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A B S T R A C T

Objective: The research aimed to determine whether and which radiomic features from breast dynamic contrast
enhanced (DCE) MRI could predict the presence of BRCA1 mutation in patients with triple-negative breast cancer
(TNBC).
Material and methods: This retrospective study included consecutive patients histologically diagnosed with TNBC
who underwent breast DCE-MRI in 2010–2021. Baseline DCE-MRIs were retrospectively reviewed; percentage
maps of wash-in and wash-out were computed and breast lesions were manually segmented, drawing a 5 mm-
Region of Interest (ROI) inside the tumor and another 5 mm-ROI inside the contralateral healthy gland. Features
for each map and each ROI were extracted with Pyradiomics-3D Slicer and considered first separately (tumor and
contralateral gland) and then together. In each analysis the more important features for BRCA1 status classifi-
cation were selected with Maximum Relevance Minimum Redundancy algorithm and used to fit four classifiers.
Results: The population included 67 patients and 86 lesions (21 in BRCA1-mutated, 65 in non BRCA-carriers). The
best classifiers for BRCA mutation were Support Vector Classifier and Logistic Regression in models fitted with
both gland and tumor features, reaching an Area Under ROC Curve (AUC) of 0.80 (SD 0.21) and of 0.79 (SD
0.20), respectively. Three features were higher in BRCA1-mutated compared to non BRCA-mutated: Total Energy
and Correlation from gray level cooccurrence matrix, both measured in contralateral gland in wash-out maps,
and Root Mean Squared, selected from the wash-out map of the tumor.
Conclusions: This study showed the feasibility of a radiomic study with breast DCE-MRI and the potential of
radiomics in predicting BRCA1 mutational status.

1. Introduction

Triple-negative breast cancer (TNBC), accounting for 15–25% of all
breast cancers, is a specific subtype that does not express estrogen re-
ceptor (ER), progesterone receptor (PR) or human epidermal growth
factor receptor 2 (HER-2). It has clinical features that include high
invasiveness, high metastatic potential, proneness to relapse and poor
prognosis [1,2].

BRCA1 and BRCA2 are tumor suppressor genes, the mutant pheno-
types of which predisposes patients to breast and ovarian cancers [3,4].

In particular, breast cancer in BRCA1 carriers tends to present as TNBC
with atypical morphologic features and more aggressive behaviour [5,6]
whereas BRCA2-related tumors are much more similar to sporadic
cancer [7–9]. Several studies have been conducted to examine the re-
lationships between BRCA1/2 mutations and breast cancer MRI fea-
tures, suggesting that MRI features can differ according to BRCA
mutation type and reflect intrinsic hereditary characteristics [9,10]. In
addition, other studies are recently investigating the role of radiomics in
breast imaging to provide further information about tumor
characterization.
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Radiomics is the process of extracting quantitative properties, named
features, from an entire image or from a specific region of interest (ROI)
which collectively provide a comprehensive tumor characterization,
called “the radiomic signature of the tumor” [11,12]. The feature
extraction process is typically realized using pattern recognition algo-
rithms, calculating a set of variables representing a quantitative
description of a geometrical or physical property of the image portion
under consideration. Radiomics is based on the hypothesis that the
extracted features reflect mechanisms occurring at genetic and molec-
ular levels.

Radiogenomics, relating radiomic features to genomic profile, is
being increasingly used for tumors characterization and is rapidly
growing in the field of breast imaging [13,14]. By adding radiomics to
the standard radiological workflow, it would be possible to improve
diagnostic accuracy of standard radiological techniques such as
mammography, tomosynthesis and MRI [15].

Studies have investigated the usefulness and reliability of radiomics
in both discriminative tasks (malignant lesion recognition [16], classi-
fication of subtype and stage, histological differentiation [17,18]) and
predictive tasks (response to therapy, risk of recurrence [19], preoper-
ative prediction of axillary lymph node metastasis [20]).

