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A B S T R A C T

Elastomers are typically considered incompressible or slightly compressible. However, we
present simple tension and bulk tests showing that, under large deformations, these materials
can undergo significant volume changes. A review of the literature reveals the lack of an
accurate hyperelastic model for finite volumetric deformations of elastomers. Therefore, we
propose a new volumetric strain energy density (SED) that overcomes the limitations of
the current models. The main advantages of the proposed SED are: (1) accurate description
of the response of rubbers for both small and large volumetric deformations; (2) ability
to reproduce diverse behaviors during volume shrinkage and expansion; (3) adaptability to
other compressible materials, such as soft tissues, foams and hydrogels. Using the deviatoric–
volumetric split of the strain energy, the proposed volumetric SED is combined with a suitable
deviatoric part selected from the literature. The parameters of the combined SED are calibrated
by fitting the model to the experimental data from simple tension and bulk tests. As a result, an
accurate description of the response of elastomers under both shape and volume deformations
is provided. The proposed SED can be implemented in numerical codes to capture the effects
of volumetric deformations on the equilibrium solutions for various stress states.

. Introduction

Due to their ability to withstand large elastic deformations, elastomers have received a great deal of attention in engineering
echnology. Many applications can be found in the biomedical field, with a particular focus on tissue engineering for cardiac and
ascular systems (Yang et al., 2004; Ye et al., 2018). The low weight and high stretchability of rubbers make them suitable for
ndustrial applications such as insulation, tires, airbags and food packaging (Loew et al., 2019; Baschetti and Minelli, 2020). Seismic
solation devices are usually composed of elastomers, which are capable of absorbing much of the impact of an earthquake (Tsang,
008). Rubber nanocomposites assumed great importance because of their many applications in day-to-day life and fields of
ngineering such as electronics and automotive (Liu et al., 2018; Sethulekshmi et al., 2022; Pelliciari and Tarantino, 2022). All
he technological applications of elastomers involve large deformations and thus mechanical modeling requires concepts of finite
lasticity.

The common approach in the modeling of elastomers is to consider these materials as incompressible. This is based on the
bservation that their bulk modulus is much larger than their shear modulus (Warfield et al., 1970; Boyce and Arruda, 2000;
ott et al., 2008). Such an assumption simplifies considerably the mathematical form of the equilibrium problems and therefore it

as been adopted by many researchers (Khajehsaeid et al., 2013; Horgan, 2015; Zhang et al., 2022). However, even under the
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hypothesis of incompressibility, analytical solutions in finite elasticity have been derived only for simple stress states such as
uniaxial and equibiaxial tension. Hence, material models for rubbers are generally implemented in finite element (FE) codes to
solve more complex problems. The implementation of incompressible constitutive models results in serious convergence problems
due to volumetric locking (Armero, 2000; Heisserer et al., 2008). In addition, several experimental tests indicated that some rubbers
are actually compressible (Blatz and Ko, 1962; Starkova and Aniskevich, 2010; Kugler et al., 1990; Steck et al., 2019). Thus, some
researchers developed compressible and slightly compressible models to overcome the above issues (Levinson and Burgess, 1971;
Bischoff et al., 2001).

Horgan and Saccomandi (2004) developed a constitutive model for slightly compressible materials that reflects limiting chain
xtensibility. Peng et al. (2021) proposed an extension of the Mooney–Rivlin hyperelastic model introducing a term that takes into
ccount compressibility. Lengyel et al. (2016) studied the interface crack between a compressible elastomer and a rigid substrate
nd found that the solution was sensitive to the bulk properties of the material. Li et al. (2008) adopted a compressible constitutive
aw for rubber-like materials to describe the evolution of damage due to the Mullins effect and the cavity growth process. Landis
t al. (2022) analyzed the surface wrinkles and creases in constrained dielectric elastomers under electromechanical loading by
ssuming a compressible material model. Angeli et al. (2013) proposed analytical solutions for carbon fiber-reinforced isolators
ith compressible elastomer subjected to compression and bending.

The most convenient method to study compressible hyperelastic materials is to introduce the deviatoric–volumetric decoupling
f the SED (Sansour, 2008). The advantage is that with this approach the isochoric and volumetric behaviors can be treated
ndependently. Numerous studies in the literature have been focused on modeling the deviatoric material response (see, e.g., Ogden
t al., 2004; Steinmann et al., 2012; Destrade et al., 2017; Mihai and Goriely, 2017; Singh and Racherla, 2022; Zhou et al., 2023),
ut only a few authors analyzed the volumetric behavior. In fact, only a few hyperelastic models for the volumetric contribution
xist in the literature (Moerman et al., 2020). Likewise, numerous experimental tests have been carried out to derive the stress vs.
tretch response of rubbers when subjected to large deformations. However, only a few experimental works focused on measuring the
olumetric deformations (Adams and Gibson, 1930; Bridgman, 1945). As a consequence, there is still a lack of accurate descriptions
f the volumetric response of elastomers under large strains, from both experimental and analytical points of view.

In the present work, we present simple tension and bulk (volumetric compression) tests carried out on four kinds of elastomers.
uring the simple tension tests, we measured both longitudinal and lateral stretches with digital image correlation (DIC). In this way,

n addition to the stress vs. stretch curves, we detected also the volume changes during the deformation process. The combination
f the results from simple tension and bulk tests gives the volumetric response of each rubber under both volume shrinkage and
xpansion. For small stretches, the rubbers analyzed are nearly incompressible. However, for large stretches, some of the specimens
xhibit volume expansions up to 60% and volume shrinkage around 10%–15%. Therefore, the assumption of incompressibility may
ot be accurate when dealing with problems involving large deformations.

We review the current volumetric SED formulations available in the literature and we perform a fitting to the experimental data.
e demonstrate that the current formulations are not capable of providing an accurate description of the volumetric response of

ubbers under large deformations. Thus, we propose a new volumetric SED that overcomes the limitations of the current theories.
he proposed model is fitted to the experimental data and the results show accurate predictions.

With the aim of coupling the volumetric and deviatoric contributions, we consider the most common incompressible strain
nergy functions from the literature and we select the most suitable one by comparing their performance. We couple the selected
ncompressible model with our proposed volumetric SED and we present the equilibrium solutions for compressible materials. A final
itting to the experimental data is performed, providing an accurate description of both deviatoric (shape changing) and volumetric
esponses. To the knowledge of the authors, the fitting of a SED that includes both deviatoric and volumetric contributions for large
eformations and volume changes in rubbers has not been carried out yet.

. Theoretical background and research methods

The mechanical response of rubbers is typically investigated in the context of finite elasticity, due to the capability of
hese materials to undergo large elastic deformations. Hyperelasticity and isotropy are the most common assumptions of the
henomenological models for rubber-like materials (Rivlin and Saunders, 1997; Haines and Wilson, 1979; Pelliciari et al., 2022).
n hyperelasticity, the mechanical properties of the material are described by a SED function 𝑊 . Under the assumption of isotropy,
𝑊 is a symmetric function of the principal strain invariants or the principal stretches (Upadhyay et al., 2019), namely

𝑊 = 𝑊 (𝐼1, 𝐼2, 𝐼3) = 𝑊̃ (𝜆1, 𝜆2, 𝜆3), (1)

with 𝐼1, 𝐼2 and 𝐼3 defined as

𝐼1 = tr𝐁 = 𝜆21 + 𝜆
2
2 + 𝜆

2
3, 𝐼2 =

1
2
[

(tr𝐁)2 − tr
(

𝐁2)] = 𝜆21𝜆
2
2 + 𝜆

2
1𝜆

2
3 + 𝜆

2
2𝜆

2
3, 𝐼3 = det 𝐁 = 𝜆21𝜆

2
2𝜆

2
3, (2)

where 𝐁 = 𝐅𝐅𝑇 is the left Cauchy–Green deformation tensor, 𝐅 is the deformation gradient, and 𝜆1, 𝜆2 and 𝜆3 are the principal
stretches. In the following, we consider the principal strain invariants as independent variables.

The first Piola–Kirchhoff stress tensor is defined as

𝐏 = 𝜕𝑊 = 2
(

𝜕𝑊 + 𝐼1
𝜕𝑊

)

𝐅 − 2 𝜕𝑊 𝐁𝐅 + 2𝐼3
𝜕𝑊 𝐅−𝑇 . (3)
2

𝜕𝐅 𝜕𝐼1 𝜕𝐼2 𝜕𝐼2 𝜕𝐼3
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This tensor provides a measure of stress referred to the initial configuration. The true stress, which is referred to the deformed
configuration, is provided by the Cauchy stress tensor

𝐓 = 1
𝐽
𝐏𝐅𝑇 , (4)

where 𝐽 =
√

𝐼3 = det 𝐅 measures the volume change during deformation.
Material incompressibility is an assumption usually accepted in the theory of rubber elasticity. In this case, the only admissible

eformations are isochoric (Pucci and Saccomandi, 2002), namely 𝐽 = 𝜆1𝜆2𝜆3 = 1. The SED is a function of 𝐼1 and 𝐼2 only, and the
Cauchy stress tensor 𝐓 is expressed by

𝐓 = −𝑝𝐈 + 2 𝜕𝑊
𝜕𝐼1

𝐁 − 2 𝜕𝑊
𝜕𝐼2

𝐁−1, (5)

where 𝑝 is a pressure term introduced by the incompressibility constraint.
When dealing with compressible materials, volume changes are considered by defining the SED as a function of all three

invariants 𝐼1, 𝐼2 and 𝐼3 (or 𝐽 ). The general expression of the SED is

𝑊 = 𝑊𝑐
(

𝐼1, 𝐼2, 𝐽
)

+𝑊ℎ (𝐽 ) , (6)

where 𝑊𝑐 and 𝑊ℎ are respectively the compressible and the hydrostatic terms of the strain energy. Both terms contribute to the
response to a volume change, whether or not 𝐽 appears explicitly in 𝑊𝑐 (Bischoff et al., 2001). The most convenient approach to
develop phenomenological models for compressible materials is to introduce the so-called deviatoric strain invariants, defined as

𝐼1 = 𝐽−2∕3𝐼1, 𝐼2 = 𝐽−4∕3𝐼2. (7)

This allows to write the SED as the sum of two uncoupled terms, responsible for the deviatoric (shape changing) and volumetric
(volume changing) deformations. The SED assumes the form

𝑊 = 𝑊𝑑
(

𝐼1, 𝐼2
)

+𝑊ℎ (𝐽 ) , (8)

where 𝑊𝑑 is the deviatoric term of the strain energy. The deviatoric–volumetric split brings advantages in the material characteri-
zation because only 𝑊ℎ is responsible for the material response to pure volumetric deformations.

