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Analytical Formulas for Micro-Bending and Surface
Scattering Loss Estimation in Tube Lattice Fibers
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Abstract—Simple analytical formulas for micro-bending and
surface scattering loss in Hollow-Core Tube Lattice Fibers are
here proposed and numerically validated. They can also be
applied to other Hollow-Core fibers with similar core-cladding
interfaces such as Hybrid cladding Kagome-Tubular, Nested
Tubes, and Kagome fibers. Scaling laws for both loss mechanisms
are also given and discussed.

I. INTRODUCTION

HOLLOW-Core Fibers (HCFs) represent one of the most
remarkable innovations in the field of specialty optical

fibers [1]. More precisely, Hollow-Core Inhibited Coupling
Fibers (HC-ICFs) exhibit much better performance than Pho-
tonic Band-Gap Fibers in terms of lower loss, wider band-
width, lower dielectric interaction, better and more flexible
management of the effectively single-mode condition. Thanks
to that, several applications in the fields of sensing [2], [3],
optical communications [4], fiber lasers [5], high power deliv-
ery [6], [7], nonlinear optics [1], and quantum applications [8]
have been demonstrated in the last few years. One of the main
issues of HC-ICFs is the propagation loss (PL), which has as
its lower theoretical limit the confinement loss (CL) related to
the intrinsically leaky nature of their guided modes. In the
last few years, a major research effort has been expended
in order to reduce as much as possible the PL, mainly by
acting on the CL. The deployment in succession of the core
negative curvature [9], the use of tubes as microstructured
cladding [10], the addition of nested tubes [11], and hybrid
cladding [12] have resulted in several record low-loss designs,
allowing to get closer and closer and ultimately break the limit
given by silica Rayleigh scattering [4], [12]–[14]. However,
experimental results show that there is a gap between the
PL values and CL ones [15]–[17]. Even though a thorough
theoretical analysis showing in detail the causes of this gap is
not yet available, currently the additional loss is attributed to
non-idealities of the real fibers and in particular to dielectric
surface roughness and fiber micro-bending [4], [16], [17].
The presence of thermodynamic surface waves in the molten
glass that get frozen in place upon hardening makes the
dielectric-air interface rough, causing surface scattering loss
(SSL) [18]. The small fiber cross-section deformations due to
a non-perfect drawing process or lateral contacts of the fiber
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with surfaces once cabled cause further additional loss, named
micro-bending loss (MBL) [19]. SSL is currently estimated
by using an empirical formula [11], while MBL estimation
borrows from the approaches developed in the 1980s for solid
core fibers [20], [21]. SSL and MBL formulas are based
on parameters which can be obtained from numerical modal
solvers.

As an alternative tool to the numerical simulation, empirical
analytical formulas have been proposed for the estimation of
the minimum values of CL and SSL in each transmission
window [22]. The CL formula has then been extended to
consider also the high-loss regions caused by the coupling
of the guided mode with cladding modes [23]. Analytical
formulas represent an useful and effective additional tool
complementary to numerical simulations, because they allow
for preliminary quick design of the fibers.

In this paper, we extend this approach in order to take into
account the effects of cladding mode coupling on SSL and
propose an analytical formula for MBL. We also propose an
improvement on the analytical formula of the effective index of
HOM LP11 with respect to Marcatili’s ones [24]. The formulas
have been tested and compared with the numerical approach by
considering several Tube Lattice Fibers (TLFs) with different
geometrical and physical parameters, showing good accuracy.
Since the formulas depend on parameters mainly affected by
the core-cladding boundary, we also show that they can be
effectively applied to other HC-ICFs such as hypocyclidal
Kagome Fibers (KFs) [25], Nested Tube Fibers (NTFs) [11],
and Hybrid cladding Kagome-Tubular Fiber (HKTFs) [12].
These formulas complete the set of analytical formulas for
the estimation of the propagation loss in TLFs, which can be
fruitfully applied for preliminary TLF design or analysis in
conjunction with subsequent more time-consuming numerical
simulations.

