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Abstract: Air quality monitoring and control are key issues for environmental assessment and
management in order to protect public health and the environment. Local and central authorities
have developed strategies and tools to manage environmental protection, which, for air quality,
consist of monitoring networks with fixed and portable instrumentation and mathematical models.
This study develops a methodology for designing short-term air quality campaigns with mobile
laboratories (laboratories fully housed within or transported by a vehicle and maintained in a fixed
location for a period of time) as a decision support system for environmental management and
protection authorities. In particular, the study provides a methodology to identify: (i) the most
representative locations to place mobile laboratories and (ii) the best time period to carry out the
measurements in the case of short-term air quality campaigns. The approach integrates atmospheric
dispersion models and allocation algorithms specifically developed for optimizing the measuring
campaigns. The methodology is organized in two phases, each of them divided into several steps.
Fourteen allocation algorithms dedicated to three type of receptors (population, vegetation and
physical cultural heritage) have been proposed. The methodology has been applied to four short-
term air quality campaigns in the Emilia-Romagna region.

Keywords: design mobile laboratory campaign; air pollution concentration; population exposure to
air pollutant

1. Introduction

Air quality monitoring and control are key issues for environmental assessment and
management in order to protect public health, ecosystem services and physical cultural
heritage (intended as physical artefacts in outdoor spaces). Therefore, local and central
authorities have developed measuring systems to evaluate air pollution and to provide
strategic indications to improve air quality and optimize its monitoring.

The most critical situations occur in urban areas, where emission sources (e.g., urban
traffic, domestic heating) and sensitive receptors (e.g., population, physical cultural her-
itage) are concentrated. According to the data reported by the United Nations in its special
edition on progress towards the Sustainable Development Goals [1], about 7 million people
died as a result of high levels of air pollution, both ambient and household, in 2016. The
same document reports that about 90% of people living in urban areas were still breathing
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air that did not meet the World Health Organization’s air quality guideline values for
particulate matter.

In such a context, governments and environmental protection agencies monitor am-
bient concentrations of air pollution in many parts of the world as part of regulatory
programs designed to protect public health and the environment [2,3]. Historically, the
most extensive monitoring systems were mainly developed in the United States and West-
ern Europe, where regular monitoring of ambient air quality has been implemented since
the mid-1970s [4]. Today, in Asia (especially Japan and China with a strong increase
since the 2000s) there are extensive monitoring networks [5,6]. At the European level, the
reference regulation for the monitoring and evaluation of air quality is set by Directive
2008/50/EC and subsequent amendments and additions [3]. This legislation establishes
that fixed measurements shall be used to assess ambient air quality. These fixed measure-
ments may be supplemented by modelling techniques and/or indicative measurements to
provide adequate information on the spatial distribution of air pollutants.

Fixed monitoring stations represent the most conventional, consolidated and widespread
approach for air quality monitoring and evaluation but have some limitations: (1) moni-
toring is usually limited to a small set of strategically placed locations and the assessment
results are significant only for specific areas; (2) fixed monitoring stations have low flexibil-
ity. In the last ten years, the existing monitoring networks have been adjusted at European
level in order to meet regulatory requirements (Directive 2008/50/CE) and cost efficiency.
The following objectives are pursued: (1) to create a uniform and comparable network for
wide areas (for example, all European States); (2) to reduce the number of stations, currently
higher than required by the legislation [7]; (3) to optimize the spatial representativeness
of the networks. In order to achieve these objectives and foster a thorough knowledge
of an area even with a smaller number of fixed stations, mobile laboratories [8,9], mo-
bile monitoring campaigns [10,11], low-cost sensors [12–14] and predictive mathematical
models [15,16] have been applied. In order to maximize the effectiveness and efficiency
of these alternative monitoring tools, it is necessary to adopt an appropriate allocation
methodology, able to include spatial and temporal variables to design the short-term air
quality campaigns. Recently, mobile laboratories for short-term stationary measurements
(laboratories that are either fully housed within or transported by a vehicle and maintained
in fixed location for a period of time) are spreading with good results (e.g., [17,18]).

Because operations research (OR) offers a structured method to solve complicated
decision problems, several authors have proposed different OR approaches for air quality
network design (see Table 1).

Table 1. Operation research approaches proposed to design air quality network: main characteristics.