The potential of MR radiomics alone or combined with clinical fea-
tures in the non-invasive prediction of BRCA mutational status have
been reported in a few studies only, which did not focus on TNBC.

The aim of the study was to analyze whether there are differences in
the clinical and radiological characteristics of triple-negative tumors
arising in women with or without genetic mutation; secondly to deter-
mine whether and which radiomic features extracted from DCE-MRI
predict the presence of BRCA1 mutations in patients with TNBC.

2. Material and methods

2.1. Study design

We used the CLEAR checklist (CheckList for Evaluation of Radiomics
research) endorsed by ESR and EuSoMII to design and report this
manuscript [21].

The research was approved by the Area Vasta Emilia Nord Ethical
Committee and informed consent was obtained from all subjects.

This retrospective study included consecutive patients histologically
diagnosed with TNBC who underwent breast DCE-MRI between
February 2010 and August 2021 on a single 1.5 T MR scanner at a single
institution (Azienda Ospedaliero-Universitaria Policlinico di Modena).
The criteria for patient inclusion were the histological diagnosis of triple
negative ductal invasive breast cancer, the genetic testing result and the
availability of DCE-MRI exam acquired on the axial plane with a fat
signal suppression at the time of diagnosis.

On the other hand, we excluded patients with unavailability of
clinical and pathological data, MRI exams with artifacts and with non-
standardized image acquisition protocol, in particular without fat sup-
pression and/or acquired in the coronal plane.

2.2. Clinical and radiological data collection

Data were collected with the collaboration of Centro Oncologico
Modenese (COM) and analyzed with the collaboration of the Medical
Physics Unit at Azienda Ospedaliero-Universitaria Policlinico di
Modena.

Breast MRI exams were performed on 1.5 Tesla magnet (Philps
Achieva software version 2.6 and 3.2) using 7 channel dedicated surface
breast coil. All the dynamic sequences were acquired on the axial plane
with a fat-suppressed 3D-T1-weighted sequence, namely T1 High Res-
olution Isotropic Volume Excitation (THRIVE) (TR 7 s, TE 3 ms, FA 12◦,
pixel dimensions 0.7 × 0.7 × 1 mm3, using Spectral Attenuated Inver-
sion Recovery - SPAIR - for fat suppression) orWater Selective Excitation
(WATS) (TR 15 s, TE 5 ms, FA 20◦, pixel dimensions 0.7× 0.7× 1 mm3),

with one phase before and 5 phases after intravenous administration of
gadolinium-based contrast agent (Dotarem 0,2 ml/kg) with an injection
rate of 2 ml/s to cover a time span of 10 min.

Collected non-radiomics data were breast density in accordance with
the recommendations of the proposed American College of Radiology
Breast Imaging Reporting and Data System (BI-RADS); Background
Parenchymal Enhancement (BPE), classified using the BI-RADS four-
point scale as minimal, mild, moderate, or marked; enhancement curve,
referring to the contrast enhancement kinetics of a lesion, classified in
type 1 (progressive or persistent enhancement pattern, usually consid-
ered benign), type 2 (wash in – plateau pattern, considered undeter-
mined) and type 3 (wash in – wash out pattern, considered strongly
suggestive of malignancy); the shape of the lesion (mass-like/non mass-
like); the extent of disease, classified in single lesion, multifocal (the
presence of two or more foci of cancer within the same breast quadrant)
or multicentric (the presence of two or more foci of cancer in different
quadrants of the same breast) and tumor volume (cm3).

2.3. Radiomic analysis

Breast MRI studies were retrospectively reviewed to collect radiomic
data of the tumor and the contralateral gland, which were manually
segmented by two radiologists in consensus. Radiomic data were
compared between tumors and contralateral gland of BRCA-mutated
and non-BRCA mutated women and different radiomic classifier were
tested to predict mutational status.