The Cauchy stress tensor reads

𝐓 = 𝐓𝐝 + 𝑡ℎ𝐈, (9)

being 𝐓𝐝 the deviatoric part of the Cauchy stress, 𝑡ℎ the hydrostatic stress and 𝐈 the identity tensor. The hydrostatic stress is defined
as (Moerman et al., 2020)

𝑡ℎ = 1
3

tr(𝐓). (10)

In case of the deviatoric–volumetric split, the hydrostatic stress can be directly computed as

𝑡ℎ =
𝑑𝑊ℎ(𝐽 )
𝑑𝐽

. (11)

he above relations allow independent characterization of the volumetric part 𝑊ℎ on the basis of experimental tests in which the
olume changes are measured. Combining Eqs. (10) and (11), the relation between the stress and 𝑊ℎ for the case of simple tension
est becomes

1
3
𝑡1 = 𝑡ℎ =

𝑑𝑊ℎ(𝐽 )
𝑑𝐽

, (12)

here 𝑡1 is the principal Cauchy stress in the longitudinal direction, while the two lateral principal stresses are zero (𝑡2 = 𝑡3 = 0).
n the case of bulk (volumetric compression) testing of rubbers, as described in Appendix A.2, the expression of the principal stress
n longitudinal direction becomes

𝑡1 ≈ 𝑡ℎ =
𝑑𝑊ℎ(𝐽 )
𝑑𝐽

. (13)

2.1. Structure of this research

The steps and methods of the present research are summarized in the scheme of Fig. 1. A brief description of each step is provided
in the following.

(1) Simple tension and bulk tests performed on four kinds of rubbers are presented. The stress vs. stretch curves and the 𝑡ℎ vs. 𝐽
curves are obtained.

(2) The currently available volumetric SED formulations are analyzed and their limitations are discussed. Consequently, a new
volumetric SED function that overcomes such limitations is proposed. The model parameters are fitted on the experimental 𝑡ℎ
vs. 𝐽 data.

(3) The most common strain energy functions for the deviatoric part of the SED are reviewed. Each model is fitted to the
experimental data in simple tension and the most suitable formulation is selected.
3
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Fig. 1. Flowchart showing the steps and methods of the present work.

(4) The combined SED is obtained by assembling the deviatoric and the proposed volumetric parts. The model describes both
shape and volume changes of compressible rubbers under large deformations.

The paper is organized as follows. In Section 3 we present the experimental tests, in which large volume changes in rubbers are
observed. In Section 4 we review and analyze the most common volumetric SED formulations available in the literature. The results
show that there is a need for an accurate model for large volume deformations of elastomers. Therefore, a novel volumetric SED
formulation is proposed in Section 5. In Section 6 we select a suitable model for the deviatoric part of the SED by analyzing the
ones available in the literature. The volumetric and deviatoric parts are combined and the final results are presented in Section 7.
Finally, the conclusions are drawn in Section 8.

3. Experiments

In this section, we present simple tension tests and bulk tests carried out on four kinds of rubber: EPDM (ethylene propylene
diene monomer), NBR (nitrile butadiene rubber), NR (natural rubber) and silicone.

3.1. Simple tension test

Three dogbone specimens were prepared for each rubber considered. The specimens had an effective length of 60 mm, a height
of 7 mm and a thickness of 1 mm. The tests were performed using the testing machine Instron 5567. The elongation was applied
with a displacement rate of 500 mm/min.

Digital image correlation was employed to monitor the displacement field during each test. In particular, as shown in Fig. 2(a),
a Nikon D3200 camera was used to record a video throughout the experiment. The camera was positioned in front of the specimen
with an orthogonal view, which was ensured by properly installing a tripod. The camera recorded a video of the test from the initial
load application to the specimen failure. From the video, 100 frames were extracted with regular time intervals. The captured images
were then imported to MATLAB and processed with the open-source DIC package Ncorr (Blaber et al., 2015).

A rectangular region of interest (ROI) was defined in the central part of the rubber specimen, where the strains are expected to be
homogeneous. The dimension of the region of interest was 40 mm x 5.5 mm. The DIC analysis with Ncorr provided the displacement
and strain fields in both longitudinal and lateral directions. Contour plots of the test on NBR are displayed in Fig. 3. We observe
that inside the ROI both longitudinal and lateral strains 𝜀𝑥 and 𝜀𝑦 are homogeneous. Since Ncorr computes the Green–Lagrange
strain components (Zheng et al., 2020), the corresponding values of stretch components were computed as 𝜆𝑥 =

√

1 + 2𝜀𝑥 and
𝜆𝑦 =

√

1 + 2𝜀𝑦. As a double check, the images were post-processed with the MATLAB application Ncorr_post. Virtual extensometers
were placed inside the ROI along 𝑥 and 𝑦 directions. The software computed the relative displacements, from which stretches were
calculated and it was checked that the strain fields were accurate.

The nominal stress 𝜎𝑥 was computed as 𝐹∕𝐴, where 𝐹 is the force applied by the testing machine and 𝐴 is the cross-section area
of the specimen in the initial configuration (7 mm x 1 mm). In this way, the stress vs. stretch curve was derived from each test. For
each rubber, three tests were carried out on the three specimens prepared. Since there was not much variation in the results of the
three tests, we consider the average data of stretches and stresses.

The experimental data are displayed in Figs. 4(a) and 4(b) in terms of 𝜎𝑥 vs. 𝜆𝑥 and 𝜆𝑦 vs. 𝜆𝑥 curves, respectively. Fig. 4(b)
shows a representation of the incompressible limit, expressed by 𝜆𝑦 = 1∕

√

𝜆𝑥. We observe that the response of all four rubbers is
very close to incompressibility for relatively small strains. EPDM and NBR start to deviate at values of longitudinal stretch around
1.35 and 1.15 respectively. On the other hand, NR and silicone are nearly incompressible throughout the deformation process and
show sensible deviations only for very large deformations. The above behaviors are explained by the fact that both EPDM and NBR
compounds contain a significant amount of specific fillers, such as carbon black. Instead, the amounts of filler in the NR and silicone
4
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Fig. 2. Experimental tests on elastomers. (a) Simple tension test performed on a dogbone specimen. The test was monitored with a camera and the displacement
field was obtained through digital image correlation (DIC). (b) Bulk test performed on a cylindrical specimen. The specimen was inserted into a rigid annulus
and a steel piston was used to apply the axial load.

Fig. 3. Contour plots in the selected region of interest (ROI) obtained from DIC analysis with MATLAB software Ncorr. Figures (a) and (b) show respectively
longitudinal and lateral displacement fields, while figures (c) and (d) show longitudinal and lateral strain fields, respectively. The plots are referred to the simple
tension test on NBR at the step corresponding to longitudinal stretch 𝜆𝑥 = 1.5.
5
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t

Fig. 4. Results from simple tension tests on EPDM, NBR, NR and silicone. (a) Nominal stress 𝜎𝑥 vs. longitudinal stretch 𝜆𝑥 and (b) lateral stretch 𝜆𝑦 vs.
longitudinal stretch 𝜆𝑥. The black curve shows the behavior of incompressible materials, expressed by 𝜆𝑦 = 1∕

√

𝜆𝑥.

considered in this work are very low. A higher compressibility associated with an increase in filler content was observed also in
other works (Gurvich and Fleischman, 2003; Omnès et al., 2008).

Only a few experimental measurements of the lateral deflection in rubbers were reported in the literature. The results of such
experiments seem to agree with the ones presented in this work. Starkova and Aniskevich (2010) performed uniaxial tension tests
on silica-filled SBR rubber and measured the Poisson’s ratio 𝜈 during the experiments. They found out that for small stretches
the response is close to incompressibility (𝜈 ≈ 0.5), while for large deformations 𝜈 becomes stretch-dependent and the material is
compressible. Kugler et al. (1990) considered five elastomers and reported measurements of volume changes during simple tension
tests, which showed once again that compressibility increases with the deformation.

3.2. Bulk test

The bulk (or volumetric compression) test involves the application of an axial compressive load on a cylindrical specimen inserted
into a rigid annulus. The deformation of the cylindrical specimen is homogeneous and the longitudinal stretch equals the volume
change. In fact, the lateral deformation is constrained (𝜆𝑦 = 𝜆𝑧 = 1) and we have that 𝜆𝑥 = 𝐽 .

Three cylindrical specimens with a height of 12 mm and a diameter of 10.5 mm were prepared for each rubber. A cylindrical steel
block with a circular hole was manufactured. The hole had a depth of 20 mm and a diameter of 10.55 mm. The rubber specimen
was inserted into the hole so that its side walls were fixed. Note that the diameter of the hole in the steel block was slightly larger
than that of the specimen so as to allow smooth insertion and removal.

As shown in Fig. 2(b), a steel piston with the same diameter as the cylindrical specimen was used to apply the axial load. The tests
were performed by using the testing machine Instron 5567 equipped with a 30 kN load cell. A limit on the applied load was set to
26 kN, which corresponds to an axial stress on the specimen of around 300 MPa. The displacement was applied with a displacement
rate of 2 mm/min. At the beginning of the test, the lateral walls of the specimen were still not perfectly constrained by the rigid
annulus, due to a slightly smaller diameter. Thus, the data until an applied force of 4 𝑁 were removed. Such a force corresponds to
an axial stress of approximately 0.05 MPa. This cut-off value was defined by computing the axial stress corresponding to a lateral
strain of 0.48%, which is the condition where the specimen touches the internal walls of the rigid annulus. Since the strains are still
small, this simple computation was done by assuming a linear elastic response with Poisson’s ratio 0.5 and Young’s modulus 5 MPa.

The force vs. displacement data were converted into stress vs. stretch data. In this test, the nominal stress 𝜎𝑥 is equal to the true
stress 𝑡𝑥. Hence, for convenience in the following analysis, the results are given in Fig. 5(a) in terms of true stress as a function of
𝐽 . The curves show that, at the maximum level of stress, all four rubbers undergo large volumetric changes (up to 10%–15% of
shrinkage).

The above results show the response of the rubbers in terms of 𝑡𝑥 vs. 𝐽 curve when 𝐽 < 1 (shrinkage). To have a comprehensive
picture of the volumetric changes in the materials, we extracted the 𝑡𝑥 vs. 𝐽 curve from the experimental data from the simple
tension tests, which show the response when the volume is expanding (𝐽 > 1). The results are shown in Fig. 5(b).

As discussed in detail in Appendix A.2, it can be assumed that for rubber-like materials the axial stress measured during the bulk
est is approximately equal to the hydrostatic stress (𝑡ℎ ≈ 𝑡𝑥). In light of this, the bulk modulus 𝜅 was derived from the slope of the

experimental data from bulk tests in the small-strain domain. In shrinkage, the range of small strains was identified by observing
until what magnitude of deformation the material response was still approximately linear. For the rubbers considered, the linear
behavior is restricted to a shrinkage of 2h. The estimated values of 𝜅 are reported in Table 1 and a detail of the experimental data
from bulk tests in the small-strain region is shown in Fig. 6.
6
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Fig. 5. Cauchy stress 𝑡𝑥 as a function of volume change 𝐽 from experimental tests on EPDM, NBR, NR and silicone. Figure (a) shows the response obtained
from the bulk tests, where the specimens are subjected to shrinkage (𝐽 < 1), while figure (b) shows the response from simple tension tests, where the volume
of the specimens is expanding (𝐽 > 1).

Table 1
Values of bulk modulus 𝜅 calibrated from the experimental data from bulk tests
in the small-strain domain (up to a shrinkage of 2‰).
Rubber EPDM NBR NR Silicone

𝜅 (MPa) 490 410 710 670

Fig. 6. Detail of the experimental data from bulk tests. The values of bulk modulus reported in Table 1 were calibrated in the small-strain region, up to a
shrinkage of 2h, where the response of all the rubbers is approximately linear. The dashed lines represent the linear response given by 𝜅(𝐽 − 1).