Authors Objectives Variable/s of Action Constraint/s Sensitive
Receptor/s

[19]

Number and placement

Pollution dosage Exposure time to pollutant

Population

[20] Maximum concentration values Single source, pollutant and
meteorological conditions

[21] Exceeding the law limits Number of points defined before
single pollutant

[22–25] Information associated to
the signal Previously measured data

[26–29] Spheres of influence Data from air quality
dispersion model

[30] Pollution exposure gradient Previously measured data
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Table 1. Cont.

Authors Objectives Variable/s of Action Constraint/s Sensitive
Receptor/s

[31]

Weighing function of maximum
concentration values, exceeding

the law limits, cost of the network
and data validation

Previously measured data
Economic aspect

[32,33] Site redundancy Previous network

[34]
Exceeding the law limits

Protection capability
Average daily concentration

Data from air quality
dispersion model

[35,36] Information gain Adding new stations

[37–39] Pollution exposure Single pollutant
Previously measured data

[40]

Overall function of maximum
concentration values, maximum

dosage, maximum network
coverage, maximum

population protection

Applied to pollution from
industrial districts

[41–43] Exceeding the law limits
Number of points defined before
Number of points defined on the

economic basis

[44] Cluster analysis procedure Previously measured data

[45] Multiple criteria Available budget

[46] Entropy-based Bayesian
optimizing approach Available budget

[47]

Detection of higher pollutant
concentrations

“Protection capability” for areas
with higher population density

Distribution of population, budget

[48] Population and emission sources

[49] Pollution exposure

As it is possible to observe from Table 1, the objectives (typically: “choice of the
optimal number of monitoring points and their spatial distribution”) and constraints
appear to be similar among the approaches. The studies differ in the choice and com-
bination of the variables and in the formulation of the objective function: for example,
Reference [49] applying population exposure as a decision variable, Reference [33] an-
alyzing the redundancy of information provided by measuring stations and [29] using
the spatial representativeness of the detected signal. The authors often propose a single
objective function (e.g., [43,49]), always oriented towards the evaluation of the effects of air
pollution on the resident population. Systematically, the authors deal with the placement
of fixed air monitoring networks, considering the spatial aspect, but not the temporal one,
as a decision parameter since fixed stations measure air quality continuously all year long
(e.g., [19,25,48]). Conversely, algorithms to locate mobile stations must consider both spatial
and temporal variables. In fact, mobile laboratories are used for short-term campaigns (a
few days or a few weeks) and the temporal context must be given appropriate attention
to maximize the representativeness of the campaign. To the best of our knowledge, there
are no OR studies specifically developed to design mobile measurement campaigns for
air quality, capable of simultaneously considering the spatial and temporal aspects in the
sampling configuration.
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This study aims to develop an OR methodological approach for optimizing the short-
term air quality monitoring campaigns with mobile laboratories, by considering spatial
and temporal variables in order to obtain measurements as representative as possible of
the investigated area. The methodological approach has been structured using the typical
scheme of the OR which, by using appropriate selection functions, is able to find the
optimal (or suboptimal) solution to a decision problem. The proposed approach has been
applied to four case studies. The study area is the province of Ravenna (northern Italy),
made up of 18 municipalities that periodically sign a memorandum of understanding with
Arpae (Regional Agency for Prevention, Environment and Energy of Emilia-Romagna) on
monthly air quality monitoring campaigns by using a mobile laboratory. The four examples
refer to areas with different features and extensions and with a significant difference: the
Ravenna municipality is already largely covered (from the spatial point of view) by fixed
monitoring stations, whereas the other areas are completely devoid of them.

2. Materials and Methods
2.1. Description of the Methodology Development through Operations Research

To be solved, a decision problem needs a question to answer, the data that contextual-
ize the choice, and a criterion for making the choice [50]. As widely used in the literature,
operations research (OR) is defined as “a discipline that deals with the application of advanced
analytical methods to help make better decisions” and “arrives at optimal or near-optimal solutions
to complex decision-making problems”.

Through OR, a decision-making problem is mathematically described with functions
that represent the logical relationships among the decision objectives, variables and con-
straints. A decision objective is the desired solution to which the decision-making process
tends (e.g., minimum cost, maximum gain, etc.) (S in Equation (1) reported below). A
variable of action is a quantity of the system, the value of which is unknown, and on which
it is possible to act to determine different alternative solutions to the problem (e.g., the
number of measuring points, items sold, etc.). The constraint(s) describe the conditions of
admissibility of the solutions (e.g., technical constraints to indicate the maximum availabil-
ity of resources, sign constraints). They are mathematical relationships that describe the
conditions of admissibility of the solutions and are used to discriminate the combinations
of values of the decision variables that represent acceptable solutions to the problem, from
those that are not [51,52].