2.3.1. Segmentation
The second phase acquired after contrast administration, was used

for tumor segmentation, performed manually through a contouring tool
in Advantage Workstation 4.7 (GE Healthcare). This first segmentation
was volumetric and conducted including the whole tumor (or the tu-
mors, where more than one lesion was present).

Then, two round-shaped 5 mm-diameter Regions of Interest (ROIs)
were drawn respectively inside the volume of the isolated tumor and
inside the normal glandular tissue of the contralateral breast, in the most
homogeneous region, avoiding necrotic tissue, blood vessels and
prothesis. When multiple tumors were present in a single patient, all
tumors of at least 5 mm diameter were segmented.

2.3.2. Pre-processing
The preprocessing consisted of calculating two percentage maps

from the contrastographic images, one for the wash-in and one for the
wash-out of the contrast medium. The wash-in analysis was computed
from the peak phase after contrast administration, while the last phase
was used to obtain the wash-out analysis, for both the ROI in the tumor
and the ROI in the contralateral gland.

The wash-in map was calculated as the difference between the peak
post-contrastographic and the pre-contrastographic phase divided by
the pre-contrastographic phase.

Similarly, the wash-out mapwas the difference between the last post-
contrastographic and the peak post-contrastographic phase over the
peak post-contrastographic phase, multiplying by 105 to avoid infor-
mation loss due to the only availability of integer numbers for image
computation in the software. The peak phase was assumed to correspond
to the phase with the maximum average intensity inside the tumor and
gland ROIs:

washin =
peak − 1st

1st *105

washout =
last − peak

peak
*105

Using this method, we did not consider the wash-in and wash-out of
each voxel, but voxel intensity at wash-in and wash-out of the entire
ROIs.

A. Pecchi et al.
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For image preprocessing, we executed a custom Python routine using
the 3D Slicer API [22].

2.3.3. Features extraction
Radiomic features were extracted from the 5 mm ROIs (described in

the Segmentation section) and not from the volumetric segmentation of
the whole tumor, in order to obtain more homogenous data. Features for
each map and each ROI were extracted with the Pyradiomics extension
of 3D Slicer, using a bin width of 100 and a symmetrical Gray Level co-
occurrence matrix. The other extraction parameters were left as default.

We extracted all the available features except for shape features since
the considered ROIs had the same shape.

2.3.4. Features selection and data preparation
The processing of the extracted features and the statistical analyses

were performed through a Stata 17 code with Python 3.8 integration,
using the Python libraries SK-learn v. 1.0.2, and Numpy v. 1.24.4. The
extracted features were standardized by subtracting the mean value and
dividing by the standard deviation. We first considered separately the
features from the tumor and the contralateral gland, then we performed
another analysis with all the features together. For completeness we
considered also other 4 possibilities including separately wash-in and
wash-out features from gland and wash-in and wash-out features from
tumor.

For dimensionality reduction, the most important and discriminative
features for BRCA1 status classification were selected with Maximum
Relevance Minimum Redundancy algorithm. To decide the number of
selected features we visually inspected the correlation heat-plot of all
the features, showing the Spearman correlation matrix in colour scale,
with rows and columns sorted by similarity via hierarchical clustering.

2.3.5. Modelling
The selected features in each analysis were used to train 4 classifiers,

one linear, Logistic Regression, and the other ones nonlinear, which
were Support Vector Classifier (SVC), Random Forest and Decision Tree.
The setting parameters were left as default, i.e. SVC with 1 as regulari-
zation parameter; Random Forest with 100 estimators and no maximum
depth, as well as for Decision Tree. A covariate variable was introduced
to take into account the different acquisition protocol.

2.3.6. Evaluation
The models were internally tested through stratified 10-fold cross

validation by permuting 10 times the training (90% of the entire sample)
and the testing dataset (10%). Furthermore, the stratified cross valida-
tion allowed to keep the same percentage of patients with and without
the mutation in each permutation, balancing the two groups.