II. THE MODEL

SSL is caused by the roughness of the air-dielectric inter-
face, primarily due to the frozen-in thermal surface capillary
waves excited during the fiber drawing process [18]. The
estimation of SSL is complex, because it would require a
statistical treatment of the scattering process, which requires
an accurate knowledge of the surface roughness spectral
density and of the coupling mechanisms between guided and
radiating modes. Since in practice it is hard to measure such
kind of quantities, and a thoroughly theoretical analysis of
the coupling mechanisms is not yet available, a simplified
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Fig. 1. TLF cross-section with geometrical and physical parameters. Rco

core radius, dext tube external diameter, t tube thickness, g tube-tube gap,
nd dielectric refractive index (gray region), ng refractive index of the material
filling the hollow core and tubes (white region).

approach based on the following formula is currently largely
used for SSL estimation [11]:

SSL(λ) = η · EI(λ)

(
λ0

λ

)3

[dB/km] (1)

where η and λ0 are two coefficients depending on roughness,
and EI is the electric field at the dielectric interface parame-
ter [18]:

EI =

√
ϵ0
µ0

∮
Γd

∣∣E∣∣2 dΓ∫∫
S∞

pz dS
, (2)

being Γd the air-dielectric interface, and E and pz the electric
field and the Poynting vector axial component of the mode,
respectively. The EI parameter depends on the the wavelength
and on the geometrical and physical fiber parameters shown in
Fig. 1: the core radius Rco, the tube external diameter dext, the
tube thickness t, the tube-tube gap g, the dielectric refractive
index nd and the refractive index of the material filling the
hollow core and the tubes ng . It can be calculated once the
mode field distribution is obtained by using a numerical mode
solver. However, its minimum value EImin in each transmis-
sion band can be obtained with the following formula [22]:

EImin = 0.63

(
λ

Rco

)2
1

Rco
. (3)

The estimation over a wider spectral range can be done
by taking into account the coupling of the FM with the
cladding modes. To make the analysis more general and the
graphs clearer, here we plot data as a function of normalized
frequency:

F =
2t

λ

√
n2
d − n2

g (4)

instead of the wavelength. In fact, integer values of the
normalized frequency (F = m) correspond to the red edges
of the High-Loss Regions (HLRs) irrespective of fiber’s pa-
rameters [23]. At those values of F , the guided mode is
phase matched with leaky cladding modes having the slowest
variation along the tube perimeters and thus the strongest
coupling [1], [23], [26]. The condition can be re-written as
λ = 2t/m

√
n2
d − n2

g which is the resonant wavelength in the
tube walls [11]. The approach is the same followed to obtain
analytical formulas for CL [23], dispersion parameters, and

effective area Aeff [27]. At frequencies approaching the high-
loss regions, the coupling between the FM and the cladding
modes (CLMs) increases the electric field magnitude at the
boundaries, and in turn this increases the EI value. EI can
be thus expressed as:

EIa = A ·EImin ·
∑
ν

(
L(F − FHE

c1,ν ) + L(F − FEH
c1,ν )

)
(5)

where A = 4.4 · 103, FHE
cµ,ν

, and FEH
cµ,ν

are respectively the
cut-off frequencies of the HEµ,ν and EHµ,ν CLMs with
azimuthal and radial indices µ and ν, respectively. L(F ) is
a Lorentzian function:

L(F ) =
γ2

γ2 + F 2
(6)

with γ = 3.5 · 10−3. Only the coupling with CLMs having
azimuthal index µ = 1 is here considered, because they give
the strongest coupling with the FM [27].