These three elements are formalized mathematically through a function (called “ob-
jective function”) consisting of n variables and m constraints. It represents the objective
to be maximized or minimized, mathematically formulated as a function of the decision
variables and influenced in the resolution by the constrains.

Min (or max) f(x)
x∈S

(1)

where: f (x) is the objective function to be minimized (or maximized); S is a set of possible
values of the independent variables of the problem; x is n-dimensional vector variables.
Solving an optimization problem formulated through an objective function consists in
determining the values of the variables x that satisfy all the constraints and minimize
(or maximize) the value of the objective function in S. The value of x that minimizes (or
maximizes) f (x) represents the optimal (or suboptimal) solution of the problem.

The decision problem studied by this work (where to measure the air quality by
using mobile laboratories?) has been structured with the OR approach. The methodology
integrates to the optimal spatial distribution another two fundamental aspects: (i) the best
time period for carrying out the short-term monitoring campaign; (ii) the possibility of
pursuing several objectives (e.g., monitoring the exposure of a group of residents, evalu-
ating the impact of an emission source, evaluating the effectiveness of specific territorial
policies, etc.).
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The approach is structured in 2 distinct operational phases. Phase 1 is dedicated to the
characterization of the study area through the collection of data and their processing. The
result of phase 1 is a database that collects all the data. Phase 2 is the allocation procedure;
its result is the identification of the optimal sites. It is noteworthy that phase 1 needs to be
applied just once (obviously data may be updated), while phase 2 may be applied as many
times as the number of the necessary measurement campaigns. In this way, numerous
short-term air quality campaigns can be designed on the area of study, always applying
the same database.

In the proposed methodological approach, phase 1 consists of the following four steps:
(i) selection of the area of study; (ii) cell classification; (iii) quantification of air pollutant
concentration; (iv) identification and distribution of sensitive receptors.

The first step consists of the identification of the study area and its division into square
cells of equal size. Each cell is the basic assessment unit of each algorithm. All the informa-
tion necessary for the allocation choice must be quantified for each cell (e.g., concentration
of pollutants, sensitive receptors, type of cell, objective functions, and so on). A specific cell
will be the final result of each allocation procedure.

The second step aims to classify each cell according to the type of prevalent emissive
sources present inside it. What is interesting is the classification established by the Euro-
pean Directive 2008/50/EC [3]: (a) urban traffic (T): cells located in urban areas and near
roads with heavy vehicle traffic; (b) industrial (I): cells located within or close to industrial
areas; (c) urban background residential (BU-Res): cells located in urban areas with high
population density and not crossed by roads with high traffic; (d) urban background (BU):
cells located preferably within public green and/or pedestrian areas (parks, schools) and
not directly subject to specific sources of pollution such as vehicle traffic and industrial
emissions; (e) suburban background (B-SubU): cells located in suburban areas characterized
by the transport phenomena from outside the city and phenomena produced inside the
urban area; (f) rural background (BR): cells located outside the major cities, in predom-
inantly rural/agricultural areas, also subject to phenomena of photochemical pollution,
downwind of the direction of the wind field and most likely not in the immediate area of
maximum emissions of pollutants; (g) remote background (B-Rem): cells located at natural
areas (natural ecosystems, forests) at a great distance from urban and industrial areas.

The third step quantifies the air pollutant concentrations of interest. Many air quality
mathematical models are suitable for this purpose, as explained previously. Whatever
model is applied, a high-resolution estimation is necessary to answer the monitoring site
allocation problem [30,47]. In the case of brief monitoring campaigns, as in this study, an
adequate time resolution (preferably hourly or daily) is required, too. This aspect can be a
problem for the management of a very large amount of data.

The fourth step enables the identification and spatial distribution of the sensitive
receptors to air pollutants. It is necessary to define the spatial distribution of the resident
population, the presence of sensitive vegetation and the presence of relevant physical
cultural heritage.