4. Current formulations for the volumetric part of the SED

Taking advantage of the decomposition of the strain energy function, expressed in Eq. (8), several researchers proposed
formulations for the volumetric part 𝑊ℎ of the SED to capture the volumetric response of solids under large volumetric changes.
Firstly, we give a brief description of the most significant formulations found in the literature. Then, we analyze the capability of
such formulations to model the volumetric response of rubbers. To do this, we fit each model to the experimental data presented
in the previous section.

We recall that for the bulk test on rubber-like materials, we can assume that 𝑡ℎ ≈ 𝑡𝑥. As regards the experimental 𝑡𝑥 vs. 𝐽 curves
from simple tension tests reported in Fig. 5(b), the hydrostatic stress is derived as 𝑡ℎ = 𝑡𝑥∕3 (see Eq. (12)). Hence, the experimental
data from both bulk and simple tension tests shown in Fig. 5 are converted in 𝑡ℎ vs. 𝐽 curves. We will refer to these experimental
curves throughout this section.
7
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Table 2
Current volumetric SED formulations from the literature.
Formulation 𝑊ℎ(𝐽 )

Hencky (1933) 𝜅
2
ln (𝐽 )2

Simo (1988) 𝜅
2
(𝐽 − 1)2

Doll and Schweizerhof (2000) 𝜅
𝛼 + 𝛽

(

1
𝛼 + 1

𝐽 𝛼+1 + 1
𝛽 − 1

𝐽−(𝛽−1)
)

− 𝜅
(𝛼 + 1)(𝛽 − 1)

Montella et al. (2016) 𝜅
2𝛽1

(

𝑒𝛽1 ln (𝐽 )2 − 1
)

+
𝜅2
𝑚𝛽2

(

𝑒𝛽2 | ln (𝐽 )|𝑚 − 1
)

Moerman et al. (2020), No. 3 𝜅
[

−(1 − 𝑞)𝑎2 ln
(

cos
( 𝐽 − 1

𝑎

))

+ 𝑞𝑏2 ln
(

cosh
( 𝐽 − 1

𝑏

))]

4.1. Review of current formulations

Table 2 gathers the most common volumetric SED formulations, which are discussed in the following. The two functions proposed
y Hencky (1933) and Simo (1988) are implemented in many finite element codes. Their success lies in their mathematical simplicity.
owever, despite providing good performance for nearly-incompressible materials (𝐽 ≈ 1), they lead to unrealistic behaviors when

dealing with large volumetric changes.
Doll and Schweizerhof (2000) proposed a three-parameters volumetric function that allows control in both shrinkage and

expansion through parameters 𝛼 and 𝛽. In their work, the authors established 9 criteria that should be fulfilled by the volumetric
ED to ensure physically consistent behavior of the material during shrinkage and expansion (see Table 2 in Doll and Schweizerhof
2000)). To satisfy such criteria, the constraints on parameters 𝛼 and 𝛽 are: 𝛼 > 0 and 𝛽 > 1. Parameter 𝛼 increases the response in

expansion while slightly limiting the response in shrinkage, whereas parameter 𝛽 produces the opposite effect. Note that the control
n the response in shrinkage and expansion is not independent, since 𝛼 and 𝛽 have an effect on both branches.

Montella et al. (2016) proposed a five-parameters formulation developed starting from the exponentiated Hencky strain energy,
irstly presented by Neff et al. (2015). The 9 criteria established in Doll and Schweizerhof (2000) are respected with the following
onstraints on the model parameters: 𝛽1 ≥ 1∕8, 𝛽2 ≥ 1∕8, and 𝑚 > 2. This formulation does not offer independent control on the

response for shrinkage and expansion.
Moerman et al. (2020) added a tenth requirement to the 9 described by Doll and Schweizerhof, which states that the volumetric

part of a hyperelastic model should be capable of describing strain stiffening for all values of 𝐽 . This means that the control of
train stiffening should be independent for shrinkage and expansion. In Moerman et al. (2020), the authors proposed three novel
ormulations for the volumetric strain energy function. Formulation No. 3, which is the most refined one, involves three parameters
, 𝑏 and 𝑞 that assume different values for expansion and shrinkage. In particular, the parameters are defined as

𝑎 = 2
𝜋

{

𝐽1 − 1, 𝐽 ≥ 1
𝐽2 − 1, 𝐽 < 1

𝑏 = 1
𝜅

{

𝑠1, 𝐽 ≥ 1
𝑠2, 𝐽 < 1

𝑞 =

{

𝑞1, 𝐽 ≥ 1
𝑞2, 𝐽 < 1

(14)

This ensures that the formulation offers a completely independent control of the two branches. Including 𝜅, the parameter values
that must be calibrated are 7. More details about all the above formulations can be found in Moerman et al. (2020).

In the following, we fit the volumetric SED formulations to the experimental data presented in Section 3 for EPDM, NBR, NR
and silicone. The simple formulations proposed by Hencky (1933) and Simo (1988) do not fulfill the previously mentioned criteria
of physical plausibility. Hence, we will not report the results obtained with such formulations. In addition, it is obvious that the
other formulations that involve more parameters will provide a better response.

It goes without saying that in the literature there are other volumetric SED models in addition to those considered in this work.
For instance, the formulations proposed by Bischoff et al. (2001), Ogden (1972), Hill (1979), and Horgan and Murphy (2009b).
However, such formulations do not fulfill all the criteria of physical plausibility and provide accurate behaviors only for small or
moderate volume changes. Hence, they are not capable of accurately reproducing the response of the rubbers analyzed in this work
during both volume shrinkage and expansion. For the above reasons, they were not considered in this work.

4.2. Fitting to experimental data

The hydrostatic stress was computed as 𝑡ℎ = 𝑑𝑊ℎ∕𝑑𝐽 for each of the volumetric SED formulations described above. The analytical
expression was fitted to the experimental data from simple tension and bulk tests by using the FindFit function in software Wolfram
Mathematica.

For each rubber, the bulk modulus was fixed to its corresponding value given in Table 1. To perform an in-depth study of the
advantages and limitations of each material model for both shrinkage and expansion, the fitting was done by considering separately
the experimental data for 𝐽 < 1 and 𝐽 >. Hence, two sets of calibrated parameters were obtained for each formulation (note that the
formulation by Moerman et al. already involves two values for each parameter). The calibrated parameters are reported in Table B.4
and the 𝑡ℎ vs. 𝐽 curves for each type of rubber are displayed in Fig. 7.

From Figs. 7(a), 7(c), 7(e) and 7(g), we observe that none of the current formulations provides accurate results when the volume
of the rubber specimens is shrinking. This happens because most of the formulations were defined to capture the volumetric response
8
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Fig. 7. Fitting of current volumetric SED formulations to the experimental data from bulk tests (Figs. (a), (c), (e) and (g)) and simple tension tests (Figs. (b),
(d), (f) and (h)) for (a) and (b) EPDM, (c) and (d) NBR, (e) and (f) NR, and (g) and (h) silicone. The following acronyms are used: D = Doll and Schweizerhof
(2000); MT = Montella et al. (2016); MO = Moerman et al. (2020).
9
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of foams and hydrogels, which is substantially different from the response of elastomers. The elastic volume reductions in foams
and hydrogels can reach easily values around 60 − 80% (Bardy et al., 2005; Petre et al., 2006) and strain stiffening typically takes
place in a smooth way. On the other hand, starting from the initial configuration at 𝐽 = 1, elastomers show a pronounced strain
stiffening for small reductions of 𝐽 . Then, the rate of stiffening decreases and stabilizes.

Figs. 7(b) and 7(d) show the behavior of EPDM and NBR when the volume is expanding. Except for the formulation by Montella
t al., the current formulations give quite accurate descriptions of the volumetric response. However, as shown in Figs. 7(f) and
(h), for NR and silicone the predictions are inaccurate. This happens because the rubbers are nearly incompressible when 𝐽 ≈ 1,

then they show an abrupt reduction in stiffness (softening) that takes place for relatively low values of 𝐽 . The description of such
behavior requires a high degree of nonlinearity. For instance, the SED proposed by Moerman et al. is perfectly capable of reproducing
both strain softening and stiffening in foams, which occurs smoothly and generally for much larger volume changes. However, the
response of elastomers requires functions that capture these behaviors for smaller deformations and thus more rapidly.

In light of the above considerations, there is still a lack of a formulation that gives a comprehensive description of the volumetric
response of elastomers. In the next section, we propose a new function that overcomes the limitations of the formulations currently
available in the literature.

5. The proposed volumetric SED

The main limitations of the formulations currently available in the literature are the following:

• Most of them were developed for foams and hydrogels, therefore they do not accurately reproduce the volumetric response
of elastomers. The main reason for this is that elastomers show pronounced strain stiffening and softening even for relatively
small volume variations (𝐽 ≈ 1).

• The formulations do not allow independent control of strain stiffening in shrinkage and expansion, except from the one
proposed by Moerman et al. (2020).

• The above formulation involves parameters that assume two different values for 𝐽 < 1 and 𝐽 ≥ 1, but the form of the energy
function is the same. For rubbers, and perhaps other materials, it is convenient to have two different response functions defining
the diverse behaviors in shrinkage and expansion.

n this section, we propose a new volumetric SED function that overcomes the limitations described above. The aim is to develop a
ormulation that gives an accurate description for both small and large volume changes.

.1. The proposed function

The proposed volumetric SED is expressed by

𝑊ℎ (𝐽 ) = 𝜅
[

𝐻 (1 − 𝐽 )𝛹𝑐 +𝐻 (𝐽 − 1)𝛹𝑡
]

, (15)

here 𝐻 is the Heaviside step function, defined as

𝐻 (𝑥) =

⎧

⎪

⎨

⎪

⎩

0, 𝑥 < 0
1∕2, 𝑥 = 0
1, 𝑥 > 0

(16)

nd 𝛹𝑐 and 𝛹𝑡, which control shrinkage and expansion respectively, are expressed by

𝛹𝑐 (𝐽 ) =
1

𝛼1 + 𝛼2 − 𝛼3

[(

𝐽 + 𝐽 𝛼1+1

𝛼1 + 1
+ 𝐽−(𝛼2−1)

𝛼2 − 1
− 𝐽 𝛼3+1

𝛼3 + 1

)

−
(

1 + 1
𝛼1 + 1

+ 1
𝛼2 − 1

− 1
𝛼3 + 1

)]

, (17)

𝛹𝑡 (𝐽 ) = (1 − 𝑞)
[

𝛽2𝑒𝛽1(𝐽−1) + 𝛽1𝑒−𝛽2(𝐽−1)

𝛽1𝛽2(𝛽1 + 𝛽2)
− 1
𝛽1𝛽2

]

+ 𝑞𝛽23 ln
(

cosh
(

𝐽 − 1
𝛽3

))

. (18)

he use of the Heaviside step function allows an independent control of shrinkage and expansion. When 𝐽 < 1, 𝐻(𝐽 − 1) vanishes
nd 𝐻(1 − 𝐽 ) equals 1, therefore the energy reduces to 𝜅𝛹𝑐 . On the contrary, when 𝐽 > 1, 𝐻(1 − 𝐽 ) vanishes and 𝐻(𝐽 − 1) = 1.
ence, the energy reduces to 𝜅𝛹𝑡.