MBL is caused by a random tilting of the fiber longitudinal
axis due to the fabrication process and/or external mechanical
stress. Such fiber perturbations cause additional coupling of
the FM with leaky and radiating modes, with a consequent PL
enhancement of the former. In a single-mode fiber with a FM
having a Gaussian field profile, the upper limit of the MBL
can be estimated as [21]:

MBL =
1

4

(
2π

λ
nFM
eff

)2

R2
0Φ (∆β) [dB/km] (7)

with neff being the FM effective index, R0 the FM
field radius, ∆β the phase constant difference between FM
and LP11 HOMs, and Φ the power spectral density (PSD) of
the stochastic process describing the micro-bending.
Recently, analytical formulas for the FM effective index neff

and effective area Aeff have been proposed [27]. The effective
index formula is based on Marcatili’s one [24], but with an
additional term ∆neff and an equivalent radius Rcoeff

:

nFM
eff = ng −

1

2

u0,12t
√

n2
d − n2

g

2πRcoeff
F
√
ng

2

+∆neff (F ), (8)

being u0,1 the first zero of the Bessel function of order zero,
and ng the refractive index of the material filling the core and
the tubes. ∆neff takes into account the anti-crossing caused
by coupling with cladding modes and Rcoeff

accounts for
the hypocycloidal shape of the core-cladding interface. The
effective area formula is based on the observation that the
effective area is a function of the effective index [27]:

Aeff =
0.48

8π

(u0,1λ)
2

ng(ng − nFM
eff )

. (9)

Finally, in the context of the Gaussian approximation of
the FM field profile [28]:

R2
0 =

Aeff

π
, (10)

By substituting Eq. (9) in Eq. (10), the latter in Eq. (7),
and multiplying it by a factor 0.9025

√
(N − 0.68)/(N − 1)

dependent on the number of tubes N surrounding the core,
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TABLE I
TLF PARAMETERS

ALL GEOMETRICAL PARAMETERS ARE GIVEN IN MICROMETERS

Fiber t dext nd N g Rco

#1 0.50 20.0 1.45 8 2.96 20.00
#2 0.50 14.0 1.45 8 2.96 15.16
#3 0.50 14.0 1.45 6 2.97 9.97
#4 0.50 14.0 1.45 5 2.96 7.43
#5 0.50 24.0 1.45 8 5.08 26.00
#6 0.50 14.0 2.45 8 2.96 15.16

which has been introduced in order to take into account the
hypocycloidal shape of the core-cladding interface, it results:

MBLa = 5.415·10−2

√
N − 0.68

N − 1
u2
0,1

(nFM
eff )

2

ng(ng − nFM
eff )

Φ(∆β).

(11)
The last element required for having a complete analytical
expression of MBL is the phase constant difference ∆β
between the FM LP01 and the HOM LP11. Here we propose
to extend Eq. (8) according to Marcatili’s formula, that is
by replacing u0,1 with the first root of the first-order Bessel
function u1,1:

nHOM
eff = ng −

1

2

u1,12t
√
n2
d − n2

g

2πRcoeff
F
√
ng

2

+∆neff (F ) (12)

so that

∆β =
2

πλ

(
nFM
eff − nHOM

eff

)
=

t

2πR2
coeff

√
n2
d − n2

g

n2
g

u2
0,1 − u2

1,1

F
.

(13)

Eq. (11), together with Eqs. (8), and (13), and the mathemati-
cal expression of Φ(∆β), permits to analytically estimate the
MBL.

III. NUMERICAL VALIDATION

In order to validate the proposed formulas, several TLFs
with different geometrical and physical parameters have been
considered. Fibers’ names and parameters are reported in
Tab. I. Since the main approximation the approach is the
Gaussian profile of the FM, fibers with different core size
and shape have been considered. The core size and the
hypocycloidal-like shape have been changed, both changing
the tube size (fibers #1, #2, and #5) and thus their curvature,
and the tube number (fibers #2, #3, and #4). Finally, by
comparing fibers #2 and #6 we investigated the effect of the
dielectric refractive index. Concerning SSL, Fig. 2 compares
Eq. (2) calculated numerically through a modal solver, and the
proposed Eq. (5). To estimate the accuracy, an error figure eEI

is also plotted. Due to the large range of variation of the EI
parameter (at least three order of magnitude in the fibers and
spectral ranges here considered), the error figure is defined as:

eEI =
EIa
EI

. (14)

Black bars show the High-Loss Regions (HLRs) where
PL is extremely high due to the coupling of the FM with
cladding modes [26], [27]. We focus the accuracy estimation
on the Transmission Bands (TBs) bounded by the HLRs. The
first TB shows the worst accuracy, which is always bounded
between 3/2 and 2/3. By excluding the first TB, the error is
bounded between ±20%.