Phase 2 consists of five steps. Each step allows for the selection of different elements
of the monitoring campaign and the development of many different combinations, each of
which determines a different configuration of the campaign. The graphical representation
of phase 2 is shown in Figure 1. The first step is the selection of the spatial domain.
The monitoring campaign could affect the entire study area selected during phase 1,
or one of its subspatial domains. Using a square grid, it is possible to select only the
cells of a subarea of interest. The second step is the selection of the temporal domain.
This step allows for the identification of a specific time period in which to conduct the
campaign (e.g., a day, a month, a season, a whole year). This is closely related to
the temporal resolution used to define the pollutant concentration field during phase
1. The selection of the area type is the third phase, it helps to identify areas with
homogeneous characteristics from the point of view of pollution and/or presence of
emission sources. It allows the selection of cell type. The fourth step is the selection of one
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or more pollutants of interest, based on which the monitoring campaign will be designed.
The last step is the selection of allocation criterion. This represents the mathematical
expression of the purpose of the measurement campaign (e.g., evaluate the exceeding of
legal limits, the exposure of the population, the damage to heritage). This study suggests
fourteen objective functions that represent a large number of possible design criteria
for short-term air monitoring campaigns, also considering the indications available in
the bibliography (see Table S1 of Supplemental Material). Table 2 shows the list and the
relative formulation of the proposed objective functions, while Table S1 of Supplementary
Material shows any supplementary information necessary for their quantification. There
are eleven allocation criteria dedicated to population protection, offering as a factor of
choice the exposure of citizens to atmospheric pollutants, the highest concentration values,
values above the legal limits, the correlation with the data measured by the AQMS, the
spatial gradient of the concentration values. Five allocation criteria are dedicated to
vegetation protection: exposure to pollution, values above the limits for the protection
of vegetation, the quantities of pollutants that are deposited to the ground through dry
and wet deposits. Finally, a specific damage index for physical cultural heritage has been
proposed as a specific allocation criterion for its protection.
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2.2. Description of the Study Area

The study area is the Ravenna Province (northern Italy, Figure 2a); the area is
1860 km2, the population is around 389,000 people [53] and the population density is
about 200 inhabitants/km2. The Ravenna Province is divided into 18 municipalities, each
with a different size and features. The study area has a wide air quality monitoring network
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(AQMN), mainly concentrated in the municipalities of Ravenna and Faenza (Figure 2b).
In the urban centers, air quality is mostly affected by traffic-related air pollution [16] and
domestic heating, while some suburban areas are affected by industrial pollution [54]. The
study area has been divided into 250 × 250 m cells for a total of 30,618 cells, a compromise
between high spatial resolution and computational resources.
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Figure 2. The area of study ((a) left) and its air quality monitoring network (capital letters) ((b) right).

As case study pollutants, PM10 and NO2 have been chosen. The concentrations of
PM10 (daily average values) and NO2 (hourly average values) were estimated for each
cell. Background concentrations and concentrations due to local sources were estimated
and then combined. The background concentrations were quantified by the geostatistical
PESCO (Post-processing and Evaluation with Statistical methods of a Chemistry-transport-
model Output) model [55,56]. The package provides the functions to perform data fusion
for air quality with hourly temporal resolution, correcting the output of a deterministic
chemistry transport model with observed data, through a trans-Gaussian Kriging ap-
proach [57]. PESCO model results were provided by the Hydro-Weather-Climate service of
Arpae with a spatial resolution of 1× 1 km2. The contribution of the local sources was quan-
tified by the advanced Gaussian dispersion model ADMS-Urban [58]. The application of
ADMS-Urban (made by the authors) required the identification and characterization of local
air pollutant sources. This process was achieved through the spatial disaggregation of the
provincial emissions inventory of industrial, road traffic and domestic heating [59] sources.
The reference year of the inventory was 2015, the spatial resolution was 250 × 250 m. The
pollutant concentrations estimated by PESCO and ADMS-Urban models were combined
together using a multiple linear regression (Equation (2)).