Fig. 1. Flowchart of the study pipeline.

Table 1
Descriptive statistics of the study population.

BRCA1 (n =

18)
NON-BRCA MUTATED
(n = 49)

OVERALL (n =

67)

Age
42.44 ±

10.56
48.23 ± 9 46.68 ± 9.70

Breast densitya

A 1 (5.9%) 5 (10.2%) 6 (9.1%)
B 8 (47.1%) 16 (32.7%) 24 (36.4%)
C 4 (23.5%) 21 (42.9%) 25 (37.9%)
D 4 (23.5%) 7 (14.3%) 11 (16.7%)
BPEa

Minimal 1 (5.9%) 2 (4.1%) 3 (4.5%)
Mild 6 (35.3%) 24 (49%) 30 (45.5%)
Moderate 8 (47.1%) 12 (24.5%) 20 (30.3%)
Marked 2 (11.8%) 11 (22.4%) 13 (19.7%)
Shape of the
lesion

Mass 18 (100%) 39 (79.6%) 57 (85.1%)
Non Mass 8 (16.3%) 8 (11.9%)
Mass + Non Mass 2 (4.1%) 2 (3%)
Enhancement
curve

1–2 1 (5.6%) 1 (1.5%)
2 4 (22.2%) 5 (10.2%) 9 (13.4%)
2–3 2 (11.1%) 14 (28.6%) 16 (23.9%)
3 11 (61.1%) 30 (61.2%) 41 (61.2%)
Extent of disease
Single 11 (61.1%) 21 (42.9%) 32 (47.8%)
Multifocal 2 (11.1%) 12 (24.5%) 14 (20.9%)
Multicentric 5 (27.8%) 16 (32.7%) 21 (31.3%)
Volume of the
lesion

9,62 ± 15,91 13,3 ± 17,38 11,9 ± 16,79

BPE, background parenchymal enhancement.
a Breast density and BPE were not evaluated in one BRCA-mutated patient

who already underwent mastectomy and had breast prosthesis implantation at
TNBC diagnosis time.
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For each model and permutation, we calculated the Area Under ROC
Curve (AUC), the accuracy, the sensitivity, and the specificity. The
sensitivity and specificity were computed at their optimal value in the
ROC curve, maximizing their geometric mean. Then, we considered the
mean and the standard deviation (SD) of these scores across the 10
permutations. The discriminant metric to identify the best model was
AUC.

To evaluate if the different models were significantly different, we
used the McNemar’s test [23].

The entire workflow is summarized in Fig. 1.

3. Results

3.1. Baseline demographic and clinical characteristics

Among patients with TNBC histological diagnosis from February
2010 to August 2021, we retrospectively selected 69 patients with an
available baseline MRI exam and the results of genetic testing on BRCA.
BRCA2 carriers (n = 2) were excluded for the limited sample size and
different clinical radiological tumor pattern, according to the literature
[23].

The final population included 67 patients (mean age 46,68 ± 9,70
years), 18 of which were BRCA1 mutated and 49 were non-BRCA
mutated. Some patients had multiple lesions for a total of 86 lesions
analyzed (21 in BRCA1 mutated, 65 in non-BRCA mutated).

Characteristics of study population are shown in Table 1.

3.2. Radiomic features analysis

The total number of extracted features was 372, classified in first-
order, second-order and features from texture analysis. In particular,
we extracted 21 intensity-based first-order statistical features, 23 Gy
level cooccurrence matrix (GLCM) features (second-order), 11 Gy level
size zone matrix (GLSZM) features, 16 Gy level run length matrix
(GLRLM) features, 3 neighborhood gray-tone difference matrix
(NGTDM) features, 12 Gy level dependence matrix (GLDM) features.