For a fair estimation of the accuracy of the MBL formula
irrespective to the chosen PSD for describing the statistics,
Fig. 3 compares MBL/Φ obtained from Eqs. (7) and (11).
In this case, the parameters’ range of variation is narrower, so
the following error figure is here used to assess the accuracy:

eMBL =
MBL−MBLa

MBL
. (15)

The accuracy is pretty good, being bounded between ±2%
in all TBs. As expected, the worst accuracy is obtained for
fiber #4. The small core size combined with just five tubes
makes the hypocycloidal shape of the FM field profile more
pronounced, and thus the Gaussian approximation coarser. The
lower the number of the tubes and the normalized frequency,
the worse the Gaussian approximation the proposed formula
is based on. Even though not shown in the figure, eMBL is
lower than 12.5% in the first TB of fiber #4.

Finally, Fig. 4 compares Eqs. (8) and (12) with the
numerical results and also shows the corresponding error
figures defined as

en =
neffnum

− neffan

1− neffnum

. (16)

This error figure takes into account that, by increasing the
normalized frequency, the effective indices tend asymptotically
to 1, so that analytical and numerical values must coincide over
a higher and higher number of digits. Once again, the accuracy
is pretty good and always bounded between ±2.5%, except for
fiber #4 where the analytical formulas tend to overestimate
the effective indices, increasing the error which is however
lower than 10%.

Finally, Fig. 5 shows a global view of the several loss com-
ponents, numerically and analytically computed for fiber #1,
by assuming Φ(∆β) = 8.0/∆β2. The agreement is pretty
good, both for the single components (CL, SSL, MBL) and
for the total loss TL = CL+ SSL+MBL.

IV. OTHER NEGATIVE CURVATURE HC-ICFS

The formula accuracy assessment has been finally ex-
tended to other very common HC-ICFs with hypocycloidal or
negative-curvature core-cladding boundary: Hybrid cladding
Kagome-Tubular Fiber (HKTF), nested tube fibers (NTFs),
and Kagome fiber (KF). The results obtained for these fibers
are shown in Fig. 6. The geometrical parameters are the
following: Rco = 22.7µm, dext = 35.8µm and t = 1.0µm
for HKTF, and Rco = 22.7µm, dext = 20µm, and t =
1.0µm for NTF. The dielectric refractive index is nd = 1.45
for all fibers considered in this section. Since the accuracy
of the model mainly depends on size and shape of the core,
results are coherent with the TLFs ones. Finally, the hypocy-
cloidal core-cladding boundary of the KF can be modeled as
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Fig. 2. EI of the six TLFs described in Tab. I. Dark regions correspond to FM high-loss spectral regions. Solid green, red, and black curves show numerical
and analytical result, and relative error, respectively. Dashed horizontal lines correspond to the values eEI = 3/2 (top) and eEI = 2/3 (bottom).

error

#6#4#2

#1 #3 #5

Fig. 3. MBL/Φ of the six TLFs described in Tab. I. Dark regions correspond to FM high-loss spectral regions. Solid green, red, and black curves show
numerical and analytical result, and relative error, respectively. Dashed horizontal lines correspond to the values eMBL = 2.5% (top) and eMBL = −2.5%
(bottom).

an equivalent six-tubes TLF with tubes highlighted by the red
dashed circles in Fig. 7 [27]. The radius of the six tubes has
been chosen equal to the radius of the largest arcs of the core-
cladding contour. The used geometrical parameters are the
following: Rco = 22.7µm, dext = 19.5µm, and t = 1.0µm.

Despite the approximation in the contour, the accuracy of
the model is consistent with the previous results, showing
that the formulas can be applied also to this kind of HC-
ICFs. The results reported in this and the previous section
show the effects of SSL and MBL are mainly set by the size
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Fig. 4. Effective indices nFM
eff , nHOM

eff of the six TLFs described in Tab. I. Dark regions correspond to FM high-loss spectral regions. For nFM
eff , dashed

green, red, and black curves show numerical and analytical result, and relative error, respectively. For nHOM
eff , solid green, red, and black curves show

numerical and analytical result, and relative error, respectively. Dashed horizontal lines correspond to the values en = 2.5% (top) and en = −2.5% (bottom).

