
the elastic contribution, masking the relevant inelastic features.
We complete this section noting that the diamond anvil cells were not pre-
aligned and therefore, for some specific scattering vectors Q , we observe
spurious peaks due to diamond, which overlap with the MoS2 signal of in-
terest. As an example, we show in Figure 5.5 an IXS spectrum collected at
q =

[
2
3
,−1

3
, 0
]
(again fixing [h, k, l] = [1, 1, 0]) assuming P = 0.42 GPa. By di-

rect comparison between experimental and theoretical spectra, we can clearly
identify the spurious diamond-peak, while recognizing the spectral features
associated to MoS2 phonons.
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5.4 Fingerprints of 2Hc → 2Ha transition in

IXS spectra

In the following we will discuss a set of IXS spectra collected at high pressure
values, i.e. P = 20.88 GPa and P = 32.83 GPa, close to and above the
threshold-pressure for 2Hc →2Ha transition in bulk MoS2.

In Figure 5.6 IXS experimental data are displayed as red dots: the left
(right) column represents measurements obtained at P = 20.88 GPa (32.83
GPa), fixing [h, k, l] = [1, 1, 0] while considering q =

[
1
2
, 0, 0

]
(upper panel)

and q =
[
1
2
,−1

2
, 0
]
(lower panel). The spectra are shown up to E = 40 meV, as

at higher energies the experimental data are strongly affected by the spurious
diamond peaks discussed in the previous section.

Despite having the same symmetry properties, 2Hc-MoS2 and 2Ha-MoS2

are characterized by different phonon dispersions, as one can understand from
Figure 5.7, where phonons modes along a high symmetry path in the BZ are
computed for the two structural phases at P = 32.83 GPa.
Even if a complete experimental evaluation of phonon dispersions in highly
compressed MoS2 is beyond the scope of these preliminary measurements, we
notice that already at the chosen Q points shown in Fig.5.6, IXS spectra in-
dicate the appearance of the 2Ha phase in the sample, at these considered
pressure values.
In Fig. 5.6, dashed blue lines represent the IXS spectra computed assuming
a 2Hc phase, while solid green lines correspond to calculations performed for
a 2Ha structure. We note that, at fixed Q, both theoretical spectra are nor-
malized with the same scaling factor.
Starting from the spectra at q =

[
1
2
, 0, 0

]
, we notice that the experimental

spectrum is characterized by two intense peaks at about 25 and 32 meV for P
= 20.88 GPa and at 26.5 and 33.4 meV for 32.83 GPa, with the lower spectral
feature exhibiting an asymmetric tail toward smaller energies.
Focusing on P = 20.88 GPa, the theoretical spectrum obtained for the 2Hc

phase capture reasonably well the higher energy peak, however with a redshift
of about 2 meV. Conversely, the agreement is much worse at lower energies.
In fact, the theoretical spectrum presents a single peak at about 20.5 meV (5
meV lower than the one observed experimentally): furthermore, the theoreti-
cal result does not capture the asymmetric tail observed in the measurement.
The disagreement between experimental data and 2Hc results is even more
pronounced at P = 32.83 GPa, where the theoretical low-energy peak is com-
pletely off w.r.t. the experimental data.
A much better agreement is observed considering the 2Ha phase. In this case,
for P = 20.88 GPa, the lower-energy theoretical peak is closer to the experi-
mental one (only redshifted of 1.5 meV) and, importantly, it is characterized
by an asymmetric tail, suggesting the IXS-activation of a vibrational mode,
dark in the 2Hc structure. Furthermore, similar considerations can be out-
lined at P = 32.83 GPa, where both intensity ratios and peaks’ positions are
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Figure 5.6: IXS spectra at pressure P = 20.88 GPa (left column) and P =
32.83 GPa (right column). All the spectra have been collected fixing [h, k, l] =
[1, 1, 0], while considering q =

[
1
2
, 0, 0

]
(upper panel) and q =

[
1
2
,−1

2
, 0
]
(lower

panel). In each graph, red dots are the experimental data (to which the elastic
peak has been subtracted), while blue-dashed (green continuous) lines are the
theoretical spectra obtained assuming a 2Hc (2Ha) phase for bulk MoS2.
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Figure 5.7: Phonon dispersions in MoS2 at P = 32.83 GPa, in the 2Hc phase
(upper panel) and in the 2Ha phase (lower panel).
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Figure 5.8: IXS spectra measured for Miller indices [h, k, l] = [1, 1, 0] while
fixing q = K at P = 20.88 GPa (left panel) and P = 32.83 GPa (right panel).

properly reproduced: we notice that, at this pressure, the energy of the IXS
main features agree within 1 meV.