The hydrostatic stress for this formulation is1

𝑡ℎ (𝐽 ) =
𝑑𝑊ℎ (𝐽 )
𝑑𝐽

= 𝜅
[

𝐻 (1 − 𝐽 )𝜓𝑐 +𝐻 (𝐽 − 1)𝜓𝑡
]

(19)

with

𝜓𝑐 (𝐽 ) =
𝑑𝛹𝑐 (𝐽 )
𝑑𝐽

= 1 + 𝐽 𝛼1 − 𝐽−𝛼2 − 𝐽 𝛼3
𝛼1 + 𝛼2 − 𝛼3

, (20)

1 From the derivative of the product, the two terms 𝛿(1 − 𝐽 )𝛹𝑐 and 𝛿(𝐽 − 1)𝛹𝑡 arise, where 𝛿 is the Dirac delta function. The above terms vanish because
| |
10

𝛹𝑐 |
|𝐽=1

= 𝛹𝑡|
|𝐽=1

= 0 and therefore the distributional products are identically zero.
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Fig. 8. Effect of parameters 𝛼1, 𝛼2 and 𝛼3 of the proposed volumetric SED, which control the behavior for volume shrinkage. Parameters 𝛼1 (a) and 𝛼3 (c)
are responsible respectively for strain softening and stiffening in the region of small to moderate shrinkage. Parameter 𝛼2 (b) controls hardening during large
volume shrinkage, while it has very little effect for small and moderate deformations. The curves are drawn starting from 𝛼1 = 10, 𝛼2 = 15 and 𝛼3 = 15, then the
parameters are varied one by one.

𝜓𝑡 (𝐽 ) =
𝑑𝛹𝑡 (𝐽 )
𝑑𝐽

= (1 − 𝑞) 𝑒
𝛽1(𝐽−1) − 𝑒−𝛽2(𝐽−1)

𝛽1 + 𝛽2
+ 𝑞𝛽3 tanh

(

𝐽 − 1
𝛽3

)

. (21)

The expression of the hydrostatic stress shows yet again that the Heaviside step function guarantees a separate control on shrinkage
and expansion, regulated by 𝜓𝑐 and 𝜓𝑡 respectively. Due to its discontinuity in 𝐽 = 1, in practical implementations the Heaviside
step function is sometimes replaced by a smooth approximation (Liang et al., 2020). In Appendix C we propose a sigmoid function
to be used for this purpose.

Overall, the model involves seven parameters in addition to the bulk modulus. Parameters 𝛼1, 𝛼2 and 𝛼3 control the response in
shrinkage, while 𝛽1, 𝛽2, 𝛽3 and 𝑞 control the response in expansion. As discussed in detail in Appendix D, the proposed SED fulfills
the 10 requirements reported in Moerman et al. (2020). The parameters have the following constraints:

{

𝛽1 > 0, 𝛽2 > 0, 𝛽3 > 0, 0 ≤ 𝑞 < 1
𝛼1 > 0, 𝛼2 > 1, 𝛼3 > 0, 𝛼1 + 𝛼2 − 𝛼3 > 0

(22)

The term 𝜓𝑐 in the hydrostatic stress, given in Eq. (20), comes from an improvement of the formulation proposed by Doll and
Schweizerhof (2000), at which parameter 𝛼3 was added. The effect of parameters 𝛼1, 𝛼2 and 𝛼3 is displayed in Fig. 8. Parameters
𝛼1 and 𝛼3 produce, respectively, strain softening and stiffening in the range of small to moderate volume shrinkage. Parameter 𝛼2
controls hardening for large volume changes. The combination of parameters 𝛼1 and 𝛼3 allows us to model the rapid strain stiffening
that occurs in rubbers for relatively small shrinkage values.

The term 𝜓𝑡 in the hydrostatic stress, given in Eq. (21), is inspired by the formulation proposed by Moerman et al. (2020). In such
a formulation, the authors used functions tan and tanh to create vertical and horizontal sigmoid functions that simulate hardening
and softening, respectively. However, the tan function is not suitable for the nonlinear behavior of elastomers, and thus it was
replaced by the sum of two exponential functions with exponents 𝛽1 and 𝛽2. The effect of parameters 𝛽1, 𝛽2, 𝛽3 and 𝑞 is displayed in
Fig. 9. Parameter 𝛽1 produces strain stiffening at large volume expansions. The range of 𝐽 values at which strain stiffening activates
is regulated by parameter 𝛽2. Parameter 𝛽3 controls the amplitude of the linear response in small deformations. Finally, 𝑞 is a weight
parameter that regulates the transition from linear to nonlinear responses.

We remark that the proposed volumetric SED involves just one more parameter than the function proposed by Moerman et al.
(2020). Its main advantages are the following:

• The proposed SED is a continuous function of 𝐽 that was developed specifically for elastomers by observing their experimental
behavior under large volume deformations.

• The Heaviside step function (or its smooth approximation) allows independent control of shrinkage and expansion.
• The formulation allows defining not only different parameters for shrinkage and expansion, but also different response

functions. Since elastomers show different volumetric responses for 𝐽 < 1 and 𝐽 > 1, the two functions 𝜓𝑐 and 𝜓𝑡 were
employed.

• When dealing with volumetric deformations of other hyperelastic materials, the response functions 𝜓𝑐 and 𝜓𝑡 can be replaced
by other expressions if necessary.

5.2. Fitting the proposed SED formulation to the experimental data

The expression of the hydrostatic stress 𝑡ℎ as a function of 𝐽 , reported in Eq. (19), was fitted to the experimental data by using
the FindFit function in software Wolfram Mathematica. For each rubber, the value of bulk modulus is given in Table 1. The calibrated
parameters are listed in Table B.5 and the 𝑡 vs. 𝐽 curves for each type of rubber are displayed in Fig. 10.
11
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Fig. 9. Effect of parameters 𝛽1, 𝛽2, 𝛽3 and 𝑞 of the proposed volumetric SED, which control the behavior for volume expansion. Parameter 𝛽1 (a) regulates the
amount of hardening at large volume expansions, while 𝛽2 (b) controls the activation of the hardening in the range of moderate deformations. Parameter 𝛽3 (c)
controls the extent of the linear response and 𝑞 (d) governs the transition from linear to nonlinear responses. The curves are drawn starting from 𝛽1 = 5, 𝛽2 = 1,
𝛽3 = 0.1 and 𝑞 = 0.9, then the parameters are varied one by one.

We observe that, for all the rubbers, the proposed formulation provides accurate descriptions of both responses for volume
shrinkage and expansion. In the case of shrinkage, elastomers show a rapid strain stiffening that occurs for small volume changes.
This effect is captured thanks to the introduction of the new parameter 𝛼3 in function 𝜓𝑐 . In the case of volume expansion, elastomers
are nearly incompressible when 𝐽 ≈ 1 and then an abrupt softening takes place, which is in some cases followed by hardening for
large values of 𝐽 . The exponential terms introduced in function 𝜓𝑡, controlled by parameters 𝛽1 and 𝛽2, allow reproducing such a
behavior. Unlike the formulations currently available in the literature, the proposed model is capable of describing the volumetric
response of rubbers for both small and large deformations.

6. The deviatoric part of the SED

Extensive studies were carried out on strain energy functions for the deviatoric (shape-changing) material response of rubbers.
The goal of this section is not to propose a new formulation, but rather to find the most suitable one for the prediction of the
response of elastomers under large deformations. To this purpose, firstly we review the most common incompressible strain energy
formulations from the literature, then we fit each model to the experimental results in simple tension.

In the developments of this section, we adopt the assumption of incompressibility to investigate which material model provides
the best prediction of the uniaxial response of rubbers, which involves shape-changing deformations. After having determined which
deviatoric SED formulation is the most suitable, we combine it with the proposed volumetric SED presented in the previous section.
The discussion on the final combined formulation will be presented in the next section.

6.1. Review of current incompressible strain energy functions for elastomers

The invariant-based hyperelastic material models are developed as functions of the first invariant or both the first and second
invariants. The generalized Rivlin model (Rivlin and Saunders, 1997) is the foundation of many of the hyperelastic material laws.
It is expressed by

𝑊𝑑
(

𝐼1, 𝐼2
)

=
𝑛
∑

𝑚
∑

𝐶𝑖𝑗
(

𝐼1 − 3
)𝑖 (𝐼2 − 3

)𝑗 . (23)
12
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Fig. 10. Fitting of the proposed volumetric SED formulation to the experimental data from bulk tests (Figs. (a), (c), (e) and (g)) and simple tension tests (Figs.
(b), (d), (f) and (h)) for (a) and (b) EPDM, (c) and (d) NBR, (e) and (f) NR, and (g) and (h) silicone.

In the following, we present a brief review of common hyperelastic models. Their analytical expressions are summarized in Table 3.
Since our only goal here is to select a hyperelastic model that is reasonably accurate for rubbers in simple tension, we limit our
13
study to models that involve at most 4 parameters.
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Table 3
Common deviatoric SED formulations from the literature.
Formulation 𝑊𝑑

Neo-Hookean (Treloar, 1943) 𝐶10
(

𝐼1 − 3
)

Mooney–Rivlin (Rivlin, 1948) 𝐶10
(

𝐼1 − 3
)

+ 𝐶01
(

𝐼2 − 3
)

Yeoh (Yeoh, 1990) 𝐶10
(

𝐼1 − 3
)

+ 𝐶20
(

𝐼1 − 3
)2 + 𝐶30

(

𝐼1 − 3
)3

Gent (Gent, 1996) −
𝜇
2
𝐽𝑚 ln

(

1 −
𝐼1 − 3
𝐽𝑚

)

Gent-Gent (Pucci and Saccomandi, 2002) −𝐶1𝐽𝑚 ln
(

1 −
𝐼1 − 3
𝐽𝑚

)

+ 𝐶2 ln
(

𝐼2
3

)

Yeoh–Fleming (Yeoh and Fleming, 1997) 𝐴
𝐵

(

𝐼𝑚 − 3
) (

1 − 𝑒−𝐵(𝐼1−3)∕(𝐼𝑚−3)
)

− 𝐶10
(

𝐼𝑚 − 3
)

ln
(

1 −
𝐼1 − 3
𝐼𝑚 − 3

)

Carroll (Carroll, 2011) 𝐴𝐼1 + 𝐵𝐼41 + 𝐶𝐼1∕22

Ogden (Ogden, 1972) ∑𝑀
𝑖=1

𝜇𝑖
𝛼𝑖

(

𝜆𝛼𝑖1 + 𝜆𝛼𝑖2 + 𝜆𝛼𝑖3 − 3
)

The simplest among the invariant-based models is the neo-Hookean model (Treloar, 1943), defined as a linear function of the first
nvariant 𝐼1. This function is based on considerations of the statistical molecular theory. Another classical SED for incompressible
aterials is the Mooney–Rivlin model (Rivlin, 1948). In addition to the dependence on the first invariant, it involves a linear
ependence on the second invariant 𝐼2, producing a deviation from the predictions of the molecular theory. The neo-Hookean
nd Mooney–Rivlin models have been widely employed for their simplicity. However, it is well-known that they do not provide
ccurate descriptions of the response of rubbers at large strains (Sirotti et al., 2023). In particular, these models are not able to
imulate the hardening in the stress vs. stretch curve, which is a typical phenomenon observed in most rubber-like materials for
echnological applications. Hence, by analyzing the response of carbon-black-filled rubbers in simple tension, Yeoh (1990) proposed
three-parameter model defined by a combination of the first three powers of invariant 𝐼1. This model is capable of describing the

ncrease of stiffness at large deformations.
One of the most successful phenomenological models to reproduce severe strain stiffening is the one proposed by Gent (1996).

he Gent model corrects the neo-Hookean model by introducing a maximum achievable length of the molecular chains. Parameter
𝑚 denotes the chain extensibility limit. This model has the advantage of mathematical simplicity because it involves just two
onstitutive parameters. However, several authors pointed out that it is not capable of providing an accurate prediction of the
esponse for the full range of deformations (Horgan, 2015). In particular, the Gent model is not accurate for small and moderate
trains.