F

Fig. 5. Single loss terms, CL (red), SSL (green), MBL (blue) and total
loss TL (black), numerically (dashed lines) and analytically (solid lines)
computed for the fiber #1 by setting η = 300 · 10−6, λ0 = 1700nm,
and Φ = 8.0/∆β2.

and the shape of the core. The cladding structure outside the
core-cladding interface (nested tubes, kagome lattice), which
greatly affect the confinement loss, have negligible effects on
SSL and MBL.

V. SCALING LAWS

Another advantage of having analytical formulas is the
possibility to obtain useful scaling laws. SSL and MBL
exhibit different wavelength dependence and inverse core size
dependence. As a consequence, for certain combinations of
geometrical parameters and working wavelengths SSL domi-
nates MBL, and viceversa for certain others.

About SSL, by substituting Eq. (3) in Eq. (1) it results:

SSLmin(λ) = 0.63ηλ3
0

1

R3
co

1

λ
(17)

showing that the dependence of the minimum value SSLmin

in each transmission band is inversely proportional to the
wavelength and to the cube of the core radius. A similar
formula can be obtained for MBL. In this case the relationships
also depend on the PSD of the stochastic process. Despite the
fact that in literature direct measurements of MBL PSD are
not yet available, often the following expression is used:

Φ(∆β) =
C0

∆βp
. (18)

In [16], [19], Eq. 18 with p = 2 has been assumed. By
substituting Eq. (13), and (18) into (11), it results:

MBLmin = K
23+2pπ2+p

(u2
1,1 − u2

0,1)
p
nFM
eff

2
np
gC0

R
2(p+1)
coeff

λ2+p
, (19)

with K = 5.415 · 10−2
√
(N − 0.68)/(N − 1). Eq. (19) gives

the dependence of the MBL at the center of each TBs on
core radius and wavelength. By considering the case p = 2,
the wavelength dependence is stronger than for the SSL,
being in the present case inversely proportional to the fourth
power of λ. The core radius dependence is the inverse of
the SSL one. MBL increases with the core size, with a strong
dependence equal to R6

co in case of p = 2.
Finally, by neglecting the relatively weak dependencies

of MBLmin on N and nFM
eff , it results:

MBLmin

SSLmin
= 8.6 · 10−2 23+2pπ2+p

λ3
0(u

2
1,1 − u2

0,1)
p

C0

η

R2p+5
co

λp+1
. (20)
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Fig. 6. From left to right: Effective indices nFM
eff , nHOM

eff , EI, and MBL/Φ of KF (upper line), HKTF (central line) and NTF (bottom line). with
parameters: Dark regions correspond to FM high-loss spectral regions. Solid green, red, and black curves show numerical and analytical result, and relative
error, respectively.
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Fig. 7. From left to right: cross-sections of KF (with equivalent tubes
represented by the red dashed circles), HKTF and NTF, with parameters:
Rco = 22.7µm, dext = 19.5µm, t = 1.0µm, and nd = 1.45 (KF),
Rco = 22.7µm, dext = 35.8µm, t = 1.0µm, nd = 1.45 (HKTF),
Rco = 20µm, dext = 2dnest = 20µm, t = 0.5µm, and nd = 1.45
(NTF).

This equation shows how the ratio of the two loss sources
strongly depends on the core size and, though more weakly,
on the wavelength. Just as an example, Fig. 8 shows the
pairs (Rco, λ) corresponding to MBLmin = SSLmin for
different values of the ratio C0/η in case of p = 2. In this case,
MBLmin/SSLmin scales as R9

co/λ
3. MBL dominates SSL

for short wavelengths and large core radii. With C0/η = 104, a

 10

 15
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R
co

 [
um

]

wavelength [nm]