The agreement between experimental and theoretical results for the 2Ha

phase indicates the presence of this structural phase in the sample at these
applied pressure values. Furthermore, the fact that the experimental spectra
are reproduced more accurately at P = 32.83 GPa than at P = 20.88 GPa
could be justified in terms of 2Ha-2Hc phase coexistence in the lower pres-
sure case, as also observed in XRD experiments [127]. This phase transition
is even more apparent looking at the results shown in the lower panels of
Fig.5.6. At P = 20.88 GPa, the experimental spectrum is dominated by a
peak at about 24.2 meV, with a shoulder at lower energies (E = 20.9 meV).
Analogous observations are possible for P = 32.83 GPa, where the main IXS
spectral structure slightly hardens in energy, but keeps showing a shoulder at
lower energies. Calculations assuming a 2Hc phase do not capture neither the
main peak position nor the observed low-energy shoulder, at both pressures.
Differently, the 2Ha results properly reproduce the experimental findings, even
if the at P = 20.88 GPa, the theoretical spectra are still redshifted, as observed
for q =

[
1
2
, 0, 0

]
.

The presented analysis indicates the appearance of the 2Ha phase around
20 GPa. We are currently extending our study to other K-points, where the
interpretation is not as straightforward and additional experiments and anal-
ysis are ongoing. Fig.5.8 shows the available IXS spectra measured for the
same Bragg peak, but considering q =

[
1
3
, 1
3
, 0
]
, i.e. the K point. We see that

at P = 20.88 GPa (left panel) the double peak structure expected for a 2Ha

crystal structure (green solid line) is not observed in the experimental spec-
trum, which is quite well reproduced by the 2Hc result (dashed blue line). At
32.83 GPa (right panel), such main IXS-peak acquires a tail towards higher
energies. This feature could be consistent with the double structure observed
in the 2Ha simulations, even if such peak seems to be experimentally damped
in intensity. The interpretation of results at this Q scattering vector is still
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an open problem which will be discussed in future experimental and theoret-
ical investigations. A possible explanation of the discrepancies could be that
the two 2Ha and 2Hc structures alone are not capable to properly describe
phonon modes propagating along the Γ−K direction in MoS2 in this range of
pressure values, while being reasonable for the vibrational modes at q points
discussed in Fig.5.6. We stress that this hypothesis should be confirmed by
comparing experimental and theoretical spectra acquired for different q along
this direction to see if this deviation is systematically observed.

5.5 Summary and perspectives

In this chapter, we have discussed a set of recently acquired IXS measurements
on bulk MoS2 aimed at understanding the effect of ultra-high pressure on this
layered material.

Vibrational-IXS spectra have been compared with theoretical results ob-
tained from a fully ab initio description of lattice vibrations within DFPT.
The computed spectra are generally in good agreement with experimental
results, especially at low and intermediate applied pressure values.

We have also exploited our first principles results to interpret IXS signal
measured for strains above 20 GPa. In particular, we have been able to
identify features in the IXS spectra which cannot be justified assuming a 2Hc

structure for bulk MoS2, and which have been assigned to phonon modes of
the high-pressure 2Ha-MoS2 phase. The very good agreement found e.g. at
q=M indicates that IXS could identify the structural phase transition. Still
future work (already planned) is needed to clarify the inconsistencies observed
along other momentum directions.

Finally, as the presented experiments indicate that bulk MoS2 can sustain
ultra-high applied pressure without structural failure, low-temperature mea-
surement will be carried out to explore the existence of the excitonic-insulating
phase proposed theoretically in highly compressed MoS2.
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Conclusions

In this Thesis, we have explored how excitonic properties of layered quasi-2D
materials are affected by lattice degrees of freedom from a theoretical and
computational perspective.

In fact, we have considered the effect of the strain, stacking geometries,
lattice vibrations and pressure in a variety of challenging systems. In order to
achieve a sound and comprehensive understanding of the physical mechanisms
under investigation, we have joined highly accurate first-principles calculations
with quantitative insightful models.

Recent advancements in experimental techniques allow for the controlled
application of mechanical strain on 2D materials, leading to modified elec-
tronic and optical properties. This expanding research field, known as ”strain-
tronics”, aims at developing innovative sensors and optoelectronic devices. In
this context, the use of predictive techniques is crucial for understanding how
external strain affects electronic and optical properties. Our study initially
focuses on the electronic and optical properties of C3N, a newly synthesized
2D material presenting an indirect gap, under applied strain. Focusing on low-
lying excitons, we have demonstrated that uniaxial mechanical deformations
can induce a pronounced optical anisotropy as a consequence of the symmetry-
breaking effect of the applied strain. Such analysis has identified a possible
future practical method to successfully tune ML-C3N optical properties, mak-
ing such material more attractive for integration in flexible opto-electronic
devices. Furthermore, we have computed small-momenta excitonic disper-
sions under strain, with very dense sampling of exciton momenta, exploiting
the computational simplicity of the approximate solution of BSE proposed in
this work. These results could find application in future investigations of the
dynamics of optically-bright excitons in strained C3N.