Correlation heat-maps showed that almost 4 radiomic features from
tumor segmentations and 4 from gland segmentations were sufficiently
independent to be used in the final model without redundancies
(Figs. 2–4). Hence, we set the number of selected features to 8 in the
model including both tumor and gland features and 4 for the 2 sub-
models. In the models fitted with only wash-out and wash-in features
we also considered 4 most relevant features (Supplementary Figs. S1-
S4).

According to the AUC parameter, the best classifiers for BRCA
mutational status were SVC and Logistic Regression in models fitted
with both gland and tumor features (Table 2). The features selected for
the comprehensive model were Total Energy (first level), Correlation
(GLCM) and Long Run Low Gray Level Emphasis (GLRLM) from gland
wash-out map; Kurtosis (first level) and Small Area Low Gray Level
Emphasis (GLSZM) from gland wash-in map; Root Mean Squared (first
level) and Large Dependence Emphasis (GLDM) from tumor wash-out
map; Strength (NGTDM) from tumor wash-in map.

The models computed with gland features only reached similar
scores of the ones with both gland and tumor features, while the models
fitted with only tumor features were not able to discriminate mutated

Fig. 2. Correlation heat-map of the features from gland segmentations, showing Spearman’s correlation coefficient for each couple of features with a red-blue
colormap. The features were grouped based on a similarity clustering algorithm. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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and non-mutated patients (AUC < 0.6) (Tables 3–4). The features used
to fit the models for gland features, with the corresponding statistics
referred to the initial unstandardized features, were: Total Energy (first
level) from the wash-out map, which was significantly higher in BRCA1-
mutated patients (MedianBRCA1-mutated 1.1e+10, MedianNon-mutated
0.54e+10, pWilcoxon < 0.01); Small Dependence Low Gray Level
Emphasis (GLDM), computed in the wash-in map; Kurtosis (first level)
from the wash-in map; Correlation (GLCM), computed in the wash-out
map, significantly higher in BRCA1-mutated patients (MedianBRCA1-
mutated 0.25, Mediannon-mutated 0.12, pWilcoxon < 0.01).

Finally, selected features from tumor segmentation were Root Mean
Squared (first level) from the wash-out map, significantly higher in
BRCA1-mutated patients (MedianBRCA1-mutated 14e+03, Mediannon-
mutated 11e+03, pWilcoxon < 0.05); Size Zone Non Uniformity (GLSZM),
computed in the wash-out map; IMC2 (GLCM), computed in the wash-in
map; and Maximum (first level) from the wash-in map.

The models fitted with only wash-in and wash-out features reached
lower scores (AUC < 0.7) than the models fitted with features from both
maps (Supplementary Tables S1-S4).

The McNemar’s tests showed that there was a significant difference
(p < 0.05) between the SVC model from tumor features and all the other
models, while all the other comparisons resulted in a p value higher than
0.05.

3.3. Association of non-radiomic features variables with the outcome

Among clinical characteristics, a statistically significant difference (p
value 0,03) was obtained only for age at diagnosis of breast cancer, with
an average age at diagnosis in patients BRCA1 mutated of 42,44 years

and in patients non BRCA mutated of 48,2.
No statistically significant differences were observed between the

two groups about the other clinical data, like breast density, BPE,
enhancement curve and disease extent.

All BRCA-mutated patients had mass-like lesions, while non BRCA-
mutated lesions were more heterogeneous (79,6% mass-like, 16,3%
non-mass like, 4,1% both).

4. Discussion

In this retrospective study, we reviewed the breast-MRI exams of 67
TNBC patients, BRCA1-mutated (18) and non-BRCA mutated (49), for a
total of 21 and 65 lesions respectively analyzed. We considered the
numerical disparity between the two groups, during validation of
radiomics analysis model, by performing a balanced cross validation.

Firstly, a statistical analysis was initially conducted to describe
general characteristics of the two populations and breast lesions at MRI.

As to general characteristics, BRCA1-mutated patients were younger
(mean age 42 vs 48 years), but no other statistically significant differ-
ences were found [24,25].