In view of this, modifications of the Gent model involving more constitutive parameters were proposed in the past. The most
amous one is the so-called Gent-Gent model (Pucci and Saccomandi, 2002), which introduces a logarithmic dependence on the
econd strain invariant. Another modification was proposed by Yeoh and Fleming (1997). The authors combined concepts proposed
y Yeoh and Gent in order to derive a comprehensive SED that is accurate for both small and large strains. The model proposed
n Yeoh and Fleming (1997) depends only on the first strain invariant but it involves four parameters. A more recent model composed
f three parameters was proposed by Carroll (2011). The model was derived by considering firstly the neo-Hookean function and
hen adding terms to model the residual stress in experimental data from simple and equibiaxial extensions.

Lastly, we must mention the well-known hyperelastic model proposed by Ogden (1972). It consists of a combination of terms
epending on the principal stretches raised to variable powers. For consistency with the linearized theory, the constants must satisfy
he following requirement: ∑𝑀

𝑖=1 𝜇𝑖𝛼𝑖 = 2𝜇, where 𝑀 is a positive integer and 𝜇 is the shear modulus.

.2. Fitting of the incompressible models to the experimental data

Among the incompressible SED formulations listed in Table 3, we limited our attention to the Gent model, the Gent-Gent
odel, the Yeoh model, the Carroll model, the Yeoh–Fleming model, and the Ogden model with 𝑀 = 2. The neo-Hookean and
ooney–Rivlin models were not considered because, as previously mentioned, they are not adequate to describe the response for

arge stretches. We fitted the above incompressible SED formulations to the experimental stress vs. strain curves derived from the
imple tension tests (Fig. 4(a)). The analytical stress–strain relation for incompressible materials in simple tension is reported in
ppendix A.1. The fitting was carried out by means of the FindFit function in Wolfram Mathematica. Note that for the Ogden model,
e chose 𝑀 = 2 because we are considering formulations with at most 4 parameters.

The fitting parameters for each formulation are reported in Table B.6. Fig. 11 shows the results of the fitting for the four rubbers
nalyzed in this work. From Fig. 11(a) we observe that, except for the Gent and Yeoh models, all the formulations provide accurate
escriptions of the response of EPDM rubber. However, Fig. 11(b) shows that only the Yeoh–Fleming model is capable of reproducing
he behavior of NBR. All the other models are inaccurate, especially in the range of small to moderate strains (𝜆𝑥 between 1 and
.3). The results in the case of silicone shown in Fig. 11(d) confirm the above observation. Note that the Yeoh–Fleming model
as four parameters, whereas the Gent-Gent, Carroll, and Yeoh formulations only have three. Thus, the better performance of the
eoh–Fleming model is not surprising. However, the Ogden model counts for four parameters as well but it still shows severe
14

imitations. We recall that the Yeoh–Fleming model was devised by combining two terms: one responsible for small strains and the
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Fig. 11. Nominal stress vs. stretch curves obtained by fitting the current incompressible deviatoric SED formulations to the experimental data from simple tension
tests on (a) EPDM, (b) NBR, (c) NR and (d) silicone. The following acronyms are used: Exp = experimental; G = Gent (Gent, 1996); GG = Gent-Gent (Pucci
and Saccomandi, 2002); Y = Yeoh (Yeoh, 1990); C = Carroll (Carroll, 2011); O2 = Ogden (Ogden, 1972) with 𝑀 = 2; YF = Yeoh–Fleming (Yeoh and Fleming,
1997).

other responsible for large strains. The specific nature of this model explains its better performance, which is accurate for both small
and large strains.

In light of the above results, we selected the Yeoh–Fleming model for the deviatoric part 𝑊𝑑 of the SED, which will be coupled
ith our proposed volumetric SED, 𝑊ℎ, in the next section. It is worth mentioning that there are many more incompressible strain
nergy functions for rubbers in the literature. The interested reader can refer to Dal et al. (2021) for a detailed review of isotropic
yperelastic constitutive models for rubber-like materials. In the present work, we only compared some of the most popular ones and
hose the Yeoh–Fleming due to its accuracy in both moderate and large strains. It goes without saying that different formulations
ould be used. For instance, when dealing with soft tissues in problems of biomechanics, other hyperelastic models for 𝑊𝑑 may be
referred (Madireddy et al., 2015; Puglisi and Saccomandi, 2016).

. Combined SED and final results

In Section 5, a new formulation for the volumetric part 𝑊ℎ of the SED was proposed. This was done by analyzing independently
he volumetric response of rubbers. In Section 6, a deviatoric part 𝑊𝑑 of the SED was selected among the most popular in the
iterature. In particular, the Yeoh–Fleming model was found to be the most suitable. The analysis was done by assuming material
ncompressibility, with the sole purpose of investigating the shape-changing deformations of rubbers.

In the present section, the above deviatoric and volumetric parts 𝑊𝑑 and 𝑊ℎ are combined. The resulting SED gives the complete
escription of both shape and volume deformations of rubbers.
15
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Fig. 12. Summary of the steps for fitting the parameters of volumetric and deviatoric parts of the combined SED proposed in this work.

7.1. The combined SED formulation

According to the deviatoric–volumetric decomposition of the SED, the Yeoh–Fleming model is written as a function of the first
deviatoric strain invariant as

𝑊𝑑
(

𝐼1
)

= 𝐴
𝐵

(

𝐼𝑚 − 3
)

(

1 − 𝑒−𝐵(𝐼1−3)∕(𝐼𝑚−3)
)

− 𝐶10
(

𝐼𝑚 − 3
)

ln
(

1 −
𝐼1 − 3
𝐼𝑚 − 3

)

, (24)

where 𝐼1 is defined in Eq. (7). The expression of the proposed volumetric SED, 𝑊ℎ, is reported in Eq. (15). The combined SED is
obtained by summing the two contributions: 𝑊 = 𝑊𝑑

(

𝐼1
)

+𝑊ℎ(𝐽 ).
The equilibrium solution in simple tension is expressed by Eqs. (A.1) and (A.2). The first is an implicit equation that allows us

to compute numerically the lateral stretch 𝜆𝑦 as a function of longitudinal stretch 𝜆𝑥. The second equation gives the expression of
nominal stress 𝜎𝑥 as a function of longitudinal stretch 𝜆𝑥. The derivatives 𝜕𝑊 ∕𝜕𝐼𝑗 , with 𝑗 = 1, 2, 3, are computed by applying the
chain rule.

The equilibrium solution for the bulk test is expressed by Eqs. (A.5) and (A.6), which give closed-form expressions of the
longitudinal and lateral stress components as a function of the volumetric change 𝐽 . We recall that for the bulk test on rubbers,
we have that 𝑡𝑥 ≈ 𝑡ℎ. In fact, in Section 5, the fitting parameters of the proposed function 𝑊ℎ were calibrated by using such
an approximation. However, in the present section, since we are coupling deviatoric and volumetric contributions we are able to
compute stress 𝑡𝑥 by using the exact solution from Eq. (A.5).

Before proceeding to the discussion of the results of the combined formulation, we must point out an important fact. Thanks to the
split of the energy function, the calibration of the fitting parameters for the volumetric part of the SED is entirely independent of the
deviatoric contribution. In fact, the hydrostatic stress 𝑡ℎ depends only on 𝑊ℎ. However, since in finite elasticity a shape-changing
deformation always implies a volume change, the same rule does not apply to the deviatoric part of the SED. The calibration
of its parameters in simple tension requires the computation of stress 𝜎𝑥 (or 𝑡𝑥), which depends on both 𝑊𝑑 and 𝑊ℎ. Hence,
firstly the parameters of 𝑊ℎ are calibrated from bulk or hydrostatic tests. Then, the parameters of 𝑊𝑑 are calibrated by fitting to
experimental data the solution for compressible materials in simple tension. We recall that, in the previous section, the hypothesis
of incompressibility was adopted only to select the most suitable deviatoric SED, not to obtain a definitive set of fitting parameters
for the material model.

Based on the above, when dealing with compressible materials, volume changes have an effect on the response and the parameters
of 𝑊𝑑 must be calibrated after calibration of the parameters of 𝑊ℎ. Thus, our combined SED requires the calibration of the Yeoh–
Fleming model parameters, which is presented in the following. The parameters of the proposed volumetric SED were already
calibrated in Section 5 and are given in Table B.5. The overall procedure for parameter fitting is summarized in the scheme shown
in Fig. 12.

7.2. Fitting of the Yeoh–Fleming deviatoric SED

The fitting process was performed using MATLAB. The experimental data from simple tension tests were imported as stress
𝜎𝑥𝑖 and stretch 𝜆𝑥𝑖 , where 𝑖 = 1,… , 𝑛 and 𝑛 is the number of experimental data points. The constitutive parameters of the Yeoh–
Fleming model were gathered in the parameter vector 𝐩 = [𝐴, 𝐵, 𝐶10, 𝐼𝑚]. The equilibrium equations in simple tension, expressed
by Eqs. (A.1) and (A.2), were implemented in a MATLAB function. The implicit Eq. (A.1) was solved using fsolve to obtain for all
data 𝜆𝑥𝑖 the corresponding values of lateral stretch 𝜆𝑦𝑖 (𝐩). The obtained values 𝜆𝑦𝑖 (𝐩) were inserted in Eq. (A.2) to compute the
stress function 𝜎𝑥

(

𝜆𝑥𝑖 , 𝜆𝑦𝑖 (𝐩) ,𝐩
)

. Then, the following objective function was defined:

obj(𝐩) =

√

√

√

√

𝑛
∑

(

𝜎𝑥
(

𝜆𝑥𝑖 , 𝜆𝑦𝑖 (𝐩) ,𝐩
)

− 𝜎𝑥𝑖
)2
. (25)
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Hence, the optimal parameters are those that minimize the sum of squared residuals between analytical and experimental stress vs.
stretch curves.