Y = Xβ = β0xPESCO + β1xADMS−URBAN + ε (2)
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where Y is the matrix identifying the dependent variables; it is composed of the values
recorded by specific air quality monitoring stations; β are the regression coefficients; x are
the pollutant concentrations estimated by PESCO and ADMS models, respectively; ε is
the residue. The overall concentration field was then verified by comparing the simulated
data and the values measured by the air quality monitoring network, applying specific
comparison statistical indices [60,61]. Pearson’s product moment correlation coefficient
(COR), normalized mean square error (NMSE), fractional bias (FB), factor 2 (FA2) and index
of agreement (IA) were employed. They are defined according to the following formulas:

COR =
(
Co− Co

)(
Cp− Cp

)
/σoσp (3)

NMSE = (Co− Cp)2/CpCo (4)

FB = 2
(
Cp− Co

)
/(Cp + Co) (5)

FA2 = f raction o f data f or which 0.5 ≤ Cp/Co ≤ 2 (6)

IA = 1− (Cp− Co)2/
(
Cp− Cp

)(
Co− Co

)2 (7)

where: CO and CP are the predicted and observed concentrations, respectively; σo and σp
are the standard deviations of observations and predictions, respectively. IA, COR and
NMSE measure the correlation between predicted and measured concentration values,
FB measures the agreement of the mean concentration values and FA2 is the fraction of
predicted concentrations within a factor of two of the equivalent measured values. Under
ideal conditions, FB and NMSE should be zero, while COR, IA and FA2 should be one.

In this study three types of receptors that are sensitive to airborne pollution were
selected: resident population, vegetation (natural areas, parks and forests) and physical
cultural heritage. Resident population and vegetation were selected as they are the refer-
ence receptors in the legislation (e.g., Directive 2008/50/CE). Physical cultural heritage
located outdoors was selected as these items are very sensitive to air pollution and have
been severely damaged for the last century [62,63]. The spatial distribution of each type
of receptor was disaggregated over the territory (250 × 250 m cells) starting from the fol-
lowing aggregated databases: census data of the National Institute of Statistics [53] for the
resident population in 2011 (last complete population census available), Emilia-Romagna
Region open-data for vegetation [64] and the database of the Italian Ministry of Cultural
Heritage for cultural heritage [65].

Table 2. Proposed allocation criteria.

Allocation Criteria Sensitive Receptors Note

Individual exposition to the i-th pollutant in the
k-th cell [µg·m−3·h]

Population
Vegetation

Quantifies the exposure of an individual to a
specific outdoor pollutant [20,66–68]

Overall exposition to the i-th pollutant in the k-th
cell [µg·m−3·h·n] Population Quantifies the overall exposure of all individuals

present in a given cell [30,40]

Overall risk to all thepollutants in the k-th
cell [µg·m−3·h]

Population
Vegetation

Quantifies the individual risk as the contribution
of all the considered pollutants

Correlation between simulated and measured data
of the i-th pollutant in the k-th cell Population

Identifies areas with a good match between the
measured data from fixed air quality monitoring
stations and concentration data estimated [35,69]

Exceedance of the legal limits of the i-th pollutant
in the k-th cell [n.]

Population
Vegetation

Identifies the probability of exceeding the legal
limits for a specific pollutant
[24,31,34–36,41,42,47,68,70]

Maximum concentration value of the i-th pollutant
in the k-th cell [µg·m−3]

Population
Vegetation

Identifies the probability of measuring an elevated
concentration value for a specific pollutant

[34,71,72]
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Table 2. Cont.

Allocation Criteria Sensitive Receptors Note

Minimum index of agreement (IOA) for the i-th
pollutant in the k-th cell Population

Assess how the values simulated by the model
deviate from the values measured by the fixed air

monitoring stations

Minimum index of agreement normalized with the
resident population (IOAPr) for the i-th pollutant

in the k-th cell
Population

Assess how the values simulated by the model
deviate from the values measured by the fixed air
monitoring stations, considering also the presence

of resident population.

Maximum concentration gradient for the i-th
pollutant in the k-th cell Population

Assesses how changing the concentration field at a
specific point compared to neighboring points

[30,39,73]

Maximum air quality index in the k-th cell Population Assesses the contribution of all the pollutants at
the same time [24,74,75]

Minimum concentration difference in the k-th cell Population
Assesses how changing the concentration field at a

specific point compared to whole study area
[31,73]

Maximum pollutant deposition in the k-th cell Vegetation Assess the total deposition of the selected
pollutants [76]

Maximum PM10 deposition in the k-th cell Vegetation Assess the total deposition of the selected
pollutants [76]

Maximum damage index in the k-th cell Physical cultural
heritage

Assess the total damage due to erosion blackening
pollutants [76–78]

3. Results and Discussion

The results describe the application of the methodological approach developed for
the reference study area, presenting some representative case studies of the design of air
quality monitoring campaigns aimed at protecting the three types of sensitive receptor
selected in the study: population, vegetation, physical cultural heritage.