With respect to the lesion characteristics, in both groups the tumors
were more frequently single and presented as mass-like lesion, with a
type 3 enhancement curve [24–26].

The breast composition, the enhancement of the glandular tissue, the
morphology and/or enhancement of the lesion, usually considered at
MRI examination, did not show significant differences between patients
carrying and not carrying BRCA1 mutation. There are no gland and/or
tumor characteristics significantly related to the genetic mutation.

Secondly, we investigated the potential role of radiomic analysis in

Fig. 3. Correlation heat-map of the features from tumor segmentations, showing Spearman’s correlation coefficient for each couple of features with a red-blue
colormap. The features were grouped based on a similarity clustering algorithm. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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predicting the mutational status of BRCA1. In our study, among the 372
extracted radiomic features, eight features were sufficiently indepen-
dent and carried most information to classify the BRCA mutational
status allowing to avoid redundancy. The best features classifiers were
SVC and Logistic Regression.

In the radiomics analysis both features extracted from the tumor and
from the glandular tissue of the contralateral breast were considered,
comparing BRCA1 mutated and non-mutated patients. In fact, among
the eight informative features, four derived from the healthy gland and
four from the tumor.

We observed that radiomic models fitted combining tumor and gland
features or computed with gland features only obtained a satisfying
performance (AUCs ranging from 0.78 to 0.80) in the discrimination
between non BRCA-mutated and BRCA1-mutated patients. Radiomics
analysis of normal glandular tissue and tumor in the dynamic contrast

Fig. 4. Correlation heat-map of the features from gland and tumor segmentations, showing Spearman’s correlation coefficient for each couple of features with a red-
blue colormap. The features were grouped based on a similarity clustering algorithm. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 2
Scores of the considered classifiers fitted with 8 wash-in and wash-out gland and
tumor features, selected with MRMR. Mean and standard deviation (SD) values
from the 10 cross validation splits of the dataset are reported.

Model AUC Accuracy Sensitivity Specificity

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

SVC 0.80 (0.21) 0.79 (0.10) 0.90 (0.20) 0.82 (0.17)
Random Forest 0.74 (0.35) 0.78 (0.12) 0.85 (0.32) 0.80 (0.24)
Decision Tree 0.69 (0.20) 0.70 (0.16) 0.65 (0.45) 0.78 (0.23)
Logistic Regression 0.79 (0.20) 0.79 (0.12) 0.85 (0.23) 0.8 (0.20)

AUC, area under the curve; SD, Standard Deviation; SVC, Support Vector
Classifier.

Table 3
Scores of the considered classifiers fitted with 4 wash-in and wash-out tumor
features, selected with MRMR. Mean and standard deviation (SD) values from
the 10 cross validation splits of the dataset are reported.

Model AUC Accuracy Sensitivity Specificity

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

SVC 0.59 (0.24) 0.73 (0.05) 0.60 (0.30) 0.57 (0.21)
Random Forest 0.61 (0.18) 0.65 (0.13) 0.80 (0.24) 0.69 (0.21)
Decision Tree 0.48 (0.17) 0.59 (0.16) 0.20 (0.33) 0.92 (0.18)
Logistic Regression 0.60 (0.20) 0.75 (0.10) 0.90 (0.20) 0.767 (0.26)

AUC, area under the curve; SD, Standard Deviation; SVC, Support Vector
Classifier.

Table 4
Scores of the considered classifiers fitted with 4 wash-in and wash-out gland
features, selected with MRMR. Mean and standard deviation (SD) values from
the 10 cross validation splits of the dataset are reported.

Model AUC Accuracy Sensitivity Specificity

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

SVC 0.78 (0.17) 0.73 (0.09) 0.85 (0.23) 0.82 (0.17)
Random Forest 0.73 (0.26) 0.73 (0.11) 0.85 (0.23) 0.79 (0.19)
Decision Tree 0.62 (0.20) 0.71 (0.13) 0.4 (0.37) 0.92 (0.10)
Logistic Regression 0.78 (0.17) 0.73 (0.13) 0.85 (0.23) 0.86 (0.16)

AUC, area under the curve; SD, Standard Deviation; SVC, Support Vector
Classifier.