The minimization of Eq. (25) was carried out using function fmincon. The initial guess for the parameter vector was 𝐩0 =
[0.5, 0.01, 1, 2]. The lower and upper bounds for the parameters were defined respectively as 𝐩𝑙 = [0, 0, 0, 0] and 𝐩𝑢 = [10, 1, 10, 20].

he optimal parameters obtained from the optimization are reported in Table B.7. The equilibrium solutions for bulk and simple
ension tests were computed with the optimal parameters and the final results for each rubber are shown in Fig. 13.

The plots in the left column of Fig. 13 show the 𝑡𝑥 vs. 𝐽 curves for 𝐽 < 1 in comparison with the experimental data from bulk
ests. We recall that, for the bulk tests, the calibration of the parameters of 𝑊ℎ was done under the approximation 𝑡𝑥 ≈ 𝑡ℎ (see
ig. 7). Since now we combined both volumetric and deviatoric contributions, the exact solution was computed from Eq. (A.5) in
erms of 𝑡𝑥 vs. 𝐽 relation. The above plots show that the model is accurate and confirm that for bulk tests there is no substantial
ifference between 𝑡𝑥 and 𝑡ℎ. This provides further confirmation of such an approximation in the case of rubber-like materials.

The plots in the middle and right columns of Fig. 13 show respectively the 𝜎𝑥 vs. 𝜆𝑥 and 𝜆𝑦 vs. 𝜆𝑥 curves in comparison with the
xperimental data from simple tension tests. The results were computed by solving numerically the system composed of Eqs. (A.1)
nd (A.2). The model describes accurately the response in simple tension of all four rubbers considered.

. Concluding remarks

The mechanical behavior of elastomers is typically studied under the hypothesis of material incompressibility. In this work, we
resented experiments that show that this assumption may not be accurate for large deformations. We performed simple tension and
ulk tests on four kinds of rubbers. During simple tension tests, we monitored both longitudinal and lateral displacements through
igital image correlation. For small stretches, all the rubbers resulted nearly incompressible. As the longitudinal stretch increased,
olume expansion up to 60% were observed in some rubbers. During bulk tests, an applied stress of 300 MPa produced volume
hrinkage around 10 − 15% for all the specimens. Combining the data from simple tension and bulk tests, a complete description of
he volumetric response of the rubbers was obtained.

The volumetric SED formulations available in the literature failed to provide an accurate simulation of the response obtained from
he above experiments, especially in the transition from small to moderate/large volume changes. The limitations of the available
heories derive from the fact that they were developed mainly for foams and hydrogels. Compared to these materials, elastomers
xhibit pronounced strain stiffening and softening for relatively small volume variations, resulting in a volumetric response that is
n general different.

In light of the above, we proposed a novel volumetric SED. The proposed formulation counts for seven parameters in addition
o the bulk modulus. Its advantages are:

• Accurate description of the response of elastomers for both small and large volume changes.
• Combination of two different response functions that allow predicting the two diverse responses of rubbers in shrinkage and

expansion.
• For other compressible materials with different behaviors, the response functions can be easily replaced by other expressions.
• Possibility of a smooth transition between 𝐽 < 1 and 𝐽 > 1 using a sigmoid function to overcome numerical issues in the

implementation in finite element codes.

Some popular incompressible strain energy functions were considered for modeling the shape-changing deformations of rubbers.
fter a comparison of their performance, the Yeoh–Fleming formulation was selected for the deviatoric part𝑊𝑑 of the SED. According

o the deviatoric–volumetric split, the deviatoric part was combined with our proposed volumetric part 𝑊ℎ to obtain the final
ombined SED.

The equilibrium solutions for compressible materials were presented and a final fitting of the combined SED formulation to the
xperimental data was performed. The deviatoric–volumetric split allowed performing the fitting in two steps: (1) calibration of the
arameters of 𝑊ℎ by fitting 𝑡ℎ = 𝑑𝑊ℎ∕𝑑𝐽 to the experimental 𝑡ℎ vs. 𝐽 data; (2) calibration of the parameters of 𝑊𝑑 by fitting the
quilibrium solution in simple tension to the experimental 𝜎𝑥 vs. 𝜆𝑥 data. The proposed model gave accurate descriptions of both
hape deformations and volume changes of the elastomers considered. As far as the authors know, a comprehensive fitting of both
eviatoric and volumetric contributions to experimental data involving large shrinkage and expansion had not yet been presented.

The proposed SED is useful to include the effect of volumetric deformations in nonlinear models for elastomers subjected to
arious stress states of practical interest. The function proposed may find applications also in biomechanics when dealing with soft
issues such as the brain, skin and arteries. Future works may focus on experimental tests involving biaxial stress states and on the
mplementation of the proposed SED in finite element codes.
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𝜎

Fig. 13. Results of the combined SED formulation, composed of the Yeoh–Fleming model for the deviatoric part and the proposed function for the volumetric
part. The results are shown for (a)–(c) EPDM, (d)–(f) NBR, (g)–(i) NR and (l)–(n) silicone. The 𝑡𝑥 vs. 𝐽 experimental data come from the bulk tests, while the
𝑥 vs. 𝜆𝑥 and 𝜆𝑦 vs. 𝜆𝑥 from the simple tension tests.
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ppendix A. Equilibrium solutions for compressible and incompressible materials

In this appendix, we briefly summarize the solutions to the equilibrium problems considered in the present work: simple tension
nd bulk test.

.1. Simple tension

We consider a homogeneous, isotropic and hyperelastic solid described by a stored energy function 𝑊 (𝐼1, 𝐼2, 𝐼3). We introduce the
eference system 𝑥, 𝑦, 𝑧, where 𝑥 is the longitudinal axis of the sample. In simple tension, uniaxial tractions are uniformly distributed
n the basis of the solid and act in the 𝑥 direction. We indicate the nominal stresses as 𝜎𝑖 and the true stresses as 𝑡𝑖, with 𝑖 = 𝑥, 𝑦, 𝑧.
n this case, the two lateral principal stresses are identically zero (𝜎𝑦 = 𝜎𝑧 = 0). As a consequence of isotropy, the lateral stretches
re equal to each other (𝜆𝑦 = 𝜆𝑧).

The equilibrium solution for a compressible hyperelastic solid under simple tension is given by (Lanzoni and Tarantino, 2015)
𝜕𝑊
𝜕𝐼1

+
(

𝜆2𝑥 + 𝜆
2
𝑦

) 𝜕𝑊
𝜕𝐼2

+ 𝜆2𝑥𝜆
2
𝑦
𝜕𝑊
𝜕𝐼3

= 0, (A.1)

𝜎𝑥 = 2𝜆𝑥

(

𝜕𝑊
𝜕𝐼1

+ 2𝜆2𝑦
𝜕𝑊
𝜕𝐼2

+ 𝜆4𝑦
𝜕𝑊
𝜕𝐼3

)

. (A.2)

From the first implicit equation, the lateral stretch 𝜆𝑦 can be determined for a given longitudinal stretch 𝜆𝑥. The nominal stress 𝜎𝑥
is computed from the second equation and the true stress can be derived as 𝑡𝑥 = 𝜎𝑥∕𝜆2𝑦.

For an incompressible material, the condition 𝐽 = 1 gives the following relation between lateral and longitudinal stretches:
𝜆𝑦 = 1∕

√

𝜆𝑥. The equilibrium solution obtained from Eq. (5) is

𝜎𝑥 = 2

(

1 − 1
𝜆3𝑥

)

(

𝜆𝑥
𝜕𝑊
𝜕𝐼1

+ 𝜕𝑊
𝜕𝐼2

)

. (A.3)

In case of strain energy written as a function of the principal stretches, 𝑊 = 𝑊̃
(

𝜆1, 𝜆2, 𝜆3
)

, the nominal stresses for an incompressible
material are computed as 𝜎𝑖 = 𝜕𝑊̃ ∕𝜕𝜆𝑖 − 𝑝𝜆−1𝑖 , with 𝑖 = 1, 2, 3. In simple tension we have that 𝑊̃

(

𝜆𝑥, 1∕
√

𝜆𝑥, 1∕
√

𝜆𝑥
)

= 𝑊̂
(

𝜆𝑥
)

and
the equilibrium reduces to

𝜎𝑥 = 𝑑𝑊̂
𝑑𝜆𝑥

. (A.4)

A.2. Bulk test

For the case of the bulk test, the lateral deformations are constrained, and thus 𝜆𝑦 = 𝜆𝑧 = 1 and 𝜆𝑥 = 𝐽 . Using Eq. (3) along with
the constraint on the lateral deformation, the following equilibrium solution is derived:

𝜎𝑥 = 𝑡𝑥 = 2𝐽
(

𝜕𝑊
𝜕𝐼1

+ 2 𝜕𝑊
𝜕𝐼2

+ 𝜕𝑊
𝜕𝐼3

)

, (A.5)

𝜎𝑦 = 2 𝜕𝑊
𝜕𝐼1

+ 2
(

1 + 𝐽 2) 𝜕𝑊
𝜕𝐼2

+ 2𝐽 2 𝜕𝑊
𝜕𝐼3

. (A.6)

Making explicit the deviatoric and volumetric parts of the energy function, 𝑊 = 𝑊𝑑 (𝐼1, 𝐼2) +𝑊ℎ(𝐽 ), Eq. (A.5) is written as follows

𝑡𝑥 = 2𝐽
(

𝜕𝑊𝑑
𝜕𝐼1

+ 2
𝜕𝑊𝑑
𝜕𝐼2

+
𝜕𝑊𝑑
𝜕𝐼3

)

+
𝑑𝑊ℎ
𝑑𝐽

. (A.7)

The first and second addends are respectively the deviatoric and volumetric contributions to the stress 𝑡𝑥 in the bulk test. In the
following, we show that for rubber-like materials the deviatoric contribution, named 𝑡𝑑 for convenience, can be neglected.

Recalling the definition of the deviatoric strain invariants given in Eq. (7) and using the chain rule to compute the derivatives,
he first addend of Eq. (A.7) becomes

𝑡𝑑 = 4
(

𝜕𝑊𝑑 𝐽 2∕3 +
𝜕𝑊𝑑

)

(

𝐽 2 − 1
)

𝐽−7∕3. (A.8)
19
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Table B.4
Parameters obtained by fitting the current volumetric SED formulations to the experimental data in Fig. 5. If applicable, the units are in MPa.