3.1. Phase 1 Application

The developed methodology was applied in the study area to four specific short-term
air quality campaigns. Phase 1 is the same for all campaigns.

As explained in the previous section, all the steps of phase 1 were applied, charac-
terizing each 250 × 250 m cell with the necessary information and with average values of
pollutant concentrations. The campaigns described in this paper use NO2 and PM10 as
specific pollutants.

Three sets of regression coefficients (β and ε) were calculated: one specific set for cells
classified as traffic oriented (category T), one set for industrial cells (category I) and one set
for background cells (category BU) (see Section 3.1). Three air quality monitoring stations,
one for each cell category, were chosen to provide the values of dependent variable (Y in
Equation (2)): (a) one traffic oriented station (A-Zalamella); (b) one industrial oriented
station (E-Via dei Germani); (c) one background oriented station (K-Delta Cervia) (see
Figure 2).

The multiple linear regression analysis applied to NO2 overall concentration field
provided the beta coefficients and constants shown below. One dataset consisting of
8760 values each (average concentration data per hour for an entire year) was used to
calculate the regression coefficients: the data measured by the fixed air quality monitoring
station chosen, the data simulated by the PESCO model and those simulated by the ADMS-
Urban model.

Traffic area : Ctot = (0.60CPESCO + 0.27CADMS) + 13.52 (8)
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Industrial area : Ctot = (0.70CPESCO + 0.62CADMS) + 5.59 (9)

Background area : Ctot = (0.87CPESCO + 0.11CADMS) + 1.36 (10)

For PM10, the coefficients calculated using three datasets of 365 data each (daily
average values) are as follows:

Traffic area : Ctot = (0.55CPESCO + 1.99CADMS) + 6.89 (11)

Industrial area : Ctot = (0.45CPESCO + 1.65CADMS) + 4.62 (12)

Background area : Ctot = (0.89CPESCO + 0.58CADMS) + 1.58 (13)

where: Ctot is the total concentration; CPESCO and CADMS are the concentration values
simulated by PESCO and ADMS-Urban models, respectively.

The multiple linear regression analysis results for NO2 show a standard deviation
of 10.60, 11.08 and 4.57 and a coefficient of determination (R2) of 0.52, 0.39 and 0.85,
respectively for the stations classified as “traffic”, “industrial” and “background”. For
PM10 the values of the standard deviation are 15.07, 13.88 and 11.40, while for R2 the values
are 0.70, 0.61 and 0.83.

The p-values for all variables are less than 0.05, showing their statistical significance.
The statistical analysis comparing the measured and predicted total values is shown

in Table 3. The correlations between measured and simulated data are always higher than
0.57. In particular for NO2, there are values that often exceed 0.8. For PM10, the values
are between 0.58 and 0.68. The simulated and observed data have small differences in the
concentrations values and, consequently, the resulting FB index assume values close to the
next optimal results (which corresponds to the value 0). There are some situations with
more significant differences (e.g., station “D”), but they are limited to few cases and often
linked to areas characterized by highly variable pollution situations due to the proximity
of very complex emission sources (the station “D” is inside the industrial and harbor area
of Ravenna’s city). The FA2 and IOA indices assume values close to ideal performance in
many cases. Similarly, also the NMSE index assumes values that are almost ideal (which
corresponds to the value 0) in the majority of the considered comparison points.

Table 3. Statistical analysis comparing the measured and predicted NO2 and PM10 concentration values.

Fixed Air Quality
Monitoring Stations

Measured MEAN
(µg/m3)

Predicted MEAN
(µg/m3) CORR NMSE FA2 FB IOA

NO2

B—Caorle 25.35 24.49 0.81 0.20 0.85 0.03 0.90

C—Rocca Brancaleone 32.23 32.15 0.77 0.13 0.92 0.00 0.86

D—SAPIR 47.12 26.64 0.63 0.43 0.58 0.56 0.62

F—Azienda Marani 32.81 26.26 0.60 0.46 0.67 0.22 0.67

H—Marina di Ravenna 21.77 18.90 0.65 0.36 0.73 0.14 0.78

I—Azienda Zorabini 15.72 21.16 0.57 0.75 0.51 0.29 0.71

J—Ballirana 22.63 20.10 0.80 0.18 0.90 0.12 0.88

L—Marconi 34.20 29.98 0.98 0.03 0.99 0.13 0.95

M—Parco Bertozzi 28.54 28.60 0.87 0.14 0.90 0.00 0.93

N—Giardini 21.45 21.27 0.94 0.06 0.95 0.01 0.97

PM10

B—Caorle 30.83 35.6 0.58 0.30 81.36 −0.14 0.72
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Table 3. Cont.