A. Pecchi et al.
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MR-sequence was able to highlight significantly different elements be-
tween BRCA1 mutated and non-mutated patients. Instead, the model
fitted with the features extracted from the tumor only was not able to
discriminate between mutated and non-mutated patients.

Features both related to the contrastographic wash-in and wash-out
map were analyzed and those significantly different in the two groups of
women are all features related to the wash-out gland and tumor map.

Total energy and correlation, both extracted from wash out glan-
dular tissue map, were significantly higher within BRCA1 mutated pa-
tients. Total Energy is a measure of the magnitude of voxel values, scaled
by the volume of the voxel. BRCA1-mutated patients showed higher
Total Energy in wash-out gland maps, suggesting that the contrast agent
remained longer in glandular tissue of BRCA1-mutated than non-
mutated patients. Therefore, we hypothesized that mutated patients
may have a slower wash out of the gland. Also, Correlation from Gray
Level Co-occurrence matrix was higher in BRCA1-mutated patients.
Correlation shows the linear dependency of gray levels to their respec-
tive voxel in GLCM, hence the more the voxel intensity is correlated to its
position, the greater the correlation will be. It follows that BRCA1-
mutated patients showed a more regular pattern and a greater tissue
homogeneity when releasing the contrast agent. This was true also for
the wash-in maps, in which Correlation was higher for BRCA1-mutated
patients, but the difference was not statistically significant. Overall, the
radiomics texture of the glandular tissue enhancement in BRCA1 carriers
showed values of greater intensity and higher homogeneity in the vol-
ume unit, which may possibly reflect a more regular microenvironment
that retains the contrast medium for longer.

In agreement with our study, several works in literature have high-
lighted the relevance of these features in the construction of a radiomic
signature that can fulfill both predictive and discriminative tasks in the
oncology setting such as neurology, and gastroenterology [27–30].

The only feature from tumor segmentation selected by MRMR which
differed significantly among BRCA1 mutated and non-mutated patients
was Root Mean Squared, related to the magnitude of the wash-out map
values, showing that also in the tumor district the BRCA1-mutated pa-
tients maintained a larger amount of contrast agent at the end of the
scan. This feature appears in different works in predictive analyses of
outcome and tumor aggressiveness falling within the lesion analysis of
heterogeneity and entropy. For example, it emerged significant in pre-
dictive models linked to lung, cervical and stomach cancers [31–33].

This study has some limitations. Firstly, the retrospective nature of
the study prevented us from adopting a standardized protocol in MRI
examination. However, all the included studies were conducted on the
same scanner and the use of DCE sequences with standardized acquisi-
tion parameters allowed us to minimize the effect of the retrospective
design. Secondly, the sample size is limited and external validation is
lacking.

5. Conclusions

In conclusion, in this study DCE-MRI radiomic models showed
promising performance in the discrimination between non BRCA-
mutated and BRCA1-mutated patients, especially for models fitted
with features derived from both tumor and glandular tissue or from
glandular tissue only. Differences in glandular radiomics features be-
tween mutated and non-mutated patients may reflect different tissue
characteristics, likely involved in contrast media distribution, and
possibly related to the genomic subgroup. The radiomic texture of the
glandular tissue and of the tumor in the dynamic contrast sequence
highlighted significant differences in women carrying the mutation
compared to those without mutation, not detectable by the standard
enhancement evaluation and tumors intensity-time curves.

Our study has highlighted the possibility to detect features related to
the genomic assessment different between mutated and non-mutated
patients in breast MR.

These results may contribute to the advancements in the field of

breast radiogenomic but should be confirmed in larger and prospective
studies with external validation cohorts.
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