To complete the analysis of optical properties in 2D polyaniline, we have
considered excitonic properties in C3N bilayers with different stacking mo-
tifs. Our calculations reveal a peculiar strong quenching of low energy optical
absorption, not observed in other common homo-bilayers. Such singular be-
haviour has been rationalized in terms of a negligible interband dipole of
valence-conduction transitions involved in the low-lying excitons.

Excitonic resonances in layered materials are strongly affected not only
by external mechanical deformations, but also via their coupling with lattice
vibrations. In this Thesis work, we have discussed the case of phonon-assisted
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light emission by finite momentum excitons in different boron nitride poly-
types, to interpret experimental Cathodoluminescence data.

Photoluminescence is widely utilized to investigate the behaviour of ex-
cited states in materials, however, the accurate first principles description of
phonon-mediated light emission is still in its infancy due to the difficulty of
consistently describing the coupling between excitons and phonons. In this
Thesis, we have developed a robust computational scheme capable of over-
coming the limitations present in some of the methodologies proposed in the
literature, such as, for example, the phase mismatch between exciton wave
functions and electron-phonon coupling elements.

Our results emphasize the importance of a proper description of exciton-
phonon coupling to properly characterise the fine-structure observed in the
light-emission spectra from these materials.

Our predictions successfully explain the variations in the CL signal fine
structure among different polymorphs, attributing them to the activation of
out-of-plane vibrations in rBN (which do not participate to light emission in
hBN, because of symmetry constraints).

The methodology developed in this work, can be straightforwardly applied
to other materials with indirect band gaps and could be further optimized
(both theoretically and computationally) to obtain a fully ab initio description
of other physical observables where exciton-phonon coupling plays a central
role (e.g. exciton relaxation and lifetimes).

Finally, we have characterized the low energy excitation spectrum of bulk
MoS2 when subject to external pressures. We have developed a post-processing
tool that allows to calculate the IXS intensities starting from phonon disper-
sions evaluated by first principles. Such a tool has allowed us to compare
directly the vibrational-IXS spectra obtained at ESRF with theoretical pre-
dictions, indicating the presence of a structural transition at intermediate
pressures around 20 GPa. Despite the fact that these calculations do not di-
rectly focus on the excitonic properties of layered MoS2, we expect them to be
relevant in forthcoming experiments of MoS2-crystals under ultra-high pres-
sure and cryogenic temperatures, i.e. at the conditions at which this material
is predicted to behave as an ideal excitonic insulator.

We briefly summarize a few future developments of the work presented in
this Thesis.
For BL-C3N, a challenging issue concerns a precise description of the electronic
ground state in the AA′ motif, to solve the metallicity problem associate to
PBE-DFT. This will require the usage of more complex approximations for
the exchange-correlation potential, to obtain single particle electronic energies
and states from which more precise QP bandstructures and optical properties
can be derived.

Ab initio calculation of exciton-phonon coupling matrix elements by first
principles still remains a challenging task. Presently, a lot of efforts[118]
are devoted to integrate in widely used first-principles codes (for example
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Yambo) the evaluation of physical observables affected by the exciton-phonon
interaction (e.g. phonon-assisted luminescence or exciton lifetimes), while
implementing refined approaches as double-grid integrations. From a theo-
retical and computational perspective, important achievements will be the
adoption of crystal-symmetries in the calculation of exciton-phonon matrix
elements, while preserving the phase-matching among exciton wavefunctions
and electron-phonon matrix elements. Furthermore, the possibility of interpo-
lating exciton-phonon couplings on dense grids in reciprocal space similarly to
what is currently done for electron-phonon matrix elements would further in-
crease the accuracy of ab initio results, while decreasing the amount of needed
computational resources.

The analysis of the behaviour of bulk MoS2 under pressure is also an in-
teresting topic both from a theoretical and an experimental perspective.
In particular, exploiting the high sensitivity of IXS spectroscopy, we plan to
investigate the exciton-softening predicted via first principles calculations. At
the same time, this technique can offer an accurate description of how phonon
modes are modified by external pressure and how they can signal the struc-
tural phase transition 2Hc →2Ha. Ab initio results will have an important
role in future experiments, as they can provide support in defining the optimal
experimental conditions at which such measurements should be carried out.
At the same time, inclusion of electron-phonon and phonon-phonon inter-
action (which has been neglected in the present implementation) could also
provide a better agreement with experimental data, especially at high pres-
sure.
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