Fixed Air Quality
Monitoring Stations

Measured MEAN
(µg/m3)

Predicted MEAN
(µg/m3) CORR NMSE FA2 FB IOA

C—Rocca Brancaleone 29.89 34.09 0.67 0.16 89.75 −0.13 0.79

D—SAPIR 44.77 25.71 0.59 0.72 63.46 0.54 0.52

F—Azienda Marani 26.66 21.00 0.60 0.29 83.71 0.24 0.79

L—Marconi 30.90 30.39 0.67 0.15 94.66 0.02 0.79

M—Parco Bertozzi 23.64 27.25 0.68 0.27 88.14 −0.14 0.78

N—Giardini 25.05 32.04 0.61 0.32 78.33 −0.24 0.69

The worst performances were recorded for the stations classified as “industrial”, due
to the difficulty in characterizing (temporally and spatially) the emissions sources in areas
of strong industrial vocation. On the other hand, the best performances were recorded for
control stations classified as “background” or “urban”.

Because of the good results of the comparative analysis between measured and pre-
dicted values, the equations obtained by regression analysis were applied to define the
entire concentration fields of NO2 and PM10 concentration in the study area, according
to the classification of each cell. Finally, the resident population, vegetation and physical
cultural heritage were spatially disaggregated for each cell.

3.2. Phase 2 Application

The four campaigns chosen in order to test the proposed methodology, called Exam-
ples n.1–n.4 are described below. Each example simulates the design of a measurement
campaign with a mobile laboratory according to the following characteristics (Table 4).

Table 4. Main characteristics of each example.

Decision Criteria Example n.1 Example n.2 Example n.3 Example n.4

Spatial domain
Territory of the
municipality of

Ravenna

Territory of the
municipality’s union of

the lower Romagna

Territory of the
municipality’s union of
the Romagna Faentina

Territory of the
municipality of

Ravenna

Temporal domain Month of October Month of July Month of June Month of December

Area type Urban traffic (T) Urban background
residential (BU-Res) Rural background (BR) All

Pollutant NO2 NO2 PM10 PM10

Allocation criteria and
objective function

Overall exposition to
NO2 of the residential

population

Maximum
concentration values

of NO2

Maximum PM10
deposition

Maximum damage
index

3.2.1. Campaign n.1

The objective of this example was to analyze the exposure of the urban population of
Ravenna municipality to NO2. Figure 3 shows the application of phase 2 to the spatial do-
main (a), temporal domain (b), area type (c) and pollutant (d) identification. These allowed
the potential cells for the monitoring activities to be reduced numerically and spatially.

The selected criterion in the first case study was the “overall exposure of the residential
population to NO2”. The maximization of the objective function that expressed this
allocation criterion (operationally the function is calculated for all the cells resulting from
the selection of the first 4 steps of phase 2 and then by selecting those with the maximum
values) allowed the identification of only a few cells (Figure 3e). Keeping all the decision
variables unchanged and changing only the month of monitoring, Figure 3 shows the
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different distribution of the points identified for monitoring. This is due to the different
weather conditions and pollutant concentration values.

3.2.2. Campaign n.2

The objective of this example was to analyze the exposure of the population of an
urban background area to NO2. The selection of the spatial domain (a), temporal domain
(b), area type (c) and pollutant (d) of the second campaign is shown in Figure 4. The
selected criterion in the second case study was the “maximum NO2 concentration values”.
Analogous to the previous case, the selection criteria values were calculated on the selection
reported in Figure 4d and the optimal points where to place the mobile laboratories were
identified among the cells with the highest values (Figure 4e).
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3.2.3. Campaign n.3

The objective of this example was to analyze the PM10 deposition to assess the effect
on sensitive vegetation. The selection of the spatial domain (a), temporal domain (b),
area type (c) and pollutant (d) of the third campaign is shown in Figure 5. The selected
criterion in the third case study was the “Maximum PM10 deposition”. Analogous to the
other case-studies, the selection criteria values were calculated on the selection reported in
Figure 5d and the optimal points where to place the mobile laboratories were identified
among the cells with the highest values (Figure 5e).
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3.2.4. Campaign n.4

The last example that has been described used materials as a sensitive receptor and
PM10 depositions (which contribute to determining the total damage index, see Table 3) as
a choice criterion. The selection steps are shown in Figure 6.