Formulation EPDM NBR NR Silicone

𝐽 < 1 𝐽 ≥ 1 𝐽 < 1 𝐽 ≥ 1 𝐽 < 1 𝐽 ≥ 1 𝐽 < 1 𝐽 ≥ 1

Doll (Doll and Schweizerhof, 2000) 𝛼 = 0.01 𝛼 = 3.46 𝛼 = 0.01 𝛼 = 5.67 𝛼 = 0.01 𝛼 = 9.91 𝛼 = 0.01 𝛼 = 12.77
𝛽 = 25.25 𝛽 = 517.12 𝛽 = 35.58 𝛽 = 395.96 𝛽 = 18.86 𝛽 = 172.44 𝛽 = 9.97 𝛽 = 331.77

Montella (Montella et al., 2016) 𝜅2 = 160750 𝜅2 = 6.02 𝜅2 = 302305 𝜅2 = 11.8 𝜅2 = 113343 𝜅2 = 17.93 𝜅2 = 31223 𝜅2 = 15.18
𝛽1 = 0.125 𝛽1 = 0.125 𝛽1 = 0.125 𝛽1 = 0.125 𝛽1 = 0.125 𝛽1 = 0.125 𝛽1 = 0.125 𝛽1 = 0.125
𝛽2 = 0.125 𝛽2 = 5.01 𝛽2 = 0.125 𝛽2 = 4.17 𝛽2 = 0.125 𝛽2 = 7.34 𝛽2 = 0.125 𝛽2 = 7.53
𝑚 = 4 𝑚 = 22.44 𝑚 = 4 𝑚 = 14.15 𝑚 = 4 𝑚 = 10.61 𝑚 = 4 𝑚 = 9.95

Moerman (Moerman et al., 2020) 𝐽2 = 0.881 𝐽1 = 2.85 𝐽2 = 0.902 𝐽1 = 9.982 𝐽2 = 0.869 𝐽1 = 9.99 𝐽2 = 0.816 𝐽1 = 9.55
𝑠2 = 0.194 𝑠1 = 0.585 𝑠2 = 0.095 𝑠1 = 0.721 𝑠2 = 0.098 𝑠1 = 2.69 𝑠2 = 0.1 𝑠1 = 1.65
𝑞2 = 0 𝑞1 = 0.987 𝑞2 = 0 𝑞1 = 0.972 𝑞2 = 0 𝑞1 = 0.891 𝑞2 = 0 𝑞1 = 0.931

Convexity of the stored energy function requires that 𝜕𝑊𝑑∕𝜕𝐼1 > 0 and 𝜕𝑊𝑑∕𝜕𝐼2 > 0 (Ciarlet, 1988). Therefore, since in the bulk
est 𝐽 ≤ 1, we have that

|

|

𝑡𝑑 || ≤
|

|

|

|

|

4
3

(

𝜕𝑊𝑑

𝜕𝐼1
+
𝜕𝑊𝑑

𝜕𝐼2

)

(

𝐽 2 − 1
)

𝐽−7∕3
|

|

|

|

|

. (A.9)

We recall that the equilibrium solution in simple shear for incompressible materials (Horgan and Murphy, 2010) is 𝑡12 = 𝜇̃ 𝛾, being
𝛾 the amount of shear, 𝑡12 the Cauchy shear stress and 𝜇̃ = 2

(

𝜕𝑊𝑑∕𝜕𝐼1 + 𝜕𝑊𝑑∕𝜕𝐼2
)

. The quantity 𝜇̃ tends to the infinitesimal shear
odulus 𝜇 in the range of small strains and can be interpreted as a secant shear modulus in nonlinear elasticity. Eq. (A.9) is rewritten

s

|

|

𝑡𝑑 || ≤
2 (𝐽 + 1)
3𝐽 7∕3

𝜇̃ |(𝐽 − 1)| . (A.10)

Regarding the volumetric contribution 𝑡ℎ = 𝑑𝑊ℎ∕𝑑𝐽 , we introduce the secant bulk modulus 𝜅̃ and write

|

|

𝑡ℎ|| = 𝜅̃ |(𝐽 − 1)| . (A.11)

The experiments carried out in the present work and others (see, e.g., Adams and Gibson, 1930; Wood and Martin, 1964; Bridgman,
1945; Boyce and Arruda, 2000) show that elastomers exhibit a hardening trend during volume shrinkage. Namely, the secant bulk
modulus in shrinkage is initially equal to 𝜅 and then increases as 𝐽 decreases. From Eqs. (A.10) and (A.11) we conclude the following:

𝑡𝑑
𝑡ℎ

≤ 2 (𝐽 + 1)
3𝐽 7∕3

𝜇̃
𝜅̃
. (A.12)

The multiplying factor 2(𝐽 + 1)∕(3𝐽 7∕3) increases as 𝐽 decreases. However, in the bulk test, the 𝐽 values of interest for rubbers are
between 0.8 and 1. This range covers widely the values of pressure applied in real applications. When 𝐽 < 0.8 the applied pressure
becomes extremely large and, from a practical point of view, this is of no interest.2 With that said, the value of the multiplying
factor for 𝐽 = 0.8 is very close to 2. Hence, in the range 𝐽 ∈ [0.8, 1] we have that

𝑡𝑑
𝑡ℎ

≤ 2𝜇̃
𝜅̃
. (A.13)

For rubber-like materials 𝜇̃ ≪ 𝜅̃ and therefore the deviatoric contribution 𝑡𝑑 to the stress 𝑡𝑥 in the bulk test can be neglected. Hence,
rom Eq. (A.7) we obtain

𝜎𝑥 = 𝑡𝑥 ≈
𝑑𝑊ℎ
𝑑𝐽

. (A.14)

It is worth mentioning that Horgan and Murphy (2009a) obtained the same result, but considering nearly incompressible
lastomers. They reported that for infinitesimal volume changes 𝑡𝑑 is approximated by the linearization 𝛽 (𝐽 − 1), where 𝛽 is a

constant of the order of 𝜇. Since 𝑑𝑊ℎ∕𝑑𝐽 is approximated by 𝜅 (𝐽 − 1) and 𝜇 ≪ 𝜅, the deviatoric contribution can be neglected and
q. (A.14) is obtained. We demonstrated that this result remains valid even when dealing with large volumetric deformations.

ppendix B. Fitting parameters

Tables B.4, B.5, B.6 and B.7 present respectively the parameters obtained from the fitting described in Sections 4.2, 5.2, 6.2 and
.2.

2 For instance, Bridgman (1945) observed volume shrinkage of 20%–25% on various rubbers with an applied pressure of around 2.5 GPa.
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s

Table B.5
Parameters obtained by fitting the proposed volumetric SED to the experimental data in Fig. 5.
Formulation EPDM NBR NR Silicone

Proposed SED, Eq. (15)

𝛼1 = 81.07 𝛼1 = 83.33 𝛼1 = 92.59 𝛼1 = 32.26
𝛼2 = 5.1 𝛼2 = 8.03 𝛼2 = 4.99 𝛼2 = 4.51
𝛼3 = 84.80 𝛼3 = 89.69 𝛼3 = 95.47 𝛼3 = 34.12
𝛽1 = 2.23 𝛽1 = 4.18 𝛽1 = 7.09 𝛽1 = 5.03
𝛽2 = 9.05 𝛽2 = 14.03 𝛽2 = 69.25 𝛽2 = 68.86
𝛽3 = 6.88 × 10−4 𝛽3 = 13.76 × 10−4 𝛽3 = 13.14 × 10−4 𝛽3 = 1 × 10−4

𝑞 = 0.974 𝑞 = 0.953 𝑞 = 0.723 𝑞 = 0.461

Table B.6
Parameters obtained by fitting the current deviatoric SED formulations to the experimental data in simple tension. If
applicable, the units are in MPa.
Formulation EPDM NBR NR Silicone

Gent (Gent, 1996) 𝜇 = 0.68 𝜇 = 3.08 𝜇 = 0.63 𝜇 = 0.91
𝐽𝑚 = 198 𝐽𝑚 = 145 𝐽𝑚 = 61.64 𝐽𝑚 = 32.52

Gent-Gent (Pucci and Saccomandi, 2002) 𝐶1 = 0.28 𝐶1 = 0.55 𝐶1 = 0.30 𝐶1 = 0.44
𝐶2 = 1.68 𝐶2 = 5.43 𝐶2 = 0.22 𝐶2 = 0.16
𝐽𝑚 = 202.3 𝐽𝑚 = 6.78 𝐽𝑚 = 57.61 𝐽𝑚 = 29.89

Yeoh (Yeoh, 1990) 𝐶10 = 0.01 𝐶10 = 0.01 𝐶10 = 0.19 𝐶10 = 0.29
𝐶20 = 0.09 𝐶20 = 0.35 𝐶20 = 0.033 𝐶20 = 0.04
𝐶30 = −9.1 × 10−6 𝐶30 = −1.76 × 10−4 𝐶30 = 8.89 × 10−5 𝐶30 = 4.34 × 10−4

Carroll (Carroll, 2011) 𝐴 = 0.27 𝐴 = 0.12 𝐴 = 0.37 𝐴 = 0.52
𝐵 = 2.84 × 10−7 𝐵 = 6.82 × 10−4 𝐵 = 2.10 × 10−6 𝐵 = 1.91 × 10−5

𝐶 = 1.74 𝐶 = 7.85 𝐶 = −0.26 𝐶 = −0.28

Ogden (Ogden, 1972) 𝜇1 = 2.62 𝜇1 = 0.017 𝜇1 = 1.4 𝜇1 = 0.6
𝜇2 = 0.26 𝜇2 = 8.49 𝜇2 = 0.02 𝜇2 = 1.49
𝛼1 = 3.1 × 10−3 𝛼1 = 9.26 𝛼1 = 1.75 𝛼1 = 3.43
𝛼2 = 2.99 𝛼2 = 0.011 𝛼2 = 4.94 𝛼2 = 1.1 × 10−3

Yeoh–Fleming (Yeoh and Fleming, 1997) 𝐴 = 0.29 𝐴 = 1.28 𝐴 = 0.27 𝐴 = 0.43
𝐵 = 7 × 10−3 𝐵 = 2.16 × 10−3 𝐵 = 0.078 𝐵 = 1.72 × 10−3

𝐶10 = 0.44 𝐶10 = 2.74 𝐶10 = 0.09 𝐶10 = 0.49
𝐼𝑚 = 1.49 𝐼𝑚 = 2.94 𝐼𝑚 = 0.02 𝐼𝑚 = 2.96

Table B.7
Parameters obtained by fitting the combined formulation to the experimental data. The deviatoric part 𝑊𝑑 of the SED is
expressed by the Yeoh–Fleming model (Yeoh and Fleming, 1997), while the volumetric part 𝑊ℎ is defined by the function
proposed in the present work, given in Eq. (15). The calibrated parameters of 𝑊ℎ are those reported in Table B.5 and are
repeated here for the convenience of the reader. If applicable, the units are in MPa.
Combined formulation EPDM NBR NR Silicone

𝑊𝑑 𝐴 = 0.313 𝐴 = 1.31 𝐴 = 0.258 𝐴 = 0.417
𝐵 = 0.03 𝐵 = 7.82 × 10−3 𝐵 = 0.074 𝐵 = 4.32 × 10−3

𝐶10 = 0.373 𝐶10 = 2.59 𝐶10 = 0.121 𝐶10 = 0.397
𝐼𝑚 = 1.3 𝐼𝑚 = 2.93 𝐼𝑚 = 0.628 𝐼𝑚 = 2.92

𝑊ℎ 𝛼1 = 81.07 𝛼1 = 83.33 𝛼1 = 92.59 𝛼1 = 32.26
𝛼2 = 5.1 𝛼2 = 8.03 𝛼2 = 4.99 𝛼2 = 4.51
𝛼3 = 84.80 𝛼3 = 89.69 𝛼3 = 95.47 𝛼3 = 34.12
𝛽1 = 2.23 𝛽1 = 4.18 𝛽1 = 7.09 𝛽1 = 5.03
𝛽2 = 9.05 𝛽2 = 14.03 𝛽2 = 69.25 𝛽2 = 68.86
𝛽3 = 6.88 × 10−4 𝛽3 = 13.76 × 10−4 𝛽3 = 13.14 × 10−4 𝛽3 = 1 × 10−4

𝑞 = 0.974 𝑞 = 0.953 𝑞 = 0.723 𝑞 = 0.461

Appendix C. Smooth approximation of the Heaviside step function

For the purpose of a numerical implementation of the proposed volumetric SED, it may be desirable to approximate the Heaviside
tep function with a smooth continuous function. We propose the following smooth approximation

𝐻 (1 − 𝐽 ) ≈
1 − tanh

(

103 (𝐽 − 1)
)

2
= 𝜌𝑐 , 𝐻 (𝐽 − 1) ≈

1 + tanh
(

103 (𝐽 − 1)
)

2
= 𝜌𝑡. (C.1)

The factor 103 ensures an adequate steepness of functions 𝜌𝑐 and 𝜌𝑡 when 𝐽 → 1. With this substitution, the volumetric strain energy
and the hydrostatic stress become

𝑊ℎ (𝐽 ) = 𝜅
(

𝜌𝑐𝜓𝑐 + 𝜌𝑡𝜓𝑡
)

𝑑𝐽 , (C.2)
21
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𝑡ℎ (𝐽 ) = 𝜅
(

𝜌𝑐𝜓𝑐 + 𝜌𝑡𝜓𝑡
)

. (C.3)

For a detailed discussion on smooth approximations of step functions, the reader is referred to Iliev et al. (2017), Alyukov (2011)
and Markov et al. (2018).