C0/η=1E3 C0/η=1E4 C0/η=1E5 C0/η=1E6

Fig. 8. (Rco, λ) pairs corresponding to MBL = SSL for different C0/η
ratios and p = 2. Above the curves, MBL is greater than SSL, conversely,
below them SSL dominates on MBL.

core radius of 24µm is required to have MBLmin = SSLmin

at λ = 400nm. The core radius can increase to 32µm
at 1064nm and to 37µm at 1550nm when setting the same
condition.
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VI. CONCLUSION

In this paper, simple analytical formulas for the estimation
of surface scattering loss and micro-bending loss in Hollow-
Core Tube Lattice Fibers have been proposed and numerically
validated by considering several TLFs with different geomet-
rical and physical parameters. The accuracy of the formulas is
pretty good for all fibers here considered. The MBL formula is
based on the Gaussian approximation of the FM field profile,
consequently it is less accurate for TLFs with few tubes,
where the actual FM profile differs the most from the Gaussian
one. These formulas complete the set of analytical formulas
allowing to estimate all the loss mechanisms defining the total
loss in TLFs so far identified by the scientific community:
confinement loss, surface scattering loss, and micro-bending
loss. Together with the dispersion formulas both for FM LP01

and HOM LP11, they form a useful set of equations for
quick design or analysis of TLFs. All these formulas, with the
exception of the CL one, can be also applied to other hollow-
core inhibited-coupling fibers with a hypocycloidal (nega-
tive curvature) core-cladding interface, such as KFs, NTFs,
and HKTFs, because they mainly depend on the shape and size
of the hollow core. On the contrary, CL also strongly depends
on the features of the microstructured cladding outside the
core-cladding boundary. The CL analytical formulas currently
available can only be applied to TLFs. Formulas for the
estimation of CL in KFs, NTFs, and HKTFs are not yet
available and will be object of future investigations.
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“Demonstration of mid-infrared gas sensing using an anti-resonant
hollow core fiber and a quantum cascade laser,” Opt. Express, vol. 27,
no. 25, pp. 36 350–36 357, Dec 2019.

[4] G. Jasion, H. Sakr, J. Hayes, S. Sandoghchi, L. Hooper, E. Numkam Fok-
oua, A. Saljoghei, H. Mulvad, M. Alonso, A. Taranta, T. Bradley,
I. A. Davidson, Y. Chen, D. Richardson, and F. Poletti, “0.174 dB/km
hollow core double nested antiresonant nodeless fiber (DNANF),” in
2022 Optical Fiber Communications Conference and Exhibition (OFC),
2022, pp. 1–3.

[5] F. B. A. Aghbolagh, V. Nampoothiri, B. Debord, F. Gerome, L. Vincetti,
F. Benabid, and W. Rudolph, “Mid IR hollow core fiber gas laser
emitting at 4.6 µm,” Opt. Lett., vol. 44, no. 2, pp. 383–386, Jan 2019.

[6] M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and
T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,”
Opt. Express, vol. 24, no. 7, pp. 7103–7119, Apr 2016.

[7] “Hollow-core photonic crystal fibers for Power-over-Fiber systems,”
Optical Fiber Technology, vol. 73, p. 103041, 2022.

[8] X. Chen, W. Ding, Y.-Y. Wang, S.-F. Gao, F. Xu, H. Xu, Y.-F. Hong,
Y.-Z. Sun, P. Wang, Y.-Q. Lu, and L. Zhang, “High-fidelity, low-latency
polarization quantum state transmissions over a hollow-core conjoined-
tube fiber at around 800 nm,” Photon. Res., vol. 9, no. 4, pp. 460–470,
Apr 2021.

[9] Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low
loss broadband transmission in hypocycloid-core Kagome hollow-core
photonic crystal fiber,” Opt. Lett., vol. 36, no. 5, pp. 669–671, Mar 2011.

[10] A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko,
S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide
regime for a silica hollow-core microstructured optical fiber with a
negative curvature of the core boundary in the spectral region > 3.5
µm,” Opt. Express, vol. 19, no. 2, pp. 1441–1448, Jan 2011.

[11] F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Ex-
press, vol. 22, no. 20, pp. 23 807–23 828, Oct 2014.
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