As explained in Section 3, the proposed approach enables the allocation procedure
of air monitoring stations including spatial and temporal variables. The inclusion of
the temporal variable makes the approach particularly suitable for short-term air quality
campaigns. The approach is structured as an actual procedure in phases and steps. This
feature has several advantages. The procedural structure guarantees the respect of the
principle of replicability that leads to the application of a coherent methodology for the
various cases. The presence of two phases permits the simplification of the operations: the
two phases are connected to each other, but each phase is able to operate independently
from the other. The changes made in one phase determine the variation of the results of the
next, but they do not cause a revision of the whole application procedure (which remains
standardized). The subdivision in several steps permits transferability: the approach
can be adapted to local peculiarity and different objectives. The possibility to choose
among many objective functions and different sensitive receptors results in great versatility.
Transferability and versatility make the proposed methodology applicable also to low-cost
sensors used for air quality monitoring in areas with elevated variations from the spatial
and temporal point of views and with low availability of financial resources [79,80].
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The experimental application of the methodological approach allowed the authors to
test each step and to provide the following comments and observations. (i) The proposed
methodology requires a preliminary pollutant concentration assessment. In the area of
interest, a mathematical dispersion model to assess the background concentration was
available (PESCO) and it was integrated by a model to evaluate the local source contri-
butions (ADMS-Urban). Air pollution concentration data, maps and models are easily
available in Europe and in other parts of the world [49,81] and the local source modeling
requires information which is a part of local authority duties (see the EU Directives in
European Union). (ii) Multiple linear regression appears to be a very interesting tool for
combining data coming from different predictive models as it is cheap, easy to apply,
effective and reliable. (iii) If data are available, the validation of simulated values vs. mea-
sured values is always recommended because it permits the adjustment of the assessment
process and its strengths and weaknesses to be known. (iv) The spatial disaggregation of
the residential population as a sensitive receptor has been done, starting from the national
census of the population conducted by the National Institute of Statistics and representing
the best available data. The population census is the most detailed information source on
the population at different levels and it is very easily available. If the sensitive receptor
is vegetation, easy and important sources of information could be lists and/or maps of
protected areas, such as national parks, nature reserves and areas of special interest. Lists
of national physical cultural heritage are also readily available in many countries. (v) Using
all the collected information, processed and arranged through phase 1, the application
of the allocation procedure, which constitutes phase 2 of the methodological developed
approach, was very simple and fast.

The application of the proposed methodology highlights, also, some weaknesses.
The more data used, the higher the resolution and the better the allocation choice, but to
process and manage a high quantity of data requires substantial computing capacity that is
not always available. Another weak point is that the database and information collection
created by phase 1 have to be continuously updated for the approach to be effective. Finally,
the allocation choice made by the proposed methodology might not be compatible with
practical aspects (e.g., power requirements, security, site permissions, site access, etc.).
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A refinement of the methodology could be provided by taking these weaknesses into
account. It would be very useful to develop a software tool for the automatization of data
loading and update activities. Moreover, it would be convenient to expand the list of
objective functions in order to include other sensitive receptors (e.g., fauna) or to further
detail the existing categories (population classified in increasing levels of sensitivity to
pollutants, such as children and the elderly; cultural heritage classified according to the
type of material, such as bronzes and carbonate materials).

4. Conclusions

In conclusion, a new methodology for designing short-term air quality monitoring
campaigns has been proposed and tested on a case study area—situated in northeast
Italy—through four short-term campaigns. The approach is designed especially for the
environmental management and protection authorities but it is also usable by private
entities. It is characterized by a high replicability (it is organized as a real procedure in
phases and steps) and wide versatility, in fact, it can be adapted and contextualized for
situations with very different characteristics (emission, sources, receptors, orography, etc.,)
and it can answer very different questions (temporal aspects, different allocation criteria,
different receptors, etc.).

Its experimental application has provided satisfactory results (both in terms of time
and space) in regard to the objectives of this study by indicating suitable monitoring points.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su13137481/s1, Table S1. Proposed allocation criteria.
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