Appendix D. Mathematical requirements for the proposed volumetric SED

In this appendix, we investigate the requirements that the parameters of the proposed volumetric SED must fulfill for the physical
plausibility of the model. For the sake of clarity, we recall that the proposed formulation is

𝑊ℎ (𝐽 ) = 𝜅
[

𝐻 (1 − 𝐽 )𝛹𝑐 +𝐻 (𝐽 − 1)𝛹𝑡
]

, (D.1)

where 𝐻 is the Heaviside step function defined in Eq. (16), and 𝛹𝑐 and 𝛹𝑡 are

𝛹𝑐 (𝐽 ) =
1

𝛼1 + 𝛼2 − 𝛼3

[(

𝐽 + 𝐽 𝛼1+1

𝛼1 + 1
+ 𝐽−(𝛼2−1)

𝛼2 − 1
− 𝐽 𝛼3+1

𝛼3 + 1

)

−
(

1 + 1
𝛼1 + 1

+ 1
𝛼2 − 1

− 1
𝛼3 + 1

)]

, (D.2)

𝛹𝑡 (𝐽 ) = (1 − 𝑞)
[

𝛽2𝑒𝛽1(𝐽−1) + 𝛽1𝑒−𝛽2(𝐽−1)

𝛽1𝛽2(𝛽1 + 𝛽2)
− 1
𝛽1𝛽2

]

+ 𝑞𝛽23 ln
(

cosh
(

𝐽 − 1
𝛽3

))

. (D.3)

he hydrostatic stress is computed as

𝑡ℎ (𝐽 ) =
𝑑𝑊ℎ (𝐽 )
𝑑𝐽

= 𝜅
[

𝐻 (1 − 𝐽 )𝜓𝑐 +𝐻 (𝐽 − 1)𝜓𝑡
]

(D.4)

where

𝜓𝑐 (𝐽 ) =
𝑑𝛹𝑐 (𝐽 )
𝑑𝐽

= 1 + 𝐽 𝛼1 − 𝐽−𝛼2 − 𝐽 𝛼3
𝛼1 + 𝛼2 − 𝛼3

, (D.5)

𝜓𝑡 (𝐽 ) =
𝑑𝛹𝑡 (𝐽 )
𝑑𝐽

= (1 − 𝑞) 𝑒
𝛽1(𝐽−1) − 𝑒−𝛽2(𝐽−1)

𝛽1 + 𝛽2
+ 𝑞𝛽3 tanh

(

𝐽 − 1
𝛽3

)

. (D.6)

he tangent modulus is computed as the second derivative of the energy with respect to 𝐽 , namely

𝑑2𝑊ℎ (𝐽 )
𝑑𝐽 2

= 𝜅
[

𝐻 (1 − 𝐽 )
𝑑𝜓𝑐
𝑑𝐽

+𝐻(𝐽 − 1)
𝑑𝜓𝑡
𝑑𝐽

]

. (D.7)

For volume shrinkage (𝐽 < 1) the tangent modulus reduces to

𝑑2𝑊ℎ (𝐽 )
𝑑𝐽 2

= 𝜅
𝑑𝜓𝑐 (𝐽 )
𝑑𝐽

= 𝜅
𝛼1𝐽 𝛼1−1 + 𝛼2𝐽−𝛼2−1 − 𝛼3𝐽 𝛼3−1

𝛼1 + 𝛼2 − 𝛼3
, (D.8)

hereas for volume expansion (𝐽 > 1) its expression is

𝑑2𝑊ℎ (𝐽 )
𝑑𝐽 2

= 𝜅
𝑑𝜓𝑡 (𝐽 )
𝑑𝐽

= 𝜅
[

(1 − 𝑞)
𝛽1𝑒𝛽1(𝐽−1) + 𝛽2𝑒−𝛽2(𝐽−1)

𝛽1 + 𝛽2
+ 𝑞 sech2

(

𝐽 − 1
𝛽3

)]

. (D.9)

The ten criteria for physical plausibility are reported in Table 1 of the work by Moerman et al. (2020). Criteria I and II impose
hat the energy and the stress must vanish in the reference state (𝐽 = 1). These conditions are satisfied because Eqs. (D.1) and (D.4)
valuated for 𝐽 = 1 give 𝑊ℎ(1) = 0 and 𝑡ℎ(1) = 0. Criterion III requires the energy to be positive in the entire 𝐽 domain. Provided that
in𝑊ℎ(𝐽 ) = 𝑊ℎ(1) = 0, the above condition is ensured by verifying the convexity of 𝑊ℎ, which will be discussed in the following

criterion IX). Criterion IV states that the tangent modulus 𝑑2𝑊ℎ∕𝑑𝐽 2 computed for 𝐽 = 1 must be equal to the bulk modulus 𝜅, for
onsistency with linear elasticity. Eq. (D.7) evaluated in 𝐽 = 1 satisfies this requirement.

Criteria V, VI, VII and VIII impose conditions on the behaviors of 𝑊ℎ and 𝑡ℎ for 𝐽 → 0 and 𝐽 → +∞. We remark that the Heaviside
tep function allows to decouple the responses in shrinkage and expansion. Therefore, it is sufficient to study the functions 𝛹𝑐 , 𝜓𝑐 ,
𝑡 and 𝜓𝑡 to determine the behaviors of 𝑊ℎ and 𝑡ℎ at the boundaries of the domain. To ensure that an infinite energy is required

o reduce to zero the volume of a solid (criterion V), the following limit must be satisfied:

lim
𝐽→0

𝛹𝑐 (𝐽 ) = +∞, (D.10)

ith 𝛹𝑐 expressed by Eq. (D.2). This happens with the following conditions on 𝛼1, 𝛼2 and 𝛼3:
{

𝛼1 > −1, 𝛼1 + 𝛼2 − 𝛼3 > 0
𝛼2 > 1, 𝛼3 ≠ −1 or 𝛼3 < −1, 𝛼2 ≠ 1

(D.11)

he energy remains unchanged when parameters 𝛼2 and 𝛼3 are swapped and changed in sign. Thus, the case 𝛼3 < −1, 𝛼2 ≠ 1 is
quivalent to the case 𝛼2 > 1, 𝛼3 ≠ −1 and describes the same behavior. Therefore we only consider the condition 𝛼2 > 1, 𝛼3 ≠ −1.
n infinite negative stress is necessary to reduce the volume to zero (criterion VI), namely

lim 𝜓 (𝐽 ) = −∞, (D.12)
22

𝐽→0 𝑐
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with 𝜓𝑐 given by Eq. (D.5). The following conditions are necessary to fulfill the above equation:
{

𝛼1 > 0, 𝛼1 + 𝛼2 − 𝛼3 > 0
𝛼2 > 0 or 𝛼3 < 0

(D.13)

Similarly to the energy, the hydrostatic stress remains unchanged when 𝛼2 and 𝛼3 are swapped and changed in sign. Hence, condition
𝛼2 > 0 is equivalent to condition 𝛼3 < 0, thus we limit to the case 𝛼2 > 0. In addition, from a mathematical standpoint when 𝛼2 > 0
arameter 𝛼3 can assume any real value. However, if 𝛼3 < 0 the term −𝐽 𝛼3 behaves the same as −𝐽−𝛼2 and goes to infinity when
→ 0. As explained in Section 5.1, we are instead interested in a term that contributes to the variation of stiffness in the region of

mall to moderate shrinkage, without affecting the response for large shrinkage. This behavior is obtained assuming 𝛼3 > 0, therefore
e restrict our attention to this case. Considering the restrictions on both energy and stress, the overall constraints in shrinkage are

𝛼1 > 0, 𝛼2 > 1, 𝛼3 > 0, 𝛼1 + 𝛼2 − 𝛼3 > 0. (D.14)

An infinite energy is required to infinitely expand the volume of a solid (criterion VII), therefore

lim
𝐽→+∞

𝛹𝑡(𝐽 ) = +∞, (D.15)

ith 𝛹𝑡 expressed by Eq. (D.3). Parameter 𝑞 has the boundaries 0 ≤ 𝑞 < 1. In addition, the functions involved with parameter 𝛽3
re even, thus we consider only 𝛽3 > 0. The above limit is satisfied if 𝛽1 > 0 and 𝛽2 > 0, or 𝛽1 < 0 and 𝛽2 < 0, or 𝛽1 < 0 and 𝛽2 > 0.
hen 𝛽1 and 𝛽2 have the same sign, function 𝛹𝑡 does not vary if they are both positive or negative. Thus, we discard the case in
hich 𝛽1 < 0 and 𝛽2 < 0. Criterion VIII states that an infinite positive stress is necessary to infinitely expand a volume, thus

lim
𝐽→+∞

𝜓𝑡(𝐽 ) = +∞, (D.16)

ith 𝜓𝑡 expressed by Eq. (D.6). This limit is satisfied if 𝛽1 > 0 and 𝛽2 > 0.
Criterion IX imposes the condition of polyconvexity of the volumetric part of the SED, namely the tangent modulus 𝑑2𝑊ℎ∕𝑑𝐽 2

ust be positive in the entire domain. For 𝐽 > 1, this is true if 𝛽1 > 0 and 𝛽2 > 0. For 𝐽 < 1, the tangent modulus is always positive
f 𝛼1 + 𝛼2 − 𝛼3 > 0. Finally, criterion X is guaranteed by the Heaviside step function (or its smooth approximation), which provides
ndependent control of the responses in shrinkage and expansion.

In summary, the parameters of the proposed volumetric SED must satisfy the following constraints:
{

𝛽1 > 0, 𝛽2 > 0, 𝛽3 > 0, 0 ≤ 𝑞 < 1
𝛼1 > 0, 𝛼2 > 1, 𝛼3 > 0, 𝛼1 + 𝛼2 − 𝛼3 > 0

(D.